RU2764240C1 - Способ изготовления анизотропных одномодовых волоконных световодов - Google Patents

Способ изготовления анизотропных одномодовых волоконных световодов Download PDF

Info

Publication number
RU2764240C1
RU2764240C1 RU2021110895A RU2021110895A RU2764240C1 RU 2764240 C1 RU2764240 C1 RU 2764240C1 RU 2021110895 A RU2021110895 A RU 2021110895A RU 2021110895 A RU2021110895 A RU 2021110895A RU 2764240 C1 RU2764240 C1 RU 2764240C1
Authority
RU
Russia
Prior art keywords
fiber
workpiece
temperature
rounding
manufacturing
Prior art date
Application number
RU2021110895A
Other languages
English (en)
Inventor
Михаил Артемьевич Ероньян
Александр Александрович Реуцкий
Александр Алексеевич Унтилов
Original Assignee
Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" filed Critical Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор"
Priority to RU2021110895A priority Critical patent/RU2764240C1/ru
Application granted granted Critical
Publication of RU2764240C1 publication Critical patent/RU2764240C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

Изобретение относится к технологии изготовления сохраняющих поляризацию излучения одномодовых волоконных световодов с эллиптической напрягающей оболочкой. Заявленный способ изготовления анизотропных одномодовых волоконных световодов с эллиптичной напрягающей оболочкой включает получение MCVD методом цилиндрической заготовки, содержащей сердцевину, низковязкую напрягающую оболочку и конструктивную оболочку из кварцевого стекла, нарезание с диаметрально противоположных сторон заготовки двух канавок, высокотемпературное кругление заготовки и вытягивание волокна. Причем кругление заготовки осуществляют в процессе вытягивания волокна при скорости 20-50 м/мин и температуре 2200-2250°С. Технический результат - повышение производительности процесса изготовления световодов и увеличение их выхода из заготовки. 3 табл.

