RU2764763C1 - Способ получения замещенного титаном гексаферрита бария - Google Patents

Способ получения замещенного титаном гексаферрита бария Download PDF

Info

Publication number
RU2764763C1
RU2764763C1 RU2021110770A RU2021110770A RU2764763C1 RU 2764763 C1 RU2764763 C1 RU 2764763C1 RU 2021110770 A RU2021110770 A RU 2021110770A RU 2021110770 A RU2021110770 A RU 2021110770A RU 2764763 C1 RU2764763 C1 RU 2764763C1
Authority
RU
Russia
Prior art keywords
hours
grinding
bafe
barium hexaferrite
subjected
Prior art date
Application number
RU2021110770A
Other languages
English (en)
Inventor
Андрей Юрьевич Стариков
Ксения Петровна Павлова
Иброхими Ашурали Солизода
Дарья Петровна Шерстюк
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования «Южно-Уральский государственный университет (национальный исследовательский университет)» ФГАОУ ВО «ЮУрГУ (НИУ)»
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования «Южно-Уральский государственный университет (национальный исследовательский университет)» ФГАОУ ВО «ЮУрГУ (НИУ)» filed Critical Федеральное государственное автономное образовательное учреждение высшего образования «Южно-Уральский государственный университет (национальный исследовательский университет)» ФГАОУ ВО «ЮУрГУ (НИУ)»
Priority to RU2021110770A priority Critical patent/RU2764763C1/ru
Application granted granted Critical
Publication of RU2764763C1 publication Critical patent/RU2764763C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

Изобретение относится к получению магнитных оксидных материалов методом твердофазного синтеза и может быть использовано в СВЧ-устройствах и электронике. Для получения в виде спеченного порошка замещенного титаном гексаферрита бария BaFe12-xTixO19, где х=0,25÷2,0, порошки оксидов Fe2O3 и TiO2 и карбоната ВаСО3, взятые в стехиометрическом соотношении, подвергают гомогенизирующему помолу в сухом виде в течение 3 ч. Смесь порошков прессуют под давлением 60-80 кг/мм2, подвергают синтезирующему обжигу на воздухе до спекания в два этапа с промежуточным измельчением в течение 1 ч, а затем медленно охлаждают. Обжиг на первом этапе проводят при температуре 1200°С в течение 5 ч, а на втором этапе - при 1350°С в течение 5 ч. Изобретение позволяет получить гексаферрит бария с регулируемыми электрофизическими свойствами материала, такими как диэлектрическая и магнитная проницаемость, восприимчивость, регулировать частотный диапазон ферромагнитного резонанса посредством варьирования состава исходной смеси. 4 ил., 3 пр.

