RU2752904C1 - Integration vector for multi-copy gene integration in 18spphk of pichia pastoris yeast - Google Patents

Integration vector for multi-copy gene integration in 18spphk of pichia pastoris yeast Download PDF

Info

Publication number
RU2752904C1
RU2752904C1 RU2020129013A RU2020129013A RU2752904C1 RU 2752904 C1 RU2752904 C1 RU 2752904C1 RU 2020129013 A RU2020129013 A RU 2020129013A RU 2020129013 A RU2020129013 A RU 2020129013A RU 2752904 C1 RU2752904 C1 RU 2752904C1
Authority
RU
Russia
Prior art keywords
integration
vector
ppig
promoter
pichia pastoris
Prior art date
Application number
RU2020129013A
Other languages
Russian (ru)
Inventor
Аркадий Пантелеймонович Синицын
Иван Никитич Зоров
Александра Михайловна Рожкова
Игорь Геннадьевич Синельников
Ольга Аркадьевна Синицына
Original Assignee
Федеральное государственное учреждение "Федеральный исследовательский центр "Фундаментальные основы биотехнологии" Российской академии наук" (ФИЦ Биотехнологии РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное учреждение "Федеральный исследовательский центр "Фундаментальные основы биотехнологии" Российской академии наук" (ФИЦ Биотехнологии РАН) filed Critical Федеральное государственное учреждение "Федеральный исследовательский центр "Фундаментальные основы биотехнологии" Российской академии наук" (ФИЦ Биотехнологии РАН)
Priority to RU2020129013A priority Critical patent/RU2752904C1/en
Application granted granted Critical
Publication of RU2752904C1 publication Critical patent/RU2752904C1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

FIELD: biotechnology.
SUBSTANCE: invention relates to the field of biotechnology and genetic engineering. Proposed is an integration vector pPIG-1 for expression of recombinant proteins in the P. pastoris yeast, with a size of 5595 bp, characterised by a nucleotide sequence disclosed in SEQ ID NO 1.
EFFECT: invention provides a high frequency of target gene integration.
1 cl, 2 dwg, 3 ex, 2 tbl

Description

Изобретение относится к области биотехнологии и генной инженерии. Изобретение описывает получение нового интеграционного вектора pPIG-1, имеющего модульную конструкцию и позволяющего осуществлять интеграцию и экспрессию гетерологичных генов в Pichia pastoris. Интеграционный вектор содержит селективный маркер для отбора трансформантов в клетках Е.coli, сайт начала репликации, сайт интеграции и экспрессионную кассету, в состав которой входят промотор, терминатор транскрипции и кодирующую полную последовательность 18S рРНК. Особенность данного вектора заключается в использовании полноразмерной последовательности гена 18S рРНК для гомологичной рекомбинации вектора, что позволяет производить интеграцию гена вставки без выщепления нативного гена. Использование данного вектора для трансформации позволяет увеличить продуктивность штамма продуцента растительной хитиназы из Drosera capensis. The invention relates to the field of biotechnology and genetic engineering. The invention describes the production of a new integration vector pPIG-1 having a modular design and allowing the integration and expression of heterologous genes in Pichia pastoris . The integration vector contains a selectable marker for the selection of transformants in E. coli cells, an origin of replication, an integration site and an expression cassette, which includes a promoter, a transcription terminator and coding for the complete 18S rRNA sequence. A feature of this vector is the use of the full-length sequence of the 18S rRNA gene for homologous recombination of the vector, which allows the integration of the insert gene without cleavage of the native gene. The use of this vector for transformation makes it possible to increase the productivity of the plant chitinase producer strain from Drosera capensis.

Изобретение относится к биотехнологии, генетической инженерии и представляет собой технологию получения вектора для мультикопийной интеграции и экспрессии различных генов в штаммах Pichia pastoris. The invention relates to biotechnology, genetic engineering and is a technology for producing a vector for multicopy integration and expression of various genes in Pichia pastoris strains.

