RU2764049C1 - Беспилотный летательный аппарат на водороде - Google Patents

Беспилотный летательный аппарат на водороде Download PDF

Info

Publication number
RU2764049C1
RU2764049C1 RU2021105451A RU2021105451A RU2764049C1 RU 2764049 C1 RU2764049 C1 RU 2764049C1 RU 2021105451 A RU2021105451 A RU 2021105451A RU 2021105451 A RU2021105451 A RU 2021105451A RU 2764049 C1 RU2764049 C1 RU 2764049C1
Authority
RU
Russia
Prior art keywords
hydrogen
chamber
generator
nozzle
air
Prior art date
Application number
RU2021105451A
Other languages
English (en)
Inventor
Валерий Сергеевич Терещук
Иван Николаевич Стаценко
Игорь Николаевич Степанов
Алексей Николаевич Евдокимов
Сергей Александрович Леонов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт машиноведения им А.А. Благонравова Российской академии наук (ИМАШ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт машиноведения им А.А. Благонравова Российской академии наук (ИМАШ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт машиноведения им А.А. Благонравова Российской академии наук (ИМАШ РАН)
Priority to RU2021105451A priority Critical patent/RU2764049C1/ru
Application granted granted Critical
Publication of RU2764049C1 publication Critical patent/RU2764049C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G99/00Subject matter not provided for in other groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Изобретение относится к авиационной технике, преимущественно к беспилотным летательным аппаратам (БПЛА). Предлагаемый БПЛА содержит обтекаемый корпус, воздухозаборник, соединенный воздуховодом с камерой смешения и горения водорода с кислородом воздуха. Камера оканчивается соплом с центральным телом. Бортовой генератор водорода содержит замкнутую емкость с пластинами активированного алюминия (1/2 объема) и реакционным раствором (РР). Генератор водорода соединен с емкостью ресивера РР, оснащенного насосом подачи РР в генератор. На выходе ресивер снабжен трубопроводом подачи водорода в распределительную камеру и оттуда через блок форсунок в камеру смешения и горения с кислородом воздуха. Полученная в камере смесь сжимается в области критического сечения сопла, имеющего центральное тело. Технический результат направлен на повышение конструктивного совершенства и надежности БПЛА. 4 ил., 1 табл.

