RU2754527C1 - Тампонажный полимерный состав для высоких температур - Google Patents

Тампонажный полимерный состав для высоких температур Download PDF

Info

Publication number
RU2754527C1
RU2754527C1 RU2020137542A RU2020137542A RU2754527C1 RU 2754527 C1 RU2754527 C1 RU 2754527C1 RU 2020137542 A RU2020137542 A RU 2020137542A RU 2020137542 A RU2020137542 A RU 2020137542A RU 2754527 C1 RU2754527 C1 RU 2754527C1
Authority
RU
Russia
Prior art keywords
reagent
resorcinol
water
paraform
acrylamide
Prior art date
Application number
RU2020137542A
Other languages
English (en)
Inventor
Андрей Николаевич Утробин
Ольга Владимировна Балакирева
Ильдар Робертович Арсланов
Алсу Венеровна Фахреева
Наталья Анатольевна Сергеева
Original Assignee
Публичное Акционерное Общество "Пигмент" (ПАО "Пигмент")
Общество с ограниченной ответственностью "Уфимский научно-технический центр" (ООО "Уфимский НТЦ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное Акционерное Общество "Пигмент" (ПАО "Пигмент"), Общество с ограниченной ответственностью "Уфимский научно-технический центр" (ООО "Уфимский НТЦ") filed Critical Публичное Акционерное Общество "Пигмент" (ПАО "Пигмент")
Priority to RU2020137542A priority Critical patent/RU2754527C1/ru
Application granted granted Critical
Publication of RU2754527C1 publication Critical patent/RU2754527C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/138Plastering the borehole wall; Injecting into the formation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к нефтегазодобывающей промышленности, в частности к составам для изоляции или ограничения водопритока, для выравнивания профиля приемистости, ликвидации зон поглощений высокотемпературных скважин. Тампонажный полимерный состав для высоких температур содержит сополимер акриламида и акриловой кислоты, воду и сшиватели - параформ и резорцин, дополнительно содержит регулятор гелеобразования реагент Кратол, при следующем соотношении компонентов, мас. %: сополимер акриламида и акриловой кислоты - 0,18-1,7; параформ - 0,03-0,2; резорцин - 0,02-0,12; реагент Кратол - 0,01-1,0; вода - остальное. По второй альтернативе тампонажный состав может содержать в качестве сшивателя параформ и резорцин с аэросилом, воду и дополнительно - регулятор гелеобразования, в качестве которого применяется реагент Кратол, при следующем соотношении компонентов, мас. %: сополимер акриламида и акриловой кислоты - 0,18-1,7; параформ - 0,03-0,2; резорцин - 0,02-0,12; аэросил - 0,01-0,03; реагент Кратол - 0,01-1,0; вода - остальное. Техническим результатом является повышение качества изоляции в высокотемпературных пластах за счет увеличения глубины закачки, прочности сшитой полимерной системы, образованной в обводненной зоне, а также расширение температурного диапазона применения тампонажного полимерного состава. 1 з.п. ф-лы, 3 ил., 3 табл.