Description

Изобретение относится к области получения магнитных оксидных материалов, и может быть использовано в устройствах СВЧ и электронике для расширения области их применения (ферритовые поглотители электромагнитных волн, антенны, сердечники, элементы памяти, постоянные магниты и т.д.).
Известен способ получения гексагональных ферритов методом химического соосаждения, который заключается в осаждении нерастворимых соединений (гидроксидов железа и легирующих элементов, карбоната бария) из растворов солей с последующей промывкой и спеканием полученных осадков по керамической технологии [Mattei, J.-L. A simple process to obtain anisotropic self-biased magnets constituted of stacked barium ferrite single domain particles / J.-L. Mattei, C.N. Le, A. Chevalier et al. // Journal of Magnetism and Magnetic Materials. - 2018. - V. 451. - P. 208-213]. Суть способа заключается в получении анизотропных плотных изделий гексагональных ферритов бария, с использованием различных скоростей осаждения и типов осаждающих агентов (NaOH и Na2CO3). Показано, что при большом избытке Na2CO3 после прессования и обжига при 1140°С получают высокоплотную упаковку гексагональных пластин BaFe12O19 без включения дополнительных процессов дробления и обжига.
Основные проблемы данной методики заключаются в трудности получения одной и той же стехиометрии и в осадке, и в исходном растворе, поскольку произведения растворимости индивидуальных солей часто отличаются на порядки; адсорбции дисперсным осадком посторонних ионов из раствора.
Известен способ получения гексагональных ферритов золь-гель методом [Li, Q. Preparation, characterization and microwave absorption properties of barium-ferrite-coated fly-ash cenospheres / Q. Li, J. Pang, B. Wang et al. // Advanced Powder Technology. - 2013. - V. 24, is. 1. - P. 288-294]. Суть метода заключается в следующем. Сначала смешивают исходные вещества и добиваются образования золя. Золь представляет собой дисперсную систему, в которой дисперсионной средой является жидкость, а в ней распределены дисперсные фазы: капли жидкости, пузырьки газа или твердые наночастицы (1-100 нм). Далее золь переводят в гель увеличением концентрации дисперсной фазы или изменением технологических параметров (температура, давление). Проводя один или несколько последовательных процессов, таких как конденсация, гидролиз, ультрафильтрация, высушивание, старение или термообработка, добиваются образования контактов между частицами, что ведет к созданию монолитного полимерного геля, в котором образуется трехмерная упорядоченная сетка. В конце получают порошок гексаферрита бария методом ускоренного нагревания до температуры 600-1200°С. Размеры частиц в зависимости от выбранного прекурсора и условий синтеза могут составлять от нескольких десятков до сотен нм.
К недостаткам этого способа следует отнести продолжительность стадии удаления растворителя, сушка и обжиг покрытий и монолитных изделий может приводить к значительной усадке (до 70%); полидисперсность частиц; невозможность получения анизотропных частиц и пространственно-упорядоченных систем; взаимодействие частиц с растворителем.
Наиболее близким к предложенному способу является способ получения поглощающего материала на основе замещенного гексаферрита бария [Пат. 2651343 Российская Федерация, МПК C09D 5/32, H01Q 17/00]. Используемый способ получения, замещенного алюминием гексаферрита бария с добавлением оксида бора, улучшает поглощающие характеристики синтезируемых материалов. В соответствии со способом-прототипом для получения поглощающего материала на основе замещенного гексаферрита бария синтезируют замещенный гексаферрит бария BaFe12-xAlxO19, где 0.5≤х≤2, из оксидов Fe2O3, Al2O3 и карбоната ВаСО3, взятых в строго стехиометрическом соотношении, при этом перед смешиванием в исходную шихту из смеси оксидов и карбоната добавляют легкоплавкую эвтектику - В2О3 1-2 мас. %, смешанные порошки подвергают мокрому помолу, после чего смесь порошков прессуют и подвергают синтезирующему обжигу на воздухе при 1150-1250°С до спекания, а затем медленно охлаждают.
К недостаткам способа-прототипа можно отнести его неприменимость к материалам, где используют другие легирующие элементы, где высока вероятность негативного влияния на конечный продукт при добавлении B2O3, а также дополнительные затраты на спирт.
Технической задачей предлагаемого способа является получение замещенного титаном гексаферрита бария методом твердофазного синтеза, который обладает анизотропией свойств, высокой химической стабильностью, коррозионной стойкостью для применения в промышленности в качестве материалов поглощающих электромагнитное излучение определенной частоты, а также в качестве материала для элементов СВЧ электроники.
