RU2759479C1 - Наномодифицированный строительный раствор - Google Patents

Наномодифицированный строительный раствор Download PDF

Info

Publication number
RU2759479C1
RU2759479C1 RU2020126462A RU2020126462A RU2759479C1 RU 2759479 C1 RU2759479 C1 RU 2759479C1 RU 2020126462 A RU2020126462 A RU 2020126462A RU 2020126462 A RU2020126462 A RU 2020126462A RU 2759479 C1 RU2759479 C1 RU 2759479C1
Authority
RU
Russia
Prior art keywords
mortar
water
nanomodified
solution
amount
Prior art date
Application number
RU2020126462A
Other languages
English (en)
Inventor
Александр Петрович Свинцов
Абдулхуссейн Абд Нур Аббас
Вера Владимировна Галишникова
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН) filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Российский университет дружбы народов" (РУДН)
Priority to RU2020126462A priority Critical patent/RU2759479C1/ru
Application granted granted Critical
Publication of RU2759479C1 publication Critical patent/RU2759479C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Изобретение относится к строительным материалам и может быть использовано при каменной кладке из керамических камней, керамического кирпича, пустотелого кирпича в условиях сухого жаркого климата при температурах окружающего воздуха, достигающей 40-50°С. Технический результат заключается в обеспечении необходимой подвижности, водоудерживающей способности и регулируемого срока схватывания строительного раствора. Технический результат достигается за счет того, что строительный раствор состоит из следующих компонентов (мас.%): портландцемент - 10,80-16,90; песок с модулем крупности от 1,5 до 2,0 для строительных работ - 69,50-80,70; аморфный наномодифицированный диоксид кремния - 0,01-0,12; лимонной кислоты - 0,002-0,02 или нитрилотриметиленфосфоновой кислоты - 0,012-0,035, или глюконата натрия - 0,005-0,05, или лигносульфоната натрия технического - 0,01-0,05; смолы древесной омыленной - 0,02-0,15 или смолы нейтрализованной воздухововлекающей - 0,01-0,15; воды - 8,5-13,0. 2 табл.