Description

Изобретение относится к волоконной оптике, в частности к технологии изготовления анизотропных одномодовых волоконных световодов (АОВС), сохраняющих состояние поляризации излучения. Такие световоды используются в различного рода волоконно-оптических интерферометрических датчиках физических величин.
АОВС имеет в поперечном сечении круглую сердцевину и эллиптичную напрягающую оболочку, которые расположены внутри оболочки из кварцевого стекла. Световоды, имеющие такую конструкцию, способны сохранять линейное состояние поляризации излучения, что обеспечивается за счет анизотропии радиальных напряжений, обусловленных эллиптической формой напрягающей оболочки.
Способ получения АОВС с эллиптичной напрягающей оболочкой выгодно отличается от других методов изготовления световодов, сохраняющих поляризацию излучения (типа «panda» или «bow tie»), простотой технологического процесса их изготовления.
Наиболее распространенный способ получения АОВС с эллиптичной напрягающей оболочкой [Александров А.Ю., Григорьянц В.В., Залогин А.Н., Иванов Г.А., Исаев В.А., Козел С.М., Листвин В.Н., Чаморовский Ю.К., Юшкайтис Р.В. Сохранение поляризации в анизотропных одномодовых волоконных световодах с эллиптической напрягающей оболочкой // Радиотехника, 1988, № 8, с. 90-94] включает пять основных операций:
1. Нанесение слоев низковязкой напрягающей оболочки и сердцевины внутри трубы из кварцевого стекла методом модифицированного химического парофазного осаждения (MCVD).
2. Высокотемпературное сжатие трубки в штабик-заготовку.
3. Абразивную шлифовку заготовки с образованием плоскопараллельных поверхностей.
4. Высокотемпературное кругление заготовки в пламени горелки, при котором напрягающая низковязкая оболочка принимает эллиптичную форму.
5. Вытягивание из заготовки волокна с нанесением защитного полимерного покрытия.
Недостаток такого способа изготовления световодов заключается в трудоемкой и длительной операции шлифования заготовок, приводящей к удалению не менее 30 % дорогостоящей стекломассы. Более того, прогиб заготовки приводит к нарушению соосного расположения сердцевины относительно наружного диаметра заготовки. Указанные недостатки отрицательно сказываются на производительности и экономических показателях процесса изготовления АОВС.
Наиболее близкий к предлагаемому техническому решению и более простой способ изготовления АОВС с эллиптичной напрягающей оболочкой [патент РФ № 2155359], принят за прототип заявляемого изобретения. Он заключается в получении MCVD методом цилиндрической заготовки, содержащей сердцевину, низковязкую напрягающую оболочку и конструктивную оболочку из кварцевого стекла, нарезании с диаметрально противоположных сторон заготовки двух канавок, высокотемпературном пламенном круглении заготовки и вытягивании волокна. В процессе кругления заготовки канавки исчезают, низковязкая напрягающая оболочка принимает эллиптичную форму, а сердцевина остается круглой. Такой способ, усовершенствованный по сравнению с предыдущим методом, позволяет снизить потери дорогостоящей стекломассы при абразивной обработке до 5 % и существенно сократить длительность процесса изготовления заготовок световодов. Более того, локализованный участок нарезания канавок абразивным кругом исключает влияние стрелы прогиба заготовки на нарушение соосного расположения сердцевины.
Однако длительный процесс высокотемпературного кругления заготовки в высокоскоростном потоке продуктов горения кислородно-водородного пламени приводит к испарению с ее поверхности не менее 20 % стекла. Продолжительная операция кругления требует значительных затрат материальных, энергетических и рабочих ресурсов, а испарение стекла заготовки уменьшает на 15 – 20 % длину вытягиваемого из него световода. Указанные недостатки отрицательно сказываются на производительности процесса изготовления АОВС и их стоимости.
Решаемая техническая проблема - снижение длительности процесса изготовления АОВС и массоуноса заготовок при испарении кварцевого стекла.
Достигаемый технический результат - повышение производительности процесса изготовления АОВС и снижения их стоимости.
Поставленная задача решается предлагаемым способом изготовления АОВС, включающим получение MCVD методом цилиндрической заготовки, содержащей сердцевину, низковязкую напрягающую оболочку и конструктивную оболочку из кварцевого стекла, нарезание с диаметрально противоположных сторон заготовки двух канавок, высокотемпературном круглении заготовки и вытягивании волокна, отличающимся тем, что кругление заготовки осуществляют в процессе вытягивания волокна при нагреве заготовки до температуры 2200 - 2250 оС и скорости вытягивания волокна 20-50 м/мин.
Сущность нового технического решения заключается в том, что процесс кругления заготовки можно осуществлять одновременно с вытягиванием световода, если заготовку нагревать до температуры ≥ 2200оС. Обычно АОВС вытягивают при температуре 2050-2150 оС и скорости 60 м/мин [С.В. Буреев, И.К. Мешковский, Е.Ю. Уткин, К.В. Дукельский, М.А. Ероньян, А.В. Комаров, Е.И. Ромашова, М.М. Серков, М.А. Бисярин «Минимизация оптических потерь в анизотропных одномодовых световодах с эллиптичной борогерманосиликатной оболочкой» // Оптический журнал. 2012, т. 79, № 9, с. 107-109]. Однако при традиционных температурах (не более 2150оС) и скорости (60 м/мин) вытягивания волокна высоковязкое состояние кварцевого стекла препятствует завершению процесса кругления заготовки при ее размягчении в высокотемпературной зоне. Канавки полностью не исчезают. Эллиптичность напрягающей оболочки и двулучепреломление не достигают максимально возможной величины. Поэтому увеличение длительности процесса кругления за счет снижения скорости вытягивания волокна (менее 60 м/мин) при одновременном повышение температуры нагрева заготовки до 2200 - 2250оС может в полной мере обеспечить завершение процесса кругления волокна и эллипсования напрягающей оболочки. Это способствует достижению предельной величины поляризационной устойчивости световода. Более того, такие высокие температуры вытягивания приведут к повышению прочности световодов [Дукельский К.В., Ероньян М.А., Комаров А.В., Кондратьев Ю.Н., Левит Л.Г., Ромашова Е.И., Серков М.М., Хохлов А.В., Шевандин В.С. MCVD-технология устойчивых к микроизгибам одномодовых волоконных световодов с малым затуханием // Оптический журнал, 2002, т. 69, № 11, с. 72-73] и их поляризационной устойчивости [Андреев А.Г., Буреев С.В., Ероньян М.А., Комаров А.В., Крюков И.И., Мазунина Т.В., Полосков А.А., Тер-Нерсесянц Е.В., Цибиногина М.К. Повышение двулучепреломления в анизотропных одномодовых волоконных световодах с эллиптичной напрягающей оболочкой // Оптический журнал. 2012, т. 79, № 9, с. 107-109].