Description

Изобретение относится к нефтегазодобывающей промышленности, в частности к составам для изоляции или ограничения водопритока, для выравнивания профиля приемистости, ликвидации зон поглощений высокотемпературных скважин.
Известен вязкоупругий состав для изоляционных работ в скважинах, содержащий полиакриламид, сшивающий агент нитрат хрома, регулятор гелеобразования сульфаминовую кислоту, наполнитель органоминеральный реагент «АПТОН-РС», Монасил и воду (патент РФ №2356929, МПК С09К 8/04, Е21 В 33/138, опубл. 27.05.2009). Недостатком данного состава является то, что при температуре 20°С время гелеобразования составляет от 25 мин до 7 ч 25 мин в зависимости от соотношения ингредиентов, что недостаточно при проведении работ при более высоких пластовых температурах. При уменьшении концентрации регулятора гелеобразования (сульфаминовая кислота) происходит увеличение времени гелеобразования до 7 ч 25 мин при температуре 20°С, что также приводит к ухудшению технологических свойств состава, такие как, пластическая прочность, адгезия к металлу и пластовой породе. Поэтому данный состав не может обладать высокой эффективностью при проведении изоляционных работ в скважинах с повышенной пластовой температурой.
Известен способ изоляции водопритока в высокотемпературных пластах (патент РФ №2272891, МПК Е21В 33/138, опуб.27.03.2006), включающий закачку в пласт композиции из водного раствора сшивателя и полимера акриламида с молекулярной массой не более 1 млн и степенью гидролиза не более 0,5% (неионогенный полимер акриламида АК-631 марки Н-50) способного при температуре пласта более 70°С к гидролизу и образованию прочного геля в присутствии сшивателя (ацетата хрома или уротропина с гидрохиноном), а также выступающие в качестве регулятора гелеобразования слабые органические кислоты, например сульфосалициловая кислота. Недостатком данного состава является долгое время растворения низкогидролизованного неионогенного полимера АК-631 марки Р-50 в воде, как следствие, сложность и длительность приготовления состава при закачке в пласт. Кроме того, сшивка ионами металлов карбоксильных полимеров, таких как частично гидролизованный ПАА, не пригодна для применения в пластах с высокими температурными режимами. В таких пластах произойдет избыточный гидролиз полимерного геля и к тому же будет иметь место синерезис из-за нежелательной сшивки двухвалентными катионами, такими, как магний и кальций.
Наиболее близким решением, взятым за прототип, является гелеобразующий состав, который содержит сополимер акриламида и акриловой кислоты - 0,17-0,80 мас. %, параформ - 0,03-0,20 мас. %, резорцин - 0,02-0,12 мас. %, вода - остальное или сополимер акриламида и акриловой кислоты - 0,17-0,80 мас. %, параформ - 0,03-0,20 мас. %, резорцин -0,02-0,12 мас. %, аэросил - 0,01-0,03 мас. %, вода - остальное (патент РФ №2553816, МПК Е21В 33/13, С09К 8/504, Е21В 43/22, опубл. 20.06.2015.). Недостатком известного состава является то, что его применение ограничено по температурному диапазону. При температуре выше 70°С, в течение 20-30 мин. происходит резкое повышение вязкости геля, что снижает глубину закачки в пласт.
Каждое нефтяное месторождение имеет свои геолого-физические характеристики. Состав нефти и породы коллектора, вязкость нефти, минерализация пластовых вод, пластовые температуры и давление изменяются в довольно широких пределах. Так, например, пластовые температуры большинства месторождений Западной Сибири варьируются от 50 до 100°С. Поэтому применение гель-технологий для увеличения нефтеотдачи, ограничения или изоляции водопритока требует создания гелеобразующих систем с регулируемыми свойствами.
Время гелеобразования при температурах выше 70°С можно регулировать неорганическими и органическими добавками, подстраивая под конкретные пластовые условия. Поэтому важно для расширения возможности применения сшитых полимерных систем ручное регулирование времени их сшивки изменением содержания как полиакриламида, так и сшивателя. При одинаковом содержании компонентов в смеси, состав будет иметь различные свойства при 70°С и при 90°С, в т.ч. время гелеобразования, реологические свойства и прочностные характеристики.
Возможность применения структурообразующих композиций в технологиях водоизоляции в условиях повышенных пластовых температур определяется, в основном, двумя факторами:
- стабильностью структур при повышенных температурах;
- управляемой кинетикой образования структуры, позволяющей закачивать требуемые объемы композиции.
Задачей изобретения является повышение качества изоляции в высокотемпературных пластах за счет увеличения глубины закачки, прочности сшитой полимерной системы, образованной в обводненной зоне, а также расширение температурного диапазона применения тампонажного полимерного состава.
Поставленная задача решается тем, что предлагаемый тампонажный полимерный состав для высоких температур, содержащий сополимер акриламида и акриловой кислоты, воду и сшиватели - параформ и резорцин, согласно изобретению, дополнительно содержит регулятор гелеобразования реагент Кратол, при следующем соотношении компонентов, мас. %:
сополимер акриламида и акриловой кислоты - 0,18-1,7
параформ - 0,03-0,2
резорцин - 0,02-0,12
реагент Кратол - 0,01-1,0
вода - остальное,
Или в качестве сшивателя содержит параформ и резорцин с аэросилом и дополнительно содержит регулятор гелеобразования - реагент Кратол, при следующем соотношении компонентов, мас. %:
сополимер акриламида и акриловой кислоты - 0,18-1,7
параформ - 0,03-0,2
резорцин - 0,02-0,12
аэросил - 0,01-0,03
реагент Кратол - 0,01-1,0
вода - остальное.
Кроме того, тампонажный полимерный состав для высоких температур в качестве сополимера акриламида и акриловой кислоты, согласно изобретению, содержит сополимер акриламида и акриловой кислоты с молекулярной массой 3-18 млн и степенью гидролиза 5-30%.
В химических технологиях добычи нефти используют широкий спектр полимеров акриламида, различающихся по молекулярным массам и степеням гидролиза. Варьирование молекулярных характеристик и концентрации полимера в композиции позволяет подобрать оптимальный состав применительно к конкретным геолого-физическим условиям месторождений.
Технология с использованием сшитых полимерных систем основывается на закачке в неоднородный по проницаемости и нефтенасыщенности пласт полимерных растворов, содержащих сшивающий агент. Предварительный выбор полимера для водоизоляции проводится на повышенных прочностных характеристиках композиций, какими обладают композиции на основе полимеров с молекулярной массой 3-18 млн. Величина предельного напряжения сдвига (ПНС) геля, образованного в трещиновато-поровом пласте, для таких композиций составляет более 30 Па, что позволяет сформировать экран, обеспечивающий эффективную водоизоляцию.
В прототипе в качестве полимера используются сополимеры акриламида и акриловой кислоты с молекулярной массой 5-18 млн и степенью гидролиза 5-30%, что недостаточно для формирования устойчивых сшитых гелей в условиях повышенных пластовых температур и значительно короткого времени гелеобразования при повышенных температурах, в заявляемом техническом решении предложено расширить диапазон используемых полимеров на сополимеры акриламида и акриловой кислоты с молекулярной массой 3-18 млн и степенью гидролиза 5-30%.
Не менее важным фактором успешного и качественного проведения изоляционных работ, в т.ч. ликвидации зон поглощений бурового раствора при бурении скважин, является выбор оптимальной концентрации полимеров и сшивателей в воде.
В заявляемом составе предлагается расширить диапазон концентрации полимерных компонентов в воде, а именно от 0,18 до 1,7%, что безусловно позволит улучшить реологические, физико-химические и фильтрационные характеристики тампонажного полимерного состава. Кроме того, увеличение концентрации и использование низкомолекулярного полимера позволяет создавать более прочные водоизоляционные экраны, что в конечном итоге сказывается на качестве проводимых работ.
В качестве регулятора гелеобразования заявляемый тампонажный полимерный состав содержит реагент Кратол. Использование реагента Кратол в нефтедобыче для целей регулирования гелеобразования полимерных систем не известно.
В состав реагента Кратол входят сульфаминовая кислота, алкилдиетилбензиламмоний хлорид и алкилбензолсульфонат натрия. Наличие добавок позволяет реагенту Кратол в заявляемом тампонажном полимерном составе выполнять роль регулятора времени гелеобразования в высокотемпературных пластах, что в конечном счете позволяет решить задачу повышения качества изоляции за счет увеличения глубины закачки и прочности сшитой полимерной системы, образованной в обводненной зоне. Изменением концентрации реагента Кратол можно регулировать необходимое время гелеобразования для конкретных геолого-физических условий конкретного месторождения, в том числе высоких пластовых температур. Введение реагента Кратол в тампонажный полимерный состав позволяет предотвратить преждевременное стремительное гелеобразование сшитых полимерных систем, происходящее при повышенных температурах. Кроме того, реагент Кратол обладает комплексным действием: кроме регулирования гелеообразования проявляет свойства бактерицида и ингибитора коррозии, что также положительно влияет на состояние оборудования в условиях активного использования сульфаминовой кислоты.
Исследованиями установлено, что в условиях высоких температур аэросил наряду с параформом и резорцином выполняет роль сшивателя сополимера акриламида и акриловой кислоты. Так как оба заявляемых гелеобразующих состава - и без аэросила, и с аэросилом - имеют равные технические преимущества за счет упрощения приготовления гелеобразующего состава без аэросила и увеличения времени гелеобразования примерно на 10-20% в присутствии его, каждое изобретение заявляемой группы изобретений охарактеризовано заявителем совокупностью признаков с применением альтернативы «или».
В составе заявляемого технического решения используются следующие реагенты.
Сополимер акриламида и акриловой кислоты - например, частично гидролизованный полиакриламид марок А345, SD-6800, AN-132, FP-107, А523 и т.п. с молекулярной массой 3-18 млн и степенью гидролиза 5-30%. Данные марки полиакриламидов применяются для очистки природных и промышленных сточных вод, интенсификации процессов осветления, сгущения и фильтрования технологических рассолов, суспензий, флотоконцентратов и флотоотходов, для процессов увеличения нефтедобычи и бурения.