Description

Изобретение относится к авиационной технике, когда нет необходимости для выполнения диверсионной или разведовательной задачи рисковать жизнью боевого летчика. И действительно, лучше пожертвовать БПЛА - беспилотным летательным аппаратом, чем жизнью квалифицированного летчика, который незаменим для выполнения более сложных боевых задач.
Технический результат - выполнение боевой и разведовательной задачи при сохранении жизни квалифицированного летного состава. Это своего рода авиационный робот пока для выполнения диверсионной и разведовательной деятельности.
Наиболее близким к данному изобретению является гиперзвуковая летающая лаборатория "Холод". Это гиперзвуковой ПВРД (прямоточно-воздушнореактивный) БПЛА, в котором в качестве топлива использовался криогенный (жидкий) водород. В экспериментах по отработке данного БПЛА принимали непосредственное участие ученые Казахского Государственного университета и Национального центра радиоэлектроники и связи. Три из пяти экспериментов проведены при непосредственном участии и частичном финансировании национальных научных центров Франции и США (NASA). Получено время работы 77 сек при сохранении работоспособности камеры сгорания после выключения двигателя.
Недостатком приведенного прототипа является прежде всего сложность в эксплуатации БПЛА на жидком водороде: получение в полевых условиях жидкого водорода из газообразного даже при помощи спецтехники или его доставка к месту использования, хранение, заправка, утечки, дороговизна, соблюдение строжайшей техники безопасности.
Известен также аналог заявленного изобретения РФ №2432301, где предлагается вместо жидкого водорода хранить газообразный водород в графитовых нанотрубках. Авторы ошибочно называют нанотрубки генератором водорода. Он там не генерируется, а хранится после того, как его получили одним из известных способов и закачали под давлением в 100 атм, как закачивают в баллоны сжатого газа. Чтобы добиться теоретической закачки в графитовые нанотрубки в 6,5% нужно еще водород охладить до температуры 77К, т.е. это очень дорогой и затратный процесс. К тому же работа с нанотрубками приводит к раковым заболеваниям.
Чтобы избежать всех перечисленных сложностей, изложенных в прототипе и аналоге, нами предлагается бак с жидким водородом и емкость с графитовыми нанотрубками заменить на бортовой газогенератор по патенту РФ №2253606 от 10.06.2005 г. (см. фиг. 1).
Техническая сущность предложенного летательного аппарата на водороде заключается в том, что на входе в аэродинамически обтекаемом корпусе беспилотного летательного аппарата установлен воздухозаборник, который соединен воздуховодом с камерой смешения и сгорания. Воздуховод обтекает корпус центрального тела (сжимающий конус), внутри которого установлен газогенератор водорода. Генератор водорода представляет собой замкнутую емкость, в половине объема которой расположены пластины активированного алюминия, вторая половина объема заполнена реакционным раствором, который циркулирует меду пластинами. Состав активированного алюминия представляет сплав, в который можно добавлять как дорогие добавки: индий и галлий и процент их может быть от 3 до 30% в зависимости от мощности генератора водорода, так и дешевый сплав всего с 4-8% меди. Также и размер реакционных пластин зависит от требуемой мощности. В самом же реакционном растворе с водой может использоваться любой щелочной металл в концентрации в зависимости от мощности генератора. Генератор водорода соединен замкнутым трубопроводом с ресивером реакционного раствора, оснащенного регулируемым насосом подачи раствора в генератор водорода. Регулируемый насос по трубопроводу осуществляет регулируемую подачу реакционного раствора в генератор водорода, за счет чего происходит регулируемая выработка водорода. Из генератора водорода водород по трубопроводу вместе с непрореагировавшимся раствором и окисью алюминия поступает в ресивер-сепаратор, где за счет разности плотностей водорода и непрореагирующего полностью реакционного раствора и суспензии окиси алюминия, происходит сепарация, т.е. отделение водорода от сопутствующей смеси. Отсепарированный водород собирается в верхней части ресивера и оттуда по трубопроводу, расположенному в верхней части ресивера, поступает в распределительную камеру и оттуда в блок форсунок подачи водорода в камеру смешения и горения.
Для большей полноты сгорания водорода с кислородом воздуха в камере сгорания установлен стабилизатор горения, а также для достижения нужного давления в камере сгорания на выходе из камеры сгорания в критическом сечении сопла установлено обтекаемое перемещающееся центральное тело для поджатая критического сечения сопла.
Возможность практической реализации предлагаемого решения была сделана на основе экспериментальных работ, проведенных в 2019 году, на действующей модели газогенератора водорода для выставки «Архимед 2019», изготовленной по схеме фиг. 1, сама действующая модель представлена на фиг. 2.
Принципиальная схема беспилотного летательного аппарата на водороде показана на фиг. 3, в состав которого входят следующие конструктивные элементы:
1 - воздухозаборник,
2 - корпус БПЛА совмещен с корпусом ПВРД,
3- сжимающий воздушный поток конус с полой емкостью для газогенератора,
4 - газогенератор водорода,
5 - распределительная камера подачи водорода с форсунками,
6 - камера смешения и горения
7 - стабилизатор горения,
8 - тяговое сопло с центральным телом для регулировки критического сечения сопла.
Работа предлагаемого ПВРД вместе с газогенератором водорода осуществляется следующим образом. В носовую часть ПВРД через воздухозаборник 1 поступает кислород воздуха, проходит по кольцевому зазору между внутренней стенкой корпуса ПВРД 2 и корпусом полой емкости 3 и направляется в зону подачи водорода для сгорания с кислородом воздуха, т.е. в камеру смешения и сгорания 6. Водород из газогенератора 4 через ресивер направляется в систему подачи водорода 5 и из нее в зону смешения и горения водорода с кислородом воздуха, т.е. камеру сгорания 6, используя стабилизатор горения 7. Продукты сгорания, проходя через сопло 8, создают тягу для полета БПЛА.
Возможность достижения положительного эффекта в летательных беспилотных аппаратах, оснащенных газогенераторными установками для извлечения из воды водорода для последующего его использования в качестве компонента топлива для ПВРД, основана на экспериментах, которые проводились с водородогенерирующими сплавами активированного алюминия, разработанными в ИМАШ РАН. (см. Таблицу 1 и график на фиг. 4).
Figure 00000001
Примечание к таблице
Сплавы испытаны в растворе NaOH различной концентрации в основном в растворе 0,1 Н и при температуре 15С.Результаты испытаний представлены графически на фиг. 4.
Газопроизводительность по водороду для различных А 1-ых сплавов в растворе 0,1 Н NaOH. Экспериментальные кривые 1-5 соответствуют сплавам, приведенным в таблице №1. Кривая 1-0,05 соответствует сплаву №1, испытанному в растворе 0,05Н NaOH, 8 - сплав Д16, 6 - стружка А1 марки АД00, 7 - листовой электротехнический А1, 9 - А1 ЧДА в гранулах, испытанный в диапазоне температур 15- 50 град. С.Результат по образцу №6 на графике не приводится, чтобы не загромождать соседние кривые - он проходит ровно между результатами образцов №1 и №5.