Дрожжи Pichia pastoris являются хорошо известными продуцентами, способными производить широкий спектр различных ферментов, антител и пептидов, продуцируя их как внутриклеточно так и в культуральную среду. Традиционно для получения штаммов продуцентов используют вектора серии pPIC (Thermo Fisher Scientific cat. №. V19520) имеющие фланкируюие участки для рекомбинации, гомологичные нативному промотору алкоголь оксидазы (AOX1), либо селективному гену (обычно His4), что позволяет получать штаммы с жестким контролем экспрессии, но при этом частота интеграции целевого гена не велика и редко превышает 5 копий на геном [Vogl et al., 2018]. Стандартным решением для получения рекомбиантных штаммов Pichia pastoris является использование векторов серии pPICZα, имеющих удобную систему селекции на антибиотике зеоцин и обеспечивающий прогнозируемый результат при трансформации. Pichia pastoris yeast is a well-known producer capable of producing a wide range of different enzymes, antibodies and peptides, both intracellularly and into the culture medium. Traditionally, vectors of the pPIC series (Thermo Fisher Scientific cat. No. V19520) with flanking regions for recombination homologous to the native alcohol oxidase promoter ( AOX1) or a selective gene (usually His4 ) are used to obtain producer strains, which makes it possible to obtain strains with tight control of expression , but at the same time, the frequency of integration of the target gene is not high and rarely exceeds 5 copies per genome [ Vogl et al., 2018 ]. The standard solution for the production of recombinant Pichia pastoris strains is the use of vectors of the pPICZα series, which have a convenient selection system for the antibiotic zeocin and provide a predictable transformation result.

Несмотря на то, что AOX1 промотор является одним из самых сильных известных промоторов в P. pastoris, он не всегда удобен для применения в промышленных и лабораторных условиях. Для регуляции данного промотора необходим метанол в ростовой среде. Опасность метанола и повышенные санитарно-гигиенические требования к организации работ с метанолом являются серьезным препятствием для реализации биотехнологических производств на основе индуцибельных систем экспрессии, использующих AOX1 промотор. В связи с этим, представляется важным найти альтернативные пути, которые позволили бы использовать метилотрофные дрожжи для продукции целевого белка без использования метанола для индукции. С другой стороны, необходимо сохранить эффективность экспрессии сопоставимой с индуцибельными промоторами.Despite the fact that the AOX1 promoter is one of the strongest known promoters in P. pastoris , it is not always convenient for industrial and laboratory use. The regulation of this promoter requires methanol in the growth medium. The danger of methanol and increased sanitary and hygienic requirements for the organization of work with methanol are a serious obstacle to the implementation of biotechnological production based on inducible expression systems using the AOX1 promoter. In this regard, it seems important to find alternative ways that would make it possible to use methylotrophic yeast for the production of the target protein without the use of methanol for induction. On the other hand, it is necessary to keep the expression efficiency comparable to that of inducible promoters.

Задачей предлагаемого изобретения является расширение арсенала плазмидных векторов, пригодных для конструирования на их основе штаммов-продуцентов промышленно значимых белков. The objective of the present invention is to expand the arsenal of plasmid vectors suitable for constructing on their basis strains producing industrially significant proteins.

Для решения поставленной задачи была предложена идея универсального интегративного вектора, обеспечивающего высокую частоту интеграции (мультикопийность) целевого гена.To solve this problem, the idea of a universal integrative vector was proposed, providing a high frequency of integration (multicopy) of the target gene.

Из коммерческих векторов, известен pGAPZa (Thermo Fisher Scientific cat. №. V20020), который позволяет получать штаммы-продуценты рекомбинантных белков, в которых экспрессия происходит конститутивно. Однако из-за конструктивных особенностей вектора, события инсерции генов в локусе промотора GAP возникают в результате единичного кроссинговера между локусом и областью GAP промотора на векторах pGAPZ или pGAPZa. Это приводит к вставке одной копий экспрессионной кассеты с целевым геном в 3`- область от локуса GAP промотора, при этом множественная встройка целевого гена хоть и возможна, но вероятность данного события крайне мала. Еще одним минусом данного подходя является высокая вероятность нарушения структуры гена GAP. В качестве селекционного маркера в данной серии плазмид используется ген BleoR под контролем промотора TEF1. From commercial vectors, known pGAPZa (Thermo Fisher Scientific cat. No. V20020), which allows you to obtain strains-producers of recombinant proteins in which expression occurs constitutively. However, due to the design features of the vector, gene insertion events at the GAP promoter locus result from a single crossing over between the locus and the GAP promoter region on pGAPZ or pGAPZa vectors. This leads to the insertion of one copy of the expression cassette with the target gene in the 3 'region from the GAP promoter locus, while multiple insertion of the target gene is possible, but the probability of this event is extremely low. Another disadvantage of this approach is the high probability of disrupting the structure of the GAP gene. The BleoR gene under the control of the TEF1 promoter is used as a selection marker in this series of plasmids.