Description

Изобретение относится к строительным материалам и может быть использовано при каменной кладке из керамических камней, керамического кирпича, пустотелого кирпича в условиях сухого жаркого климата.
Одной из наиболее значимых проблем каменной кладки из керамических кирпичей в условиях сухого жаркого климата является обеспечение подвижности и водоудерживающей способности раствора при температурах окружающего воздуха более 20°С, достигающих 40-50°С. Разогретый кирпич интенсивно абсорбирует воду из раствора, что приводит к повышению трудоемкости работ из-за снижения подвижности раствора.
Известен строительный раствор (патент RU №2485066 от 26.06.2013), содержащий мас.%: портландцемент 25,12-26,02, глиноземистый цемент 8,21-8,38, песок для строительных работ фракции 0,63 мм 38,38-38,53, доломитизированный известняк фракции 100 мк 8,25-8,38, бентонитовую глину 0,74-0,84, воду 16,47-16,72 и комплексную добавку 1,93-2,03.
Указанный состав не удерживает воду при соприкосновении с поверхностью керамического кирпича и не обеспечивает необходимую подвижность и водоудерживающую способность строительного раствора при каменной кладке в условиях сухого жаркого климата. Интенсивность абсорбция увеличивается с повышением температуры кирпича, находящегося на воздухе с температурой 40-50°С.
Известен строительный раствор (патент RU №2359945 от 27.06.2009), состоящий из (мас.%): портландцемента - 22-29, формовочного отхода металлургического производства - MgO - 0,27; Al2O3 - 1,0; SiO2 - 96; PuS - 0,07; CaO - 0,55; Cr2O3 - 0,07; Fe2O3 - 0,3; Na2O - 0,65; K2O - 0,42; TiO2 - 0,1, пенообразующей добавки на основе стеарата натрия - 7-11, перманганата калия - 0,2-0,4 и воды - 5-7.
Недостаток указанного состава заключается в том, что раствор невозможно использовать в условиях окружающей среды с температурой 40-50°С из-за отсутствия водоудерживающих и пластифицирующих свойств.
Прототипом заявляемого решения является строительный раствор, включающий гидравлическое вяжущее, минеральный заполнитель и воду при соотношении цемент: песок, равном 1:2-5-1:5 (А.П. Чехов и др. Справочник по бетонам и растворам. - Киев. Будивельник. 1972, с. 162).
Недостатком указанного решения является интенсивная водоотдача, низкая подвижность и быстрый срок схватывания раствора в условиях окружающей среды с температурой воздуха 40-50°С.
Задачей технического решения является получение строительного цементно-песчаного раствора, который характеризуется необходимой подвижностью, водоудерживающей способностью, регулируемым сроком схватывания и может быть использован в условиях сухого жаркого климата с температурой воздуха, достигающей 40-50°С.
Технический результат заключается в повышении водоудерживающей способности при обеспечении необходимой подвижности и регулируемого срока схватывания строительного раствора.
Технический результат достигается за счет того, что строительный раствор, включающий портландцемент, песок строительный с модулем крупности от 1,5 до 2,0, воду, дополнительно содержит аморфный наномодифицированный диоксид кремния, суперпластификатор С-3, замедлитель срока схватывания и твердения портландцемента, смолу воздухововлекающую при следующем соотношении компонентов, мас.%: портландцемент - 10,80-16,90; песок для строительных работ - 69,50-80,70; аморфный наномодифицированный диоксид кремния- 0,01-0,12; замедлитель схватывания и твердения портландцемента - 0,002-0,05; суперпластификатор С-3 - 0,02-0,15; смола воздухововлекающая - 0,02-0,15; вода - 8,5-13,0.
Технический результат достигается также за счет того, что строительный раствор содержит лимонную кислоту в количестве, мас.%: 0,002-0,02.
Технический результат достигается также за счет того, что строительный раствор содержит нитрилотриметиленфосфоновую кислоту в количестве, мас.%: 0,012-0,035.
Технический результат достигается также за счет того, что строительный раствор содержит глюконат натрия в количестве, мас.%: 0,005-0,05.
Технический результат достигается также за счет того, что строительный раствор содержит лигносульфонат натрия технический в количестве, мас.%: 0,01-0,05.
Технический результат достигается также за счет того, что строительный раствор содержит смолу древесную омыленную в количестве, мас.%: 0,02-0,15.
Технический результат достигается также за счет того, что строительный раствор содержит смолу нейтрализованную воздухововлекающую в количестве, мас.%: 0,01-0,15.
Новым по сравнению с известными строительными растворами является сочетание известных компонентов портландцемента, песка для строительных работ, аморфного наномодифицированного диоксида кремния, суперпластификатора С-3, замедлителя сроков схватывания и твердения портландцемента, смолы воздухововлекающей.
Указанный качественный и количественный состав наномодифицированного строительного раствора обеспечивает возможность получения простым способом указанных смесей, например в гравитационном смесителе, с равномерным распределением компонентов по объему, который характеризуется необходимой подвижностью, водоудерживающей способностью, регулируемым сроком схватывания и может быть использован в условиях сухого жаркого климата с температурой воздуха, достигающей 40-50°С.
Заявленная совокупность существенных признаков проявляет новое свойство: повышение водоудерживающей способности при обеспечении необходимой подвижности и регулируемого срока схватывания строительного раствора.
Обоснование состава и пределов компонентов заявляемого наномодифицированного строительного раствора.