Параформ (параформальдегид) ТУ 6-09-141-03-89 - продукт полимеризации формальдегида. Это белый, рыхлый порошок с запахом формальдегида. Применяется как дезинфецирующее средство, используется при получении резорцинформальдегидных, фенолформальдегидных, карбамидоформальдегидных и других смолах, а также при производстве химикатов для бурения нефтяных скважин, добавок к нефтяным маслам, клейких смол и формованных материалов электрических компонентов.
Резорцин ГОСТ 9970-74 - мета-диоксибензол, белый или с желтоватым оттенком кристаллический порошок со слабым характерным запахом. Применяют в производстве лекарственных препаратов для лечения кожных заболеваний, в производстве взрывчатых веществ, резорцино-альдегидных смол, азокрасителей, стабилизаторов и пластификаторов высокомолекулярных соединений.
Кратол ТУ 2121-415-05800142-2014 - продукт на основе сульфаминовой кислоты, выпускаемый ПАО «Пигмент», представляет собой кристаллический порошок белого цвета, хорошо растворимый в воде, содержащий сульфаминовую кислоту (от 90%), алкилдиметилбензиламмоний хлорид (1-5%) и Алкилбензолсульфонат натрия (1-5%). Применяется в нефтедобывающей промышленности при кислотной обработке призабойной зоны пласта, используется как основной компонент сухокислотных составов.
Алкилдиметилбензиламмоний хлорид относится к классу четвертичных аммониевых соединений, является высокоэффективным дезинфицирующим средством, обладающим мощным антимикробным, бактерицидным, альгицидным, фунгицидным, вирулицидным эффектом.
Алкилбензолсульфонат натрия является в настоящее время основным поверхностно-активным веществом, входящим в составы синтетических моющих средств и комплексных реагентов, широко применяющиеся в нефтяной промышленности, в качестве ингибитора сероводородной и кислотной коррозии.
Аэросил ГОСТ 14922-77 - высоко дисперсный, высокоактивный, аморфный, пирогенный диоксид кремния (SiO2). Применяется для загущения, придания тиксотропных свойств жидкостям и активного наполнения каучуков и герметиков. Широко применяется также для придания сыпучести порошкообразным продуктам, предотвращения комкования, адсорбирует излишнюю влагу и повышает срок их хранения. Выполняет функцию стабилизатора, выступает в качестве антиседиментационной добавки многокомпонентных систем. Термостабилен и сохраняет свои свойства при температуре свыше 200°С.
Все составы готовились в следующей последовательности: в пресную воду (минерализация менее 1 г/л) при перемешивании на магнитной мешалке вводили последовательно реагент Кратол, далее после полного растворения вводили сшиватели параформ, резорцин, аэросил (в составах, содержащих аэросил), далее вводили сополимер и продолжали перемешивать до полного растворения. Определяли время растворения при комнатной температуре и время гелеобразования при высокой температуре. Параллельно проводились испытания при температуре 70°С и 90°С. При достижении значений времени релаксации (времени жизни нити) больше 120 сек полимерная система считалась достигшей необходимой степени сшивки. Далее на ротационном вискозиметре Haake Viscotesteri Q определялись вязкость и реологические характеристики сшитых гелей.
Пример конкретного выполнения
В 98,7 мл пресной воды (минерализация менее 1 г/л) приготовили раствор, содержащий 1,0 г (1,0%) полиакриламида марки А 345, 0,18 г (0,18%) реагента Кратол, 0,09 г. (0,09%) параформа, 0,03 г (0,03%) резорцина и 0,005 г (0,005%) аэросила
Определили время растворения при комнатной температуре и время гелеобразования при 90°С. Время растворения составило 90 мин. Время гелеобразования 285 мин. (см. таблица 1 строка 25). Вязкость и реологические характеристики сшитого геля, измеренные на вискозиметре Haake Viscotesteri Q представлены на фиг. 1.
Далее аналогично примеру конкретного выполнения были получены составы с различным содержанием компонентов и исследованы их время растворения, время сшивки при температурах 70°С и 90°С. Все результаты приведены в таблице 1.
Эксперименты №№1-15 были проведены с использованием в качестве сополимера акриламида и акриловой кислоты частично гидролизованного полиакриламида марки AN 132, №№16-32 - частично гидролизованный полиакриламид марки А 345, №№33-49 - частично гидролизованный полиакриламид марки А 523, №№50-54 - частично гидролизованный полиакриламид марки FP 107 Время растворения и гелеобразования при различных температурах в зависимости от различной концентрации компонентов тампонажной полимерной смеси для сополимеров А345, А523, FP107, AN132 представлено в таблице 1.
Примеры 16, 33 и 50 без содержания реагента Кратол приведены для сравнения с прототипом (патент РФ№2553816). В пресной воде (минерализация менее 1 г/л) готовится раствор, содержащий полиакриламид марки А 345, сшиватели параформ и резорцин.
Figure 00000001
Figure 00000002