Таким образом, исключение операции кругления заготовки при пламенном ее нагреве приведет к снижению материальных и энергетических затрат, сокращению длительности процесса изготовления АОВС, а также к увеличению на 15-20 % длины волокна из заготовки.
Предлагаемое новое техническое решение реализовано экспериментально в следующих примерах MCVD способа изготовления АОВС.
Пример № 1. На внутреннюю поверхность метровой трубы из кварцевого стекла марки F-300 с наружным диаметром 25 мм и толщиной стенки 3 мм последовательно наносили слои буферной, напрягающей и изолирующей оболочек, а также слой сердцевины. Буферная и изолирующая оболочки наряду с 0.5 ат % фтора легированы 1,5 мол % Р2О5 и 1 мол % GeO2. Напрягающая оболочка содержала 17 мол % B2O3 и GeO2 в количестве, обеспечивающем величину показателя преломления равную показателю преломления кварцевого стекла. Сердцевина содержала около 6 мол % GeO2 и 0,3 ат % фтора. После высокотемпературного сжатия трубки в штабик-заготовку на рефрактометре марки Р-101 измерены диаметры ее структурных элементов. В таблице 1 представлены средние значения диаметров из 4 измерений по длине заготовки.
Таблица 1. Диаметры слоев заготовки, мм
Сердцевина Изолирующая оболочка Напрягающая оболочка Буферная оболочка Наружная оболочка
0,9 2,6 4,0 5,4 15,3
Нарезания канавок шириной ≈ 1 мм с двух диаметрально противоположных сторон заготовки производили на глубину 4 мм.
Отрезки АОВС длиной по 200-300 метров с диаметром стекловолокна 125 мкм вытягивали из заготовки при скорости 50 метров в минуту и температуре 2150, 2200, 2250 и 2300°С. Одновременно с вытяжкой волокна на его поверхность наносили двухслойное УФ (ультрафиолет) отверждаемое эпоксиакрилатное покрытие толщиной 65 мкм.
На оптическом микроскопе Zeiss Stemi 2000-C измеряли максимальное (Дмax) и минимальное (Дmin) значение диаметра стекловолокна в его поперечном сечении. На основании этих измерений определяли эллиптичность волокна (ε) по формуле:
ε = (Дмax - Дmin) / (Дмax + Дmin) (1)
В таблице 2 представлены средние значения из 4 измерений.
Эллиптичность стекловолокна в процессе такого кругления заготовки устранялась (была ≤ 0.01) только при температуре вытягивания ≥ 2250оС (таблица 2). При температуре 2300оС из-за малого натяжения волокно при вытягивании начинало колебаться, наблюдались скачки величины его диаметра.
На основании измерения длины поляризационных биений (Lb) АОВС длиной 400-500 мм методом спектрального сканирования рассчитывали двулучепреломление (ДЛП) по формуле:
ДЛП = λ/ Lb, (2)
где, λ - длина волны излучения, равная 1,55 мкм,
Таблица 2. Влияние температуры вытягивания волокна на его параметры
Температура вытягивания, оС 2150 2200 2250 2300
Эллиптичность волокна 0,03 0,02 0,01 < 0,01
ДЛП х 104 4,4 5,5 5,7 5,7
Как видно из таблицы 2 предельное значение ДЛП АОВС, вытянутого при скорости 50 м/мин достигается при температуре вытягивания ≥ 2250оС.
Средняя величина прочности, измеренная методом двухточечного изгиба на 20 образцах, для световодов, вытянутых при 2150-2250оС, была одинаковой (5,8 ГПа) в пределах точности измерений.
Пример 2. Методом MCVD изготовлена заготовка аналогично примеру №1. Отличие заключалось в снижении скорости вытягивания световодов с 50 до 20 м/мин.
Таблица 3. Влияние температуры вытягивания волокна на его параметры
Температура вытягивания, о С 2150 2200 2250
Эллиптичность волокна 0,02 0,01 < 0,01
ДЛП х 104 5,4 5,7 5,7
Как видно из таблицы 3 предельное значение ДЛП АОВС, вытянутого при скорости 20 м/мин, достигается при температуре вытягивания ≥ 2200оС, что на 50 оС ниже, чем в предыдущем примере.
Пример № 3 Изготовлен контрольный АОВС без использования предлагаемого технического решения. Круглую заготовку с нарезанием канавок изготовили по аналогии с примером № 1, но ее кругление производили традиционным методом на тепломеханическом станке с кислородно-водородной горелкой. Операции кругления заняла 3 часа, что составляет 50 % от времени изготовления круглой заготовки такой же длины. Диаметр заготовки с 15,3 уменьшился до 13,4 мм. Потеря стекломассы заготовки составила: при абразивной обработке - 5 %, а из-за испарения стекла - 18 %. Длина АОВС из такой заготовки будет на 18 % меньше по сравнению с их изготовлением с использованием предлагаемого технического решения.
Снижение скорости вытягивания волокна ниже 20 м/мин может способствовать процессу кругления волокна, но отрицательно скажется на производительности процесса изготовления световода. Повышение скорости вытягивания более 50 м/мин исключает возможность завершения процесса кругления волокна. Нарушение верхней температурной границы (2250оС) приведет к нарушению стабильности диаметра волокна, а нарушение нижней границы (2200оС) приведет к снижению его прочности.
Приведенные примеры реализации нового технического решения свидетельствуют о повышении производительности процесса изготовления АОВС и снижении затрат на его изготовление. Вышеизложенные сведения подтверждают очевидную промышленную применимость предлагаемого способа изготовления АОВС.