Существенным отличием предлагаемого к патентованию вектора pPIG-1 от коммерчески доступных векторов является использование полноразмерной последовательности 18S рРНК для интеграции. В геноме P. pastoris содержится 8 копий данного гена, присутствующего на всех 4 хромосомах [Schutter De и др., 2009], тогда как обычно используемые сайты интеграции (AOX1 промотор, His4 и др.) представлены одной копией на весь геном. При этом при многокопийной интеграции большинство генов вставки будет сосредоточена в одном месте генома, что может негативно сказаться на эффективности транскрипции. A significant difference between the proposed for patenting vector pPIG-1 from commercially available vectors is the use of the full-length 18S rRNA sequence for integration. The genome of P. pastoris contains 8 copies of this gene, which is present on all 4 chromosomes [ Schutter De et al., 2009] , while the commonly used integration sites ( AOX1 promoter, His4 , etc.) are represented by one copy for the entire genome. At the same time, with multi-copy integration, most of the insertion genes will be concentrated in one place in the genome, which can negatively affect the efficiency of transcription.

В качестве прототипа данного вектора используется конструкция из патента RU 2388823 где успешно реализовали идею гомологичной рекомбинации по 18s рРНК. Однако в качестве плечей для рекомбинации используются не полная последовательность 18S рРНК, а два фрагмента: 5' 18S рРНК длиной 269 п.о. и фрагмент 3' 18S рРНК длиной 689 п.о., что может приводить к нарушению нативной структуры гена при рекомбинации и не является оптимальным. В работе [Näätsaari L, et al, 2012] продемонстрированно, что наибольшую частоту интеграции вставки в хромосому обеспечивают одинаковые по размеру плечи длиной более 650 п.о. Так же, в предлагаемом изобретении осуществлена модификация нуклеотидной последовательности пре-про области α-фактора Saccharomyces cerevisiae и введен сайт рестрикции HindIII, что позволяет вставлять последовательность целевого гена без добавления промежуточных аминокислот на N -концевой участок секретируемого белка.A construct from patent RU 2388823 is used as a prototype of this vector, where the idea of homologous recombination at 18s rRNA was successfully implemented. However, as arms for recombination, not the complete 18S rRNA sequence is used, but two fragments: 5 '18S rRNA 269 bp long. and a 689 bp 3 '18S rRNA fragment. , which can lead to disruption of the native gene structure during recombination and is not optimal. It was demonstrated in [Näätsaari L, et al, 2012 ] that the highest frequency of integration of an insert into a chromosome is provided by arms of equal size, more than 650 bp in length. Also, in the present invention, the nucleotide sequence of the pre-pro region of the α-factor of Saccharomyces cerevisiae is modified and the HindIII restriction site is introduced, which allows inserting the sequence of the target gene without adding intermediate amino acids to the N-terminal region of the secreted protein.

Заявляемый мультикопийный интеграционный вектор pPIG-1 для экспрессии генов в дрожжах конструируют с использованием стандартных генно-инженерных методик: ПЦР, overlap-ПЦР и сборка полученных фрагментов методом Гибсона [Gibson et al., 2009].The claimed multicopy integration vector pPIG-1 for gene expression in yeast is constructed using standard genetic engineering techniques: PCR, overlap-PCR and assembly of the obtained fragments by the Gibson method [ Gibson et al., 2009 ].