Наномодифицированный строительный раствор содержит портландцемент, который является вяжущим компонентом. Портландцемент содержится в наномодифицированном строительном растворе в количестве (мас.%) от 10,80 до 16,90. Применение портландцемента в количестве меньшем нижнего предела по заявляемому решению, приведет к чрезмерному уменьшению прочности затвердевшего раствора и, соответственно, к прочности выполненной кирпичной кладки. Кроме того, применение портландцемента в количестве меньшем нижнего предела по заявляемому решению, приведет к чрезмерному уменьшению подвижности раствора, что является негативным фактором его практического использования. Применение портландцемента в количестве выше верхнего предела по заявляемому решению, приведет к нерациональному увеличению прочности затвердевшего раствора, без увеличения прочности выполненной кирпичной кладки, лимитированной прочностью кирпича.
Наномодифицированный строительный раствор содержит песок для строительных работ с модулем крупности от 1,5 до 2,0, который является заполнителем. Применение песка с модулем крупности меньше нижнего предела по заявляемому решению приведет к увеличению усадочных напряжений в твердеющем растворе и к снижению прочности каменной кладки. Применение песка с модулем крупности больше верхнего предела по заявляемому решению приведет к снижению пластичности строительного раствора. Применение песка в диапазоне по заявляемому решению позволяет получить наномодифицированный строительный раствор с плотной упаковкой зерен с заполнением межзернового пространства цементной пастой. Песок для строительных работ содержится в наномодифицированном строительном растворе в количестве (мас.%) от 69,50 до 80,70. Применение песка в количестве меньшем нижнего предела по заявляемому решению, приведет к увеличению усадочных напряжений и образованию усадочных трещин с последующим снижением прочности раствора и кирпичной кладки. Применение песка в количестве большем верхнего предела по заявляемому решению, приведет к уменьшению прочности раствора на сжатие и к снижению подвижности строительного раствора.
Наномодифицированный строительный раствор содержит аморфный наномодифицированный диоксид кремния Nano-SiO2 в количестве (мас.%) от 0,01 до 0,12, который является водоудерживающим компонентом. Одним из важнейших свойств указанного компонента является его способность к уплотнению микроструктуры цементного теста и к удержанию воды. Это очень важно в условиях окружающей среды с температурой воздуха до 40-50°С, при которой кирпич приобретает повышенные абсорбирующие свойства. Если количество аморфного наномодифицированного диоксида кремния в составе строительного раствора будет меньше нижнего значения по заявляемому решению, то уплотнение микроструктуры цементного теста будет недостаточно для получения смеси строительного раствора с высокими водоудерживающими свойствами. В этих условиях раствор интенсивно обезвоживается, его подвижность существенно снижается, что приводит увеличению трудоемкости работ при кирпичной кладке. Если количество наномодифицированного диоксида кремния с аморфной структурой будет больше верхнего уровня по заявляемому решению, то при превышении количества аморфной фазы, не весь кремнезем вступает в реакцию, а часть аморфной фазы остается в затвердевшем цементном камне, образуя рыхлую структуру. Это приводит к снижению прочности затвердевшего раствора и, соответственно, к снижению прочности кирпичной кладки.
Наномодифицированный строительный раствор содержит замедлитель схватывания и твердения портландцемента в количестве (мас.%) от 0,002 до 0,05. Замедлитель схватывания портландцемента предназначен для регулирования и поддержания подвижности строительного раствора. Это особенно важно для условий окружающей среды с температурой воздуха до 40-50°С, при которой кирпич приобретает повышенные сорбционные свойства, а раствор быстро затвердевает. В качестве замедлителя схватывания портландцемента использована лимонная кислота или нитрилотриметиленфосфоновая кислота, или глюконат натрия, или лигносульфонат натрия технический. Лимонная кислота используется в количестве (мас.%) от 0,002 до 0,2. При использовании лимонной кислоты в количестве, меньшем, чем заявленном решении увеличение срока схватывания портландцемента будет не достаточным для практического применения в кирпичной кладке. При использовании лимонной кислоты в количестве, большем, чем в заявленном решении сроки схватывания увеличиваются до нерациональной продолжительности в аспекте производства работ по кирпичной кладке. Нитрилотриметиленфосфоновая кислота использована в количестве (мас.%) от 0,012 до 0,035. При использовании нитрилотриметиленфосфоновой кислоты в количестве, меньшем, чем заявленном решении, увеличение срока схватывания раствора будет незначительным для практического применения в кирпичной кладке. При использовании нитрилотриметиленфосфоновой кислоты в количестве, большем, чем в заявленном решении сроки схватывания увеличатся до нерациональных значений в аспекте производства работ по кирпичной кладке. Применение глюконата натрия предусмотрено в количестве (мас.%) 0,005-0,05. При использовании глюконата натрия в количестве, меньшем, чем заявленном решении, увеличение срока схватывания раствора будет незначительным для практического применения в кирпичной кладке. При использовании глюконата натрия в количестве, большем, чем в заявленном решении сроки схватывания увеличатся до нерациональных значений в аспекте производства работ по кирпичной кладке. Применение лигносульфоната натрия технического предусмотрено в количестве (мас.%) 0,01-0,05. При использовании лигносульфоната натрия технического в количестве, меньшем, чем заявленном решении, увеличение срока схватывания раствора будет незначительным для практического применения в кирпичной кладке. При использовании лигносульфоната натрия технического в количестве, большем, чем в заявленном решении сроки схватывания увеличатся до нерациональных значений в аспекте производства работ по кирпичной кладке.