Claims (1)

  1. Устройство беспилотного летательного аппарата на водороде, содержащее аэродинамический обтекаемый корпус, воздухозаборник, который соединен воздуховодом с камерой смешения и горения водорода с кислородом воздуха, имеющей выход в тяговое сопло, отличающееся тем, что для получения на борту водорода используется генератор водорода, представляющий собой замкнутую емкость, заполненную по объему наполовину пластинами активированного алюминия и наполовину реакционным раствором, причем генератор водорода соединен замкнутым трубопроводом с емкостью ресивера реакционного раствора, оснащенного регулируемым насосом подачи раствора в газогенератор водорода, при этом на выходе ресивер реакционного раствора снабжен вторым трубопроводом подачи водорода в распределительную камеру подачи водорода и оттуда через блок форсунок в камеру смешения и горения с кислородом воздуха и сжатия полученной смеси за счет критического сечении сопла с центральным телом до необходимого давления.
RU2021105451A 2021-03-02 2021-03-02 Беспилотный летательный аппарат на водороде RU2764049C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021105451A RU2764049C1 (ru) 2021-03-02 2021-03-02 Беспилотный летательный аппарат на водороде

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021105451A RU2764049C1 (ru) 2021-03-02 2021-03-02 Беспилотный летательный аппарат на водороде

Publications (1)

Publication Number Publication Date
RU2764049C1 true RU2764049C1 (ru) 2022-01-13

Family

ID=80040298

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021105451A RU2764049C1 (ru) 2021-03-02 2021-03-02 Беспилотный летательный аппарат на водороде

Country Status (1)

Country Link
RU (1) RU2764049C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2818844C1 (ru) * 2023-11-14 2024-05-06 Публичное акционерное общество "Объединенная авиастроительная корпорация" (ПАО "ОАК") Эжектор системы воздушного охлаждения беспилотного летательного аппарата

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2253606C1 (ru) * 2004-02-16 2005-06-10 Терещук Валерий Сергеевич Сплав на основе алюминия для генерирования водорода, способ его получения и газогенератор водорода
US7493765B2 (en) * 2003-03-25 2009-02-24 Sanyo Electric Co., Ltd. Hydrogen production method and apparatus and engine employing hydrogen production apparatus
RU2394753C1 (ru) * 2009-04-01 2010-07-20 Учреждение Российской Академии Наук Объединенный Институт Высоких Температур Ран (Оивт Ран) Гидрореагирующая композиция для получения водорода и способ ее приготовления
RU2432301C2 (ru) * 2010-01-19 2011-10-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Беспилотный летательный аппарат
US9469532B2 (en) * 2008-04-02 2016-10-18 Cedar Ridge Research, Llc Aluminum-alkali hydroxide recyclable hydrogen generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7493765B2 (en) * 2003-03-25 2009-02-24 Sanyo Electric Co., Ltd. Hydrogen production method and apparatus and engine employing hydrogen production apparatus
RU2253606C1 (ru) * 2004-02-16 2005-06-10 Терещук Валерий Сергеевич Сплав на основе алюминия для генерирования водорода, способ его получения и газогенератор водорода
US9469532B2 (en) * 2008-04-02 2016-10-18 Cedar Ridge Research, Llc Aluminum-alkali hydroxide recyclable hydrogen generator
RU2394753C1 (ru) * 2009-04-01 2010-07-20 Учреждение Российской Академии Наук Объединенный Институт Высоких Температур Ран (Оивт Ран) Гидрореагирующая композиция для получения водорода и способ ее приготовления
RU2432301C2 (ru) * 2010-01-19 2011-10-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Беспилотный летательный аппарат