Из приведенных примеров видно, что состав по прототипу (строка 55) при температуре 70°С сшивается за 30 мин, при 90°С за 13 мин, что недостаточно для безаварийной доставки состава в пласт для дальнейших ремонтно-изоляционных работ. Введение регулятора гелеобразования Кратол как без аэросила, так и в присутствии его дает возможность удлинения времени сшивки от 30 до 1200 минут в зависимости от температуры.
Выбранный диапазон концентрации частично гидролизованного полиакриламида от 0,18 до 1,7% в присутствии сшивателей дает возможность получить прочные сшитые гели №№3-14. При концентрации 0,15% ПАА гель не сшивается (№1) или он является слабосшитым (№2), что не позволяет создать прочный водоизоляционный экран. При концентрации выше 1,7% описанные ПАА (№15) плохо растворяются в воде, образуют густой тяжелопрокачиваемый раствор, который может привести к аварийным последствиям в скважине.
Плавное увеличение концентрации Кратола в полимерных композициях (№№16-32) и (№№33-49) позволяет подобрать оптимальное время сшивки геланта с сохранением реологических характеристик.
Для тампонажных полимерных составов, приготовленных по примерам таблиц 1, отмеченных знаком * проводили исследование реологических свойств.
Для оценки реологических свойств составов были записаны зависимости эффективной вязкости от скорости сдвига и рассчитано предельное напряжение сдвига.
Вязкость и реологические характеристики сшитых гелей, как в присутствии регулятора гелеобразования, так и без него, определялись на ротационном вискозиметре Haake Viscotesteri Q. Для изучаемых образцов применялся сдвиговой тест при изменении скорости сдвига в диапазоне от 0,1 до 300 с-1, при котором определяли зависимость напряжения сдвига и вязкости от скорости сдвига. При этом повышение скорости сдвига производилось ступенчато, с заданным шагом в логарифмическом масштабе.
Для определения предельного напряжения сдвига построение реологической кривой осуществлялось в режиме контролируемого напряжения сдвига (CS).
Зависимости напряжения сдвига от скорости сдвига (кривые течения) для сшитых полимерных систем аппроксимируется уравнением Гершеля-Балкли, описывающим поведение пластичной жидкости:
Figure 00000003
где τ - напряжение сдвига, Па;
К - консистентность, Па⋅с - мера консистенции жидкости;
Figure 00000004
- скорость сдвига, с-1;
n - показатель степени неньютоновского поведения жидкости - чем больше n отличается от 1, тем выше проявление неньютоновских свойств раствора;
τ0 - предельное напряжение сдвига, Па - характеризует величину внешнего воздействия, необходимого для начала течения жидкости.
В качестве параметра для оценки эффективности тампонажных составов можно использовать предельное напряжение сдвига τ0. Предельное напряжение сдвига у системы в определенной степени характеризует наличие свойств твердого тела - чтобы началась деформация необходимо приложить некоторое напряжение сдвига. Чем выше τ0, тем больше сопротивление системы при малых скоростях сдвига и тем выше ее изолирующая способность.
На Фиг. 1 представлены реологические кривые зависимости эффективной вязкости от скорости сдвига составов 16 и 25 при 90°С, на Фиг. 2 - составов 33 и 45 при 90°С.
Все композиции являются неньютоновскими жидкостями, то есть их течение не подчиняется закону Ньютона и вязкость меняется при изменении скорости сдвига (приложенной деформации).
Полученные реологические кривые (Фиг. 1 и Фиг. 2) свидетельствуют, что введение регулятора сшивки не влияет на вязкостные и прочностные характеристики сшитых полимерных составов (табл. 2)
Figure 00000005
Исследованы время гелеобразования составов в присутствии частично гидролизованного полиакриламида марки FP107 без аэросила (№51) и в присутствии аэросила 0,01; 0,02, 0,03% (№№52-54 соответственно).
Использование аэросила в концентрациях от 0,01 до 0,03% позволяет дополнительно увеличить время гелеобразования тампонажного полимерного состава примерно на 10-20%, что является преимуществом использования данного состава. Использование аэросила в концентрации выше 0,03% нецелесообразно, так как с увеличением концентрации аэросила, значительного увеличения времени сшивки не наблюдается (№№52-54).
Дополнительное введение аэросила не влияет на реологические характеристики сшитых полимерных систем, что подтверждаются полученными кривыми вязкости (Фиг. 3 и табл. 3.
Figure 00000006
Преимуществами заявляемого тампонажного полимерного состава для высоких температур являются:
- возможность регулирования времени гелеобразования в зависимости от конкретных условий пласта, глубины скважины, необходимых объемов закачки;
- при повышенных температурах сохраняются свойства сшитых полимерных систем длительное время, увеличивается прочность сшитой полимерной системы, образованной в обводненной зоне;
- увеличение глубины закачки в высокотемпературные пласты вследствие увеличения времени гелеобразования;
- предотвращение резкого образования пробок при повышенных температурах, приводящее к аварийным ситуациям.
Конечным результатом использования изобретения является повышение качества проводимых изоляционных работ в высокотемпературных пластах, расширение температурного диапазона применения тампонажного состава и расширение ассортимента полимерных тампонажных составов.