Техническая задача достигается за счет того, что способ получения замещенного титаном гексаферрита бария в виде спеченного порошка методом твердофазного синтеза из порошков двух оксидов, в том числе оксида Fe2O3 и карбоната BaCO3, взятых в стехиометрическом соотношении, при котором смешанные порошки подвергают гомогенизирующему помолу, после чего смесь порошков прессуют и подвергают синтезирующему обжигу на воздухе до спекания в два этапа с промежуточным измельчением, а затем медленно охлаждают, отличающийся тем, что синтезируют замещенный гексаферрит бария: BaFe12-xTixO19, где x=0,25÷2,0, в качестве второго оксида, используют TiO2, помол осуществляют в сухом виде в течение трех часов, прессуют под давлением 60-80 кг/мм2, обжиг на втором этапе производят при температуре 1350° в течение 5 часов, с промежуточным измельчением в течение 1 часа.
Технический результат - получение гексаферрита бария с регулируемыми электрофизическими свойствами материала, например, диэлектрической и магнитной проницаемости, восприимчивости, регулирование частотного диапазона ферромагнитного резонанса посредством варьирования состава исходной смеси, контролируемого изменения анизотропии.
В отличие от способа-прототипа синтезируют замещенный гексаферрит бария BaFe12-xTixO19, 0.25≤х≤2, из оксидов Fe2O3, TiO2 и карбоната ВаСО3, взятых в строго стехиометрическом соотношении, в исходную шихту не добавляют оксид бора B2O3, затем смешанные порошки, подвергают помолу, но в сухом виде, после чего смесь порошков прессуют при давлении 60-80 кг/мм2 и подвергают синтезирующему обжигу на воздухе в два этапа при температуре 1200° в течение 5 часов с промежуточным измельчением в течение 1 часа, при повторном прессовании и спекании при 1350° в течение 5 часов. После каждого спекания образцы необходимо медленно охлаждать со скоростью ~100°С/ч.
Способ поясняется графиками, изображенными на Фиг. 1-4.
На фиг. 1 показан график зависимости модуля комплексного коэффициента отражения слоя, замещенного титаном гексаферрита бария - BaFe11.5Ti0.5O19 от частоты электромагнитного излучения.
На фиг. 2 изображен график зависимости модуля комплексного коэффициента отражения слоя BaFe11TiO19 от частоты электромагнитного излучения.
На фиг. 3 изображен график зависимости модуля комплексного коэффициента отражения слоя BaFe10Ti2O19 от частоты электромагнитного излучения.
На Фиг. 4 представлена зависимость действительной части диэлектрической проницаемости от частоты излучения электрического поля для замещенных титаном гексаферритов бария BaFe11,5Ti0,5O19, BaFe11TiO19, BaFe10Ti2O19 по сравнению с чистым гексаферритом BaFe12O19.
Сущность изобретения состоит в следующем.
Замещение части ионов железа, таким легирующим элементом как титан, позволяет модифицировать свойства - варьировать значения диэлектрической проницаемости и магнитной восприимчивости, дает возможность регулировать частотный диапазон ферромагнитного резонанса. Кроме того, благодаря своему кристаллическому строению гексаферрит бария обладает анизотропией свойств, высокой химической стабильностью, коррозионной стойкостью, что делает возможным применение данного материала в промышленности, например, в качестве магнитотвердых материалов для постоянных магнитов и магнитных композитов, устройств хранения информации, магнитооптических устройствах и т.д.
Исследование электромагнитных параметров в диапазоне частот 8-12 ГГц (Фиг. 1) позволило выявить, что увеличение содержания титана вызывает увеличение диэлектрической проницаемости до 6,2 при x=0,5-1 и до 10,5 при x=2. Этот эффект обусловлен увеличением поляризуемости кристалла за счет внедрения ионов Ti4+ с высокой ионной поляризуемостью. Подобный эффект хорошо известен в оптическом спектральном диапазоне, где внедрение ионов Ti4+ с высокой электронной поляризуемостью в кристаллическую решетку оксида приводит к значительному увеличению показателя преломления. Из чего следует, что предлагаемый составы поглощающего материала из гексаферрита бария: BaFe12-xTixO19, где x=0,25÷2, обладают электромагнитными свойствами достаточными для использоватния в качестве абсорбционных элементов в таких микроволновых устройствах, как фазовращатели, делители мощности и аттенюаторы.
В исходную шихту не добавляют оксид бора B2O3 ввиду того, что это негативно скажется на конечных свойствах материала используя предложенный способ. В сочетании с легированием титаном, который проводит электрический ток, добавление оксида бора хотя и позволит снизить проводимость материала для улучшения конечных свойств материала, но потребуется разработка другой технологии получения, так как и прототип, и предложенный метод не подойдут для проведения синтеза материала, потому что высока вероятность получения нескольких фаз помимо гексаферрита бария BaFe12O19, что существенно повлияет на конечные характеристики получаемого материала.
При сухом помоле в течение 3-х часов достигается оптимальная гомогенизация смеси, при уменьшении времени помола наблюдается неравномерное распределение элементов и их крупные включения, что негативно повлияет на конечный продукт синтеза. Увеличение времени помола не приведет к существенному улучшению гомогенизации, поэтому помол в течение 3-х часов необходим и достаточен для гомогенизации смеси.
В связи с тем, что добавление спирта помогает повысить интенсивность перемешивания, но экономически не выгодно ввиду усложнения технологии и повышения себестоимости продукции, возможно осуществить помол без него или другой жидкости.