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
В. Б. Иоффе. Основы производства водорода. Л. Гостоптехиздат. Ленингр. отд. 1960, с.305. *
В. Б. Иоффе. Основы производства водорода. Л. Гостоптехиздат. Ленингр. отд. 1960, с.305. Температура горения водорода: описание и условия реакции, применение в технике. Валерий Савельев, 16 сентября 2018: https://fb.ru/article/422503/temperatura-goreniya-vodoroda-opisanie-i-usloviya-reaktsii-primenenie-v-tehnike. *
Температура горения водорода: описание и условия реакции, применение в технике. Валерий Савельев, 16 сентября 2018: https://fb.ru/article/422503/temperatura-goreniya-vodoroda-opisanie-i-usloviya-reaktsii-primenenie-v-tehnike. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2818844C1 (ru) * 2023-11-14 2024-05-06 Публичное акционерное общество "Объединенная авиастроительная корпорация" (ПАО "ОАК") Эжектор системы воздушного охлаждения беспилотного летательного аппарата

Similar Documents

Publication Publication Date Title
US11584536B2 (en) Method and device for inerting a fuel tank
US2937824A (en) Bi-medium rocket-torpedo missile
US20080169375A1 (en) Vertically movable flying body
CN105673088A (zh) 一种油冷涡轮动叶片
US10563619B2 (en) Aerospace turbofan engines
US4831818A (en) Dual-fuel, dual-mode rocket engine
US11643994B2 (en) Rocket propulsion systems and associated methods
RU2764049C1 (ru) Беспилотный летательный аппарат на водороде
Grose Reshaping flight for fuel efficiency: Five technologies on the runway
RU2609539C1 (ru) Ракета-носитель, возвращаемая ступень ракеты-носителя и способ ее запуска при возвращении и система вертолетного подхвата возвращаемой ступени
Kallo et al. Fuel cell system development and testing for aircraft applications
CN113202631A (zh) 一种涡轮轴及涡轮螺旋桨发动机用补氧装置及其工作方法
US3336753A (en) Propulsion devices
US2877966A (en) Common oxygen supply for engine and cabin of high altitude aircraft
RU2557793C1 (ru) Газотурбинный двигатель
Harsha Liquid hydrogen as aviation fuel and its relative performance with commercial aircraft fuel
RU2638141C1 (ru) Способ моделирования процессов тепло- и массообмена с окружающей средой элемента конструкции летательного аппарата и устройство для его реализации
KR20090073642A (ko) 과산화수소 가스발생기를 이용한 이원추진제 로켓이 결합된복합사이클 추진 시스템 및 그 운전방법
RU2546385C1 (ru) Летательный аппарат с вертикальным взлетом и посадкой
US20150267615A1 (en) Alternative fuel rocket augmentation device
RU2609549C1 (ru) Возвращаемая ступень ракеты-носителя и способ ее работы
Wu et al. Experimental study of an on-board fuel tank inerting system
RU114343U1 (ru) Комбинированный воздушно-ракетный двигатель с прямоточной камерой пульсирующего горения, форкамерой и системой воздушного запуска
RU2609664C1 (ru) Возвращаемая ступень ракеты-носителя, способ ее работы и газотурбинный двигатель
RU2758744C1 (ru) Комбинированная силовая установка самолета вертикального взлёта и посадки