Наномодифицированный строительный раствор содержит суперпластификатор С-3 в количестве (мас.%) от 0,02 до 0,15. Суперпластификатор предназначен для увеличения подвижности и удобоукладываемости строительного раствора. Суперпластификатор С-3 обеспечивает повышение подвижности раствора до уровня Пк4, позволяет исключить вероятность ранней потери прочности. Применение суперпластификатора С-3 в количестве, меньшем нижнего предела по заявленному решению, приведет к низкой пластифицирующей эффективности добавки и недостаточной подвижности наномодифицированного строительного раствора. Если наномодифицированный строительный раствор содержит суперпластификатор С-3 в большем количестве, чем в заявленном решении, то существенно увеличивается риск расслаиваемости компонентов строительного раствора, что приведет к снижению технологичности его применения при кирпичной кладке.
Наномодифицированный строительный раствор содержит смолу воздухововлекающую, которая предназначена для дополнительного придания подвижности раствору. В качестве воздухововлекающей смолы в заявляемом решении предусмотрено применение смолы древесной омыленной или смолы нейтрализованной воздухововлекающей. Смола древесная омыленная или смола нейтрализованная воздухововлекающая, входящие в состав строительного раствора по заявленному решению, необходимы для обеспечения его подвижности при расстилании и разравнивании. Вовлеченный воздух оказывает взвешивающее действие на твердые компоненты строительного раствора, что обеспечивает их подвижность до начала твердения. Применение смолы древесной омыленной предусмотрено в количестве (в мас.%) от 0,02 до 0,15. Применение смолы нейтрализованной воздухововлекающей предусмотрено в количестве (мас.%) от 001 до 0,15. Если наномодифицированный строительный раствор содержит смолу древесную омыленную или смолу нейтрализованную воздухововлекающую в меньшем количестве, чем в заявленном решении, то взвешивающее действие будет недостаточным из-за малого количества вовлеченного воздуха, что приведет к абсорбции воды из раствора кирпичом в условиях окружающей среды с температурой воздуха до 40-50°С. Если наномодифицированный строительный раствор содержит смолу древесную омыленную или смолу нейтрализованную воздухововлекающую в количестве большем, чем в заявляемом решении, раствор будет растекаться при расстилании и разравнивании из-за излишней пластичности вследствие значительного количества вовлеченного воздуха.
Наномодифицированный строительный раствор содержит воду в количестве, в мас.% от 8,5 до 13,0, необходимую для реакции гидратации. Количество воды подбирают с учетом дозировок представленных компонентов, а также с учетом необходимости обеспечения требуемого водоцементного отношения.
Изобретение поясняется двумя таблицами.
Для получения строительного раствора в соответствии с вариантами составов предварительно сделали навески: портландцемент ЦЕМ I 42,5 Н; песок с модулем крупности от 1,5 до 2,0; суперпластификатор С-3; наномодифицированный диоксид кремния; замедлитель срока схватывания и твердения; воздухововлекающая смола; вода. Перед приготовлением растворных смесей все компоненты предварительно подогревались в климатической камере до температуры 50°С. Для приготовления сухой смеси компонентов использовали смеситель инерционного типа. В емкость смесителя поместили портландцемент и наномодифицрованный диоксид кремния. После перемешивания в течение 3-4 мин в полученную композицию добавили песок. Совместное перемешивание указанных компонентов производили в течение 2-3 мин. Отдельно от сухой смеси приготовили водный раствор. Навеску воды разделили на три равные части. В одной части воды растворили лимонную кислоту или нитрилотриметиленфосфоновую кислоту, или глюконат натрия, или лигносульфонат натрия технический. В две другие части добавили водные растворы, соответственно, суперпластификатора С-3 и смолы древесной омыленной или смолы нейтрализованной воздухововлекающей. После этого все три части воды слили в единую емкость. В процессе непрерывного перемешивания в сухую смесь добавляли водный раствор указанного состава. Продолжительность перемешивание сухой смеси и водного раствора составляла 2-5 мин. Варианты сравнительного (по прототипу) и наномодифицированного строительного раствора представлены следующими примерами (таблица 1). Определение физико-механических характеристик растворов выполнено в соответствии с ГОСТ 5802-86. "Растворы строительные. Методы испытаний". Результаты определения физико-механических характеристик представлены в таблице 2. Анализ результатов таблицы 2 показывает, что физико-механические свойства составов строительного раствора зависят от соотношения компонентов и обладают различными показателями прочности и подвижности. Заявляемый состав наномодифицированного строительного раствора по сравнению с известными решениями обладает высокими показателями водоудерживающей способности при обеспечении необходимой подвижности и регулируемого срока схватывания строительного раствора.
Figure 00000001
Figure 00000002
На основании вышеизложенного данный наномодифицированный строительный раствор обеспечивает необходимую подвижность, обладает водоудерживающей способностью и регулируемым сроком схватывания строительного раствора.