Прессование порошков проводят в металлических формах при давлении 60-80 кг/мм2. При более высоком давлении прессования износ деталей пресс-формы увеличивается в разы. При более низком давлении существует вероятность растрескивания образца. Этого можно избежать, добавив к материалу связку, например, 5 масс. % парафина. Оба варианта экономически невыгодны, поэтому и было выбрано давление прессования 60-80 кг/мм2.
Эмпирическим путем доказано, что если спекание замещенных титаном гексаферритов бария BaFe12-TixO19 проводить менее 5 часов, то высока вероятность не получить требуемую фазу гексаферрита бария BaFe12O19, если же спекать материал более 5 часов, никаких существенных изменений не будет. Таким образом, спекание замещенного титаном гексаферрита бария следует проводить не менее 5 часов. Выбор времени и температура спекания обусловлен тем, что при данном режиме происходит окончательная ферритизация материала. При меньшей температуре спекания и одинаковом времени выдержки в материале проходит не окончательная ферритизация и присутствует фаза Fe2O3. Если же температуру увеличить, например, до 1400°С, в материале присутствуют признаки оплавления, что негативно сказывается на рабочих характеристиках.
Температура 1200° первого этапа выбрана для предварительного спекания, которое позволяет удалить летучие соединения из образца, а также начального этапа ферритизации. Если температуру выбрать меньше 1200°, ферритизация для замещенного титаном гексаферрита бария протекать не будет, что в дальнейшем может повлиять на однородность материала. Температура выше 1200° позволит провести ферритизацию быстрее, но из-за неравномерности распределения компонентов на первом этапе возможно появление очагов прореагировавшей смеси и обедненных участков, в которых будут присутствовать начальные компоненты оксидов железа, титана и карбоната бария.
Ввиду того, что твердофазная реакция протекает медленно, было выбрано время спекания в 5 часов. Увеличение времени увеличивает износ нагревателей, но не влечет видимого изменения характеристик в образцах. Уменьшение времени спекания не позволит в достаточной мере прореагировать исходным компонентам для начала ферритизации.
После проведения первого этапа спекания следует промежуточное измельчение, которое позволяет максимизировать однородность материала, минимизировать пористость, что влечет за собой увеличение плотности и улучшению структуры конечного материала после прессования и завершении второго этапа спекания. Измельчение в течение 1 часа позволяет получить оптимальный размер частиц, подходящий для дальнейшего прессования. Уменьшение времени влечет за собой укрупнение частиц и к затруднению перехода на этап прессования, где возможно растрескивания прессуемого образца. Увеличение времени измельчения ведет к получению более мелких частиц порошка, что благотворно сказывается на дальнейшем прессовании, но увеличивает время его получения.
Пример 1.
Оксиды Fe2O3 (ОСЧ) и TiO2 (ОСЧ) высокой чистоты и карбонат BaCO3 (ОСЧ) используют для приготовления легированных образцов BaFe11,5Ti0,5O19 методом твердофазного синтеза.
Расчеты масс составных компонентов образцов и формирование навесок производить в соответствии со стехиометрическим соотношением общего уравнения реакции:
Figure 00000001
Смешанные с соблюдением стехиометрии порошки 0,1708 масс. % BaCO3, 0,7947 масс. % Fe2O3, 0,0346 масс. % TiO2, подвергать помолу в сухом виде на шаровой мельнице в течение 3 ч. После помола исходные смеси порошков прессовать на гидравлическом прессе в цилиндрической форме (диаметр 12 мм, высота 10 мм). Спрессованные под давлением 60-80 кг/мм2 составы подвергали синтезирующему обжигу на воздухе в 2-а этапа: на 1-ом этапе осуществляли нагрев до 1200° в трубчатой печи с карбидкремниевыми нагревателями в течении 5 часов и охлаждали со скоростью ~100°С/ч, затем измельчали материал в течении 1 часа при помощи шаровой мельницы, повторно прессовали под давлением 60-80кг/мм2 и обжигали в трубчатой печи с карбидкремниевыми нагревателями при 1350° в течение 5 часов и охлаждали со скоростью ~100°С/ч.
На фиг. 1 показан график зависимости модуля комплексного коэффициента отражения слоя, замещенного титаном гексаферрита бария - BaFe11.5Ti0.5O19 от частоты электромагнитного излучения.
Пример 2.
Оксиды Fe2O3 (ОСЧ) и TiO2 (ОСЧ) высокой чистоты и карбонат BaCO3 (ОСЧ) используют для приготовления легированного образца BaFe11TiO19 методом твердофазного синтеза. Расчеты масс составных компонентов образцов и формирование навесок производить в соответствии со стехиометрическим соотношением общего уравнения реакции:
Figure 00000002
Смешанные с соблюдением стехиометрии порошки 0,1708 масс. % BaCO3, 0,7601 масс. % Fe2O3, 0,0691 масс. % TiO2, подвергать помолу в сухом виде на шаровой мельнице в течение 3 ч. После помола исходные смеси порошков прессовать на гидравлическом прессе в цилиндрической форме (диаметр 12 мм, высота 10 мм). Сперессованные под давлением 60-80 кг/мм2 составы подвергали синтезирующему обжигу на воздухе в 2-а этапа: на 1-ом этапе осуществляли нагрев до 1200° в трубчатой печи с карбидкремниевыми нагревателями в течении 5 часов и охлаждали со скоростью ~100°С/ч, затем измельчали материал в течении 1 часа при помощи шаровой мельницы, повторно прессовали под давлением 60-80 кг/мм2 и обжигали в трубчатой печи с карбидкремниевыми нагревателями при 1350° в течение 5 часов и охлаждали со скоростью ~100°С/ч.