Claims (1)

  1. Способ изготовления анизотропных одномодовых волоконных световодов с эллиптичной напрягающей оболочкой, включающий получение MCVD методом цилиндрической заготовки, содержащей сердцевину, низковязкую напрягающую оболочку и конструктивную оболочку из кварцевого стекла, нарезание с диаметрально противоположных сторон заготовки двух канавок, высокотемпературное кругление заготовки и вытягивание волокна, отличающийся тем, что кругление заготовки осуществляют в процессе вытягивания волокна при скорости 20-50 м/мин и температуре 2200-2250°С.
RU2021110895A 2021-04-19 2021-04-19 Способ изготовления анизотропных одномодовых волоконных световодов RU2764240C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021110895A RU2764240C1 (ru) 2021-04-19 2021-04-19 Способ изготовления анизотропных одномодовых волоконных световодов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021110895A RU2764240C1 (ru) 2021-04-19 2021-04-19 Способ изготовления анизотропных одномодовых волоконных световодов

Publications (1)

Publication Number Publication Date
RU2764240C1 true RU2764240C1 (ru) 2022-01-14

Family

ID=80040441

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021110895A RU2764240C1 (ru) 2021-04-19 2021-04-19 Способ изготовления анизотропных одномодовых волоконных световодов

Country Status (1)

Country Link
RU (1) RU2764240C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2155359C2 (ru) * 1998-07-30 2000-08-27 Ероньян Виктор Артемьевич Способ изготовления волоконных световодов, сохраняющих поляризацию излучения
EP1116697A2 (en) * 2000-01-14 2001-07-18 Samsung Electronics Co., Ltd. Preform for dispersion-managed optical fibre and method of fabricating the preform by modified chemical vapour deposition
US20020186942A1 (en) * 2001-05-01 2002-12-12 Bubnov Mikhail M. Low-loss highly phosphorus-doped fibers for Raman amplification
RU2511023C1 (ru) * 2012-10-19 2014-04-10 Михаил Артемьевич Ероньян Способ изготовления анизотропных одномодовых волоконных световодов
RU2576686C1 (ru) * 2015-03-02 2016-03-10 Михаил Артемьевич Ероньян Mcvd способ изготовления заготовок для одномодовых световодов
RU2668677C1 (ru) * 2018-01-10 2018-10-02 Михаил Артемьевич Ероньян MCVD способ изготовления световодов с сердцевиной из кварцевого стекла, легированного азотом
RU2724076C1 (ru) * 2019-06-11 2020-06-19 Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" Способ изготовления заготовок кварцевых световодов