Claims (14)

1. Тампонажный полимерный состав для высоких температур, содержащий сополимер акриламида и акриловой кислоты, воду и сшиватели - параформ и резорцин, отличающийся тем, что дополнительно содержит регулятор гелеобразования реагент Кратол, при следующем соотношении компонентов, мас. %:
сополимер акриламида и акриловой кислоты - 0,18-1,7
параформ - 0,03-0,2
резорцин - 0,02-0,12
реагент Кратол - 0,01-1,0
вода - остальное,
или в качестве сшивателя содержит параформ и резорцин с аэросилом и дополнительно содержит регулятор гелеобразования - реагент Кратол, при следующем соотношении компонентов, мас. %:
сополимер акриламида и акриловой кислоты - 0,18-1,7
параформ - 0,03-0,2
резорцин - 0,02-0,12
аэросил - 0,01-0,03
реагент Кратол - 0,01-1,0
вода - остальное.
2. Тампонажный полимерный состав для высоких температур по п. 1, отличающийся тем, что в качестве сополимера акриламида и акриловой кислоты содержит сополимер акриламида и акриловой кислоты с молекулярной массой 3-18 млн и степенью гидролиза 5-30%.
RU2020137542A 2020-11-16 2020-11-16 Тампонажный полимерный состав для высоких температур RU2754527C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020137542A RU2754527C1 (ru) 2020-11-16 2020-11-16 Тампонажный полимерный состав для высоких температур

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020137542A RU2754527C1 (ru) 2020-11-16 2020-11-16 Тампонажный полимерный состав для высоких температур

Publications (1)

Publication Number Publication Date
RU2754527C1 true RU2754527C1 (ru) 2021-09-03

Family

ID=77670187

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020137542A RU2754527C1 (ru) 2020-11-16 2020-11-16 Тампонажный полимерный состав для высоких температур

Country Status (1)