На фиг. 2 изображен график зависимости модуля комплексного коэффициента отражения слоя BaFe11TiO19 от частоты электромагнитного излучения.
Пример 3.
Оксиды Fe2O3 (ОСЧ) и TiO2 (ОСЧ) высокой чистоты и карбонат BaCO3 (ОСЧ) используют для приготовления легированных образцов BaFe10Ti2O19 методом твердофазного синтеза. Расчеты масс составных компонентов образцов и формирование навесок производить в соответствии со стехиометрическим соотношением общего уравнения реакции:
Figure 00000003
Смешанные с соблюдением стехиометрии порошки 0,1708 масс. % BaCO3, 0,6910 масс. % Fe2O3, 0,1382 масс. % TiO2, подвергать помолу в сухом виде на шаровой мельнице в течение 3 ч. После помола исходные смеси порошков прессовать на гидравлическом прессе в цилиндрической форме (диаметр 12 мм, высота 10 мм). Сперессованные под давлением 60-80 кг/мм2 составы подвергали синтезирующему обжигу на воздухе в 2-а этапа: на 1-ом этапе осуществляли нагрев до 1200° в трубчатой печи с карбидкремниевыми нагревателями в течении 5 часов и охлаждали со скоростью ~100°С/ч, затем измельчали материал в течении 1 часа при помощи шаровой мельницы, повторно прессовали под давлением 60-80 кг/мм2 и обжигали в трубчатой печи с карбидкремниевыми нагревателями при 1350° в течение 5 часов и охлаждали со скоростью ~100°С/ч.
На фиг. 3 изображен график зависимости модуля комплексного коэффициента отражения слоя BaFe10Ti2O19 от частоты электромагнитного излучения.
На Фиг. 1-3 показаны спектры отражения слоев для BaFe11,5Ti0,5O19, BaFe11TiO19 и BaFe10Ti2O19 соответственно, рассчитанные для нормального падения и нескольких значений толщины нанесенных порошков. Как видно из Фиг. 1, для состава BaFe11,5Ti0,5O19 поглощение очень чувствительно к толщине слоя порошка замещенного титаном гексаферрита бария (имеется ввиду толщина слоя порошка в ячейке для измерения). Действительно, для толщины слоя 8 и 10 мм обнаружено широкое поглощение >15 дБ по магнитуде. Относительно толщины в 9 мм наблюдаются два резких и сильных пика поглощения величиной ~40 и ~28 дБ по магнитуде при 9,25 и 10,25 ГГц соответственно. Максимум поглощения появился на частоте 9,25 ГГц, поскольку в этом случае толщина слоя хорошо связана с четвертью длины волны. Второй минимум на частоте 10,25 ГГц вызван взаимодействием входных и вторичных отраженных волн. Для BaFe11TiO19, как показано на Фиг. 2 для тех же значений толщины, спектры отражения, очевидно, различны, и в рассматриваемом диапазоне частот они содержат только одну неглубокую полосу на уровне -(12-14) дБ. Для полос поглощения положение максимума сильно зависит от толщины слоя. Для сравнения, в случае BaFe10Ti2O19, Фиг. 3, расчеты проводились для сравнительно тонких слоев. Видно, что отражение ниже 15 дБ можно обеспечить в широком частотном диапазоне 8,25-9 ГГц в слое толщиной 2 мм. Сильный минимум на 8,35 ГГц появляется благодаря толщине, равной четверти длины волны. Два других резких минимума определяются взаимодействием входной волны со второй и третьей отраженными волнами. Таким образом, абсорбционные свойства слоев BaFe12-xTixO19 могут быть сильно изменены путем соответствующего выбора состава феррита и толщины слоя.
Замещение части ионов железа, таким легирующим элементом как титан, в отличие от способа-прототипа (спекание в 2 этапа при разных температурах без добавления оксида бора) позволяет получить монофазный материал (т.е. в материале присутствует фаза гексаферрита бария BaFe12O19, но в элементном составе есть титан, который влияет на конечные свойства.) и модифицировать свойства - варьировать значения диэлектрической проницаемости и магнитной восприимчивости, что доказывают Фиг. 1-4, а также снизить время и себестоимость получения конечного материала.
На Фиг. 4 представлена зависимость действительной части диэлектрической проницаемости от частоты излучения электрического поля для замещенных титаном гексаферритов бария BaFe11,5Ti0,5O19, BaFe11TiO19, BaFe10Ti2O19 по сравнению с чистым гексаферритом BaFe12O19. Исследования показали, что увеличение содержания Ti вызывает увеличение диэлектрической проницаемости до 6,2 при x=0,5-1 и до 10,5 при x=2.
Как правило, легирование титаном BaFe12O19 сильно увеличивает тангенс угла диэлектрических потерь, и, соответственно, замещенный титаном гексаферрит бария BaFe12-xTixO19 можно использовать для создания эффективных поглощающих слоев поглощающих электромагнитные волны в микроволновом диапазоне. Поглощающие свойства слоев указанного материала могут быть оптимизированы для выбранного частотного диапазона путем варьирования его состава и толщины. Кроме того, ферриты BaFe12-xTixO19 могут быть использованы в качестве абсорбционных элементов в таких микроволновых устройствах, как фазовращатели, делители мощности и аттенюаторы.