Claims (12)

  1. Строительный раствор, включающий портландцемент, песок строительный с модулем крупности от 1,5 до 2,0, воду, отличающийся тем, что дополнительно содержит аморфный наномодифицированный диоксид кремния Nano-SiO2, суперпластификатор С-3, замедлитель схватывания и твердения портландцемента - лимонную кислоту или нитрилотриметиленфосфоновую кислоту, или глюконат натрия, или лигносульфонат натрия технический, смолу древесную омыленную, или смолу нейтрализованную воздухововлекающую при следующем соотношении компонентов, мас.%:
  2. портландцемент - 10,80-16,90,
  3. песок строительный - 69,50-80,70,
  4. суперпластификатор С-3 - 0,02-0,15,
  5. аморфный наномодифицированный диоксид кремния - 0,01-0,12,
  6. лимонная кислота - 0,002-0,02,
  7. или нитрилотриметиленфосфоновая кислота - 0,012-0,035,
  8. или глюконат натрия - 0,005-0,05,
  9. или лигносульфонат натрия технический - 0,01-0,05,
  10. смола древесная омыленная - 0,02-0,15,
  11. или смола нейтрализованная воздухововлекающая - 0,01-0,15,
  12. вода - 8,5-13,0.
RU2020126462A 2020-08-07 2020-08-07 Наномодифицированный строительный раствор RU2759479C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020126462A RU2759479C1 (ru) 2020-08-07 2020-08-07 Наномодифицированный строительный раствор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020126462A RU2759479C1 (ru) 2020-08-07 2020-08-07 Наномодифицированный строительный раствор

Publications (1)

Publication Number Publication Date
RU2759479C1 true RU2759479C1 (ru) 2021-11-15

Family

ID=78607273

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020126462A RU2759479C1 (ru) 2020-08-07 2020-08-07 Наномодифицированный строительный раствор