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2155359C2 (ru) * 1998-07-30 2000-08-27 Ероньян Виктор Артемьевич Способ изготовления волоконных световодов, сохраняющих поляризацию излучения
EP1116697A2 (en) * 2000-01-14 2001-07-18 Samsung Electronics Co., Ltd. Preform for dispersion-managed optical fibre and method of fabricating the preform by modified chemical vapour deposition
US20020186942A1 (en) * 2001-05-01 2002-12-12 Bubnov Mikhail M. Low-loss highly phosphorus-doped fibers for Raman amplification
RU2511023C1 (ru) * 2012-10-19 2014-04-10 Михаил Артемьевич Ероньян Способ изготовления анизотропных одномодовых волоконных световодов
RU2576686C1 (ru) * 2015-03-02 2016-03-10 Михаил Артемьевич Ероньян Mcvd способ изготовления заготовок для одномодовых световодов
RU2668677C1 (ru) * 2018-01-10 2018-10-02 Михаил Артемьевич Ероньян MCVD способ изготовления световодов с сердцевиной из кварцевого стекла, легированного азотом
RU2724076C1 (ru) * 2019-06-11 2020-06-19 Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" Способ изготовления заготовок кварцевых световодов

Similar Documents

Publication Publication Date Title
CN113009619B (zh) 具有氟和氯共掺杂芯区域的低损耗光纤
Lancry et al. Fictive temperature in silica-based glasses and its application to optical fiber manufacturing
CA2008451C (en) Polarization-maintaining optical fiber
RU2736023C2 (ru) Легированное бромом оптическое волокно
EP2790045B1 (en) Optical fiber and optical transmission system
US8977095B2 (en) Polarization maintaining optical fibers with intracore stress mechanisms
US10228509B2 (en) Low attenuation fiber with viscosity matched core and inner clad
US7133591B2 (en) Jacket tube made of synthetically produced quartz glass and optical fibres produced using said jacket tube
RU2576686C1 (ru) Mcvd способ изготовления заготовок для одномодовых световодов
RU2764240C1 (ru) Способ изготовления анизотропных одномодовых волоконных световодов
US7028508B2 (en) Method for producing an optical fiber and optical fiber
WO2018138736A2 (en) Optical fiber draw assembly and fabricated optical fiber thereof
RU2511023C1 (ru) Способ изготовления анизотропных одномодовых волоконных световодов
JP5836446B2 (ja) 光ファイバ
RU2396580C1 (ru) Способ изготовления одномодовых волоконных световодов, сохраняющих поляризацию излучения
RU2155359C2 (ru) Способ изготовления волоконных световодов, сохраняющих поляризацию излучения
Eronyan et al. MCVD method for manufacturing polarization-maintaining and radiation resistant optical fiber with germanosilicate elliptical core
Andreev et al. Increasing the birefringence in anisotropic single-mode fiber lightguides with an elliptical stress cladding
Kulesh et al. Reducing optical losses in high strength quartz light guides
RU2301782C1 (ru) Способ изготовления одномодового волоконного световода, сохраняющего поляризацию излучения
JP6175467B2 (ja) 光ファイバ母材製造方法、光ファイバ母材及び光ファイバ
RU2426159C1 (ru) Волоконный одномодовый поляризующий или сохраняющий поляризацию излучения световод
Devetyarov Polarization-Maintaining Germanosilicate Waveguide with Elliptical Core for Fiber-Optic Gyroscopes
RU2552279C1 (ru) Способ изготовления оптического волокна с эллиптической сердцевиной
KR20040093186A (ko) 광섬유의 제조방법 및 광섬유