Claims (1)

  1. Способ получения замещенного титаном гексаферрита бария в виде спеченного порошка методом твердофазного синтеза из порошков двух оксидов, в том числе оксида Fe2O3, и карбоната ВаСО3, взятых в стехиометрическом соотношении, при котором смешанные порошки подвергают гомогенизирующему помолу, после чего смесь порошков прессуют и подвергают синтезирующему обжигу на воздухе до спекания в два этапа с промежуточным измельчением, а затем медленно охлаждают, отличающийся тем, что синтезируют замещенный гексаферрит бария BaFe12-xTixO19, где х=0,25÷2,0, в качестве второго оксида используют TiO2, помол осуществляют в сухом виде в течение трех часов, прессуют под давлением 60-80 кг/мм2, обжиг на первом этапе проводят при температуре 1200°С в течение 5 ч, обжиг на втором этапе проводят при температуре 1350°С в течение 5 ч с промежуточным измельчением в течение 1 ч.
RU2021110770A 2021-04-16 2021-04-16 Способ получения замещенного титаном гексаферрита бария RU2764763C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021110770A RU2764763C1 (ru) 2021-04-16 2021-04-16 Способ получения замещенного титаном гексаферрита бария

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021110770A RU2764763C1 (ru) 2021-04-16 2021-04-16 Способ получения замещенного титаном гексаферрита бария

Publications (1)

Publication Number Publication Date
RU2764763C1 true RU2764763C1 (ru) 2022-01-21

Family

ID=80445227

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021110770A RU2764763C1 (ru) 2021-04-16 2021-04-16 Способ получения замещенного титаном гексаферрита бария

Country Status (1)

Country Link
RU (1) RU2764763C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248207A (ja) * 1986-04-21 1987-10-29 Toshiba Glass Co Ltd 電波吸収材
SU1406645A1 (ru) * 1987-01-30 1988-06-30 Ивановский энергетический институт им.В.И.Ленина Способ изготовлени изделий из гексаферрита бари
CN103011792A (zh) * 2012-12-18 2013-04-03 电子科技大学 一种毫米波段电磁波吸收剂的制备方法
RU2651343C1 (ru) * 2016-12-19 2018-04-19 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения поглощающего материала на основе замещенного гексаферрита бария