Country Link
RU (1) RU2754527C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216282A (zh) * 2022-07-28 2022-10-21 中海油能源发展股份有限公司 一种高温高矿化度油藏用黑胶调堵剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090221453A1 (en) * 2008-02-29 2009-09-03 Sumitra Mukhopadhyay Treatment Fluid With Oxidizer Breaker System and Method
RU2383560C2 (ru) * 2003-09-12 2010-03-10 Налко Компани, корпорация штата Делавэр Способ и композиция для добычи углеводородных жидкостей из подземного пласта
RU2467156C2 (ru) * 2010-10-29 2012-11-20 Общество с ограниченной ответственностью "Дельта-пром инновации" Способ крепления призабойной зоны скважины
RU2553816C1 (ru) * 2014-05-06 2015-06-20 ООО "Уфимский Научно-Технический Центр" Гелеобразующий состав, сухая смесь и способы его приготовления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2383560C2 (ru) * 2003-09-12 2010-03-10 Налко Компани, корпорация штата Делавэр Способ и композиция для добычи углеводородных жидкостей из подземного пласта
US20090221453A1 (en) * 2008-02-29 2009-09-03 Sumitra Mukhopadhyay Treatment Fluid With Oxidizer Breaker System and Method
RU2467156C2 (ru) * 2010-10-29 2012-11-20 Общество с ограниченной ответственностью "Дельта-пром инновации" Способ крепления призабойной зоны скважины
RU2553816C1 (ru) * 2014-05-06 2015-06-20 ООО "Уфимский Научно-Технический Центр" Гелеобразующий состав, сухая смесь и способы его приготовления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КРАТОЛ. Размещено 20.10.2020. https://web.archive.org/web/20201020194212/https://krata.ru/catalog/sulfaminovaya-kislota/kratol/. Найдено в Интернет 17.06.2011. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216282A (zh) * 2022-07-28 2022-10-21 中海油能源发展股份有限公司 一种高温高矿化度油藏用黑胶调堵剂及其制备方法
CN115216282B (zh) * 2022-07-28 2023-11-17 中海油能源发展股份有限公司 一种高温高矿化度油藏用黑胶调堵剂及其制备方法

Similar Documents

Publication Publication Date Title
US4152274A (en) Method for reducing friction loss in a well fracturing process
US9315722B1 (en) Methods for improving friction reduction in aqueous brine
US4018286A (en) Controlled well plugging with dilute polymer solutions
EP1059316B1 (de) Wasserlösliche Mischpolymere und ihre Verwendung für Exploration und Förderung von Erdöl und Erdgas
US4498540A (en) Gel for retarding water flow
US9074125B1 (en) Gelling agent for water shut-off in oil and gas wells
AU2015374328B2 (en) Emulsions containing alkyl ether sulfates and uses thereof
CN103923629B (zh) 一种堵水剂
Simjou et al. Polyacrylamide gel polymer as water shut-off system: preparation and investigation of physical and chemical properties in one of the Iranian oil reservoirs conditions
DK2892974T3 (en) APPLICATION OF THERMO-THICKENING POLYMERS IN THE GAS AND OIL FIELD INDUSTRY
CN111410943B (zh) 一种高温快速成胶加重的复合凝胶压井胶塞及其制备方法
NO148787B (no) Blanding til syrebehandling av poroese undergrunnsformasjoner og anvendelse av samme
RU2754527C1 (ru) Тампонажный полимерный состав для высоких температур
CN106317321A (zh) 用于制备井下交联复合凝胶的组合物以及由其制备的交联复合凝胶
US4502965A (en) Terpolymers for use as high temperature fluid loss additive and rheology stabilizer for high pressure, high temperature oil well drilling fluids
CN104710568A (zh) 一种缓膨抗盐黏弹颗粒调剖剂的制备方法
CN105860951A (zh) 一种酸性聚合物压裂液及其制备方法
RU2597593C1 (ru) Способ выравнивания профиля приемистости нагнетательных и ограничения водопритока в добывающих скважинах
CN111690398B (zh) 压裂液原液、酸化压裂液、降阻水和携砂压裂液及其制法
US11952532B2 (en) Sago-based formulations for gel applications including conformance control and water shutoffs
US4544722A (en) Water-soluble terpolymers of 2-acrylamido-2-methylpropane-sulfonic acid, sodium salt (AMPS), n-vinylpyrrolidone and acrylonitrile
CN107312508B (zh) 铝盐络合物在制备钻井液中的应用及钻井液
RU2553816C1 (ru) Гелеобразующий состав, сухая смесь и способы его приготовления
RU2630007C2 (ru) Жидкость для глушения и промывки нефтяных и газовых скважин
RU2793051C1 (ru) Состав полисахаридного геля для гидравлического разрыва пласта