Country Status (1)

Country Link
RU (1) RU2759479C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2359945C1 (ru) * 2008-01-09 2009-06-27 Государственное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" Строительный раствор
RU2397966C1 (ru) * 2009-03-20 2010-08-27 Государственное образовательное учреждение высшего профессионального образования "Сибирская государственная автомобильно-дорожная академия (СибАДИ)" Сухая строительная смесь
US7901504B2 (en) * 2007-01-24 2011-03-08 Lafarge Concrete compositions
RU2485066C1 (ru) * 2012-01-19 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" Строительный раствор
RU2559269C2 (ru) * 2013-12-11 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тульский государственный университет" (ТулГУ) Наномодифицированный бетон и способ его получения

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901504B2 (en) * 2007-01-24 2011-03-08 Lafarge Concrete compositions
RU2359945C1 (ru) * 2008-01-09 2009-06-27 Государственное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" Строительный раствор
RU2397966C1 (ru) * 2009-03-20 2010-08-27 Государственное образовательное учреждение высшего профессионального образования "Сибирская государственная автомобильно-дорожная академия (СибАДИ)" Сухая строительная смесь
RU2485066C1 (ru) * 2012-01-19 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" Строительный раствор
RU2559269C2 (ru) * 2013-12-11 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тульский государственный университет" (ТулГУ) Наномодифицированный бетон и способ его получения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЧЕХОВ А.П. и др. СПРАВОЧНИК ПО БЕТОНАМ И РАСТВОРАМ, КИЕВ, БУДIВЕЛЬНИК, 1972, с. 162. *

Similar Documents

Publication Publication Date Title
Leung et al. Sorptivity of self-compacting concrete containing fly ash and silica fume
Pozo-Antonio Evolution of mechanical properties and drying shrinkage in lime-based and lime cement-based mortars with pure limestone aggregate
Lanas et al. Masonry repair lime-based mortars: factors affecting the mechanical behavior
ES2921048T3 (es) Composición de hormigón y su método de producción
Amine et al. Effect of supplementary cementitious materials (scm) on delayed ettringite formation in heat-cured concretes
Deboucha et al. Natural pozzolana addition effect on compressive strength and capillary water absorption of Mortar
CH626035A5 (ru)
JP6830826B2 (ja) 自己平滑性モルタル
Djamila et al. Combined effect of mineral admixture and curing temperature on mechanical behavior and porosity of SCC
Ślosarczyk et al. Lightweight alkali-activated composites containing sintered fly ash aggregate and various amounts of silica aerogel
JP2013095624A (ja) 速硬剤および速硬性セメント組成物
RU2759479C1 (ru) Наномодифицированный строительный раствор
Kockal et al. Effect of binder type and content on physical and mechanical properties of geopolymers
Scheinherrová et al. Thermal properties of high-performance concrete containing fine-ground ceramics as a partial cement replacement
Treesuwan et al. Effects of shrinkage reducing agent and expansive additive on mortar properties
Benkaddour et al. Rheological, mechanical and durability performance of some North African commercial binary and ternary cements
Mardani-Aghabaglou et al. Effect of utilization of different type of mineral admixture on fresh and hardened properties of cementitious systems
KR100508207B1 (ko) 시멘트 혼화재 및 이를 함유한 시멘트 조성물
RU2482086C1 (ru) Бетонная смесь
JPH04238847A (ja) 水硬性セメント
Palta et al. The effect of boric acid on mechanical properties and structural characterization of self-compacting concrete
JP6887272B2 (ja) 速硬性ポリマーセメント組成物及び速硬性ポリマーセメントモルタル
Konca The effect of pozzolans addition on cement mortars
JP3242397B2 (ja) セメント混和材及びセメント組成物
Benouadah et al. Effect of self-curing admixture and nature of the sand on the mechanical and microstructural properties of concrete in hot climate condition