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248207A (ja) * 1986-04-21 1987-10-29 Toshiba Glass Co Ltd 電波吸収材
SU1406645A1 (ru) * 1987-01-30 1988-06-30 Ивановский энергетический институт им.В.И.Ленина Способ изготовлени изделий из гексаферрита бари
CN103011792A (zh) * 2012-12-18 2013-04-03 电子科技大学 一种毫米波段电磁波吸收剂的制备方法
RU2651343C1 (ru) * 2016-12-19 2018-04-19 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения поглощающего материала на основе замещенного гексаферрита бария

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ВИННИК Д.А. и др. Твердофазный синтез частично замещенного титаном гексаферрита бария BaFe12-xTixO19, Вестник ЮУрГУ, Серия "Металлургия", 2017, т. 17, N 3, cc. 28-33. *
РЕЗВЫЙ А.В. и др. Получение частично замещенного титаном гексаферрита бария BaFe11,5Ti0,5O19 методом твердофазного синтеза, Вестник совета молодых учёных и специалистов Челябинской области, 2017, т. 1, N 2 (17), сс. 62-64. *

Similar Documents

Publication Publication Date Title
Shlimas et al. Study of the formation effect of the cubic phase of LiTiO2 on the structural, optical, and mechanical properties of Li2±x Ti1±x O3 ceramics with different contents of the X component
Raghuram et al. Magnetic properties of hydrothermally synthesized Ba1–x Sr x Fe12O19 (x= 0.0–0.8) nanomaterials
Wang et al. Synthesis, structure and electromagnetic properties of Mn–Zn ferrite by sol–gel combustion technique
Raghuram et al. Investigations on functional properties of hydrothermally synthesized Ba1-xSrxFe12O19 (x= 0.0− 0.8) nanoparticles
Sadhana et al. Structural and magnetic properties of Dy3+ doped Y3Fe5O12 for microwave devices
Barnakov et al. Uncovering the mystery of ferroelectricity in zero dimensional nanoparticles
Malik et al. Structural, spectral, thermal and dielectric properties of Nd-Ni co-doped Sr-Ba-Cu hexagonal ferrites synthesized via sol-gel auto-combustion route
Sharma et al. Investigation of dielectric, electrical and optical properties of copper substituted Mn-Zn nanoferrites
Bao et al. Sintering characteristics, crystal structure and dielectric properties of cobalt-tungsten doped molybdate-based ceramics at microwave frequency
Jamalian et al. Magnetic and microwave properties of barium hexaferrite ceramics doped with Gd and Nd
Sun et al. Preparation and microwave absorption properties of Ce-substituted lithium ferrite
Ge et al. Size dependence of the polarization and dielectric properties of KNbO 3 nanoparticles
Mesrar et al. Studies of structural, dielectric, and impedance spectroscopy of KBT-modified sodium bismuth titanate lead-free ceramics
Vigneshwaran et al. Study of low temperature-dependent structural, dielectric, and ferroelectric properties of Ba x Sr (1− x) TiO 3 (x= 0.5, 0.6, 0.7) ceramics
Aldbea et al. Effect of increasing pH value on the structural, optical and magnetic properties of yttrium iron garnet films prepared by a sol–gel method
Islam et al. Structural, dielectric, and magnetic properties characterization of sol–gel synthesized CaxZn (0.90-x) Ni0. 10Fe2O4 nanopowder and its application as flexible microwave substrate with polarization-insensitive SNG metamaterial
Pandey et al. Investigation of re-entrant relaxor behaviour in lead cobalt niobate ceramic
Shankar et al. Signature of multiferroicity and impedance analysis of Co 1− x Zn x Fe 2− x La x O 4 nanoparticles
Pati et al. Multiferroic, structural, optical and conduction characteristics of PFN-BST
RU2764763C1 (ru) Способ получения замещенного титаном гексаферрита бария
Alkathy et al. Effect of nickel and lithium co-substituted barium titanate ceramics on structural and dielectric properties
Ramesh et al. Structural, magnetoelectric properties of multidoped Ni–Al ferrites for microwave circulator applications
Ponmudi et al. Influences of sputtering power and annealing temperature on the structural and optical properties of Al 2 O 3: CuO thin films fabricated by radio frequency magnetron sputtering technique
Sadiq et al. Enhanced microwave absorption properties of CTAB assisted Pr–Cu substituted nanomaterial
Liu et al. Fabrication and Properties of 5% Ce-Doped BaTiO 3 Nanofibers-Based Ceramic