Предложенная генетическая конструкция состоит из 3’ фрагмента 18s рРНК (18-750 п.о), GAP промотора (764-1240 п.о.), модифицированный сигнал секреции гена MF из S.cerevisiae (1251-1517 п.о.), сайта множественного клонирования (1518-1537 п.о.), AOX1 терминатора (1635-1881 п.о.), TEF1 промотора (1921-2307 п.о.), EM7 промотора (2315-2362 п.о.), гена устойчивости к зеоцину BleoR (2381-2755 п.о.), CYC1 терминатора (2821-3068 п.о.) 5’ фрагмента 18s рРНК (3069-3870), гена устойчивости к ампициллину AmpR (3837-4842 п.о.) и точки начала репликации ori (5013-6 п.о.). Плечи для интеграции образуют полноразмерный ген 18S рРНК. Вектор имеет модульную структуру. Перед последовательностью GAP промотора введен сайт рестрикции KpnI. Между GAP промотором и пре-про сегментом α-фактора введен сайт рестрикции NdeI, что позволяет свободно менять сигнальные пептиды и промоторы, получая на основе интегративного вектора pPIG-1 новые конструкции. Кассета, содержащая AmpR и ori фланкированы сайтами ApaI, которые выщепляются при линеаризации вектора перед трансформацией, что позволяет избегать вставки бактериальных генов в геном дрожжей.The proposed genetic construct consists of a 3 'fragment of 18s rRNA (18-750 bp), a GAP promoter (764-1240 bp), a modified signal of secretion of the MF gene from S. cerevisiae (1251-1517 bp), multiple cloning site (1518-1537 bp), AOX1 terminator (1635-1881 bp), TEF1 promoter (1921-2307 bp), EM7 promoter (2315-2362 bp), gene Zeocin resistance BleoR (2381-2755 bp), CYC1 terminator (2821-3068 bp) 5 'fragment of 18s rRNA (3069-3870), ampicillin resistance gene AmpR (3837-4842 bp) and the origin of replication ori (5013-6 bp). The arms for integration form the full-length 18S rRNA gene. The vector has a modular structure. A KpnI restriction site was introduced in front of the GAP promoter sequence. A restriction site NdeI is introduced between the GAP promoter and the pre-pro segment of the α-factor, which allows free change of signal peptides and promoters, obtaining new constructs based on the integrative vector pPIG-1. The cassette containing AmpR and ori is flanked by ApaI sites, which are cleaved by linearization of the vector prior to transformation, thus avoiding the insertion of bacterial genes into the yeast genome.

Именно такое сочетание элементов вектора дает возможность эффективной трансформации Pichia pastoris и множественной интеграции в геном целевой последовательности.It is this combination of vector elements that enables efficient transformation of Pichia pastoris and multiple integration into the genome of the target sequence.

Для демонстрации эффективности нового вектора pPIG-1 были проведены эксперименты по клонированию в него гена chi19, кодирующего растительную хитиназу 19-го семейства гликозилгидролаз [AN GeneBank: MK093978.1]. Данный фермент был выбран в связи с его потенциальной промышленной значимостью для сельского хозяйства и невозможностью его получения в других экспрессионных системах из-за либо нерастворимости (в клетках E.coli), либо токсичности для хитинсодержащей клеточной стенки (в случае экспрессии в мицелиальных грибах) [Синельников и др., 2020].To demonstrate the effectiveness of the new vector pPIG-1, experiments were carried out to clone into it the chi19 gene encoding plant chitinase of the 19th family of glycosyl hydrolases [AN GeneBank: MK093978.1]. This enzyme was chosen due to its potential industrial importance for agriculture and the impossibility of obtaining it in other expression systems due to either insolubility (in E. coli cells) or toxicity to the chitin-containing cell wall (in the case of expression in filamentous fungi) [ Sinelnikov et al., 2020 ].

Изобретение иллюстрируется следующими изображениями: The invention is illustrated by the following images:

Рис. 1 - карта вектора pPIG-1Rice. 1 - vector map pPIG-1

Рис. 2 - электрофореграмма культуральной жидкости pPIG_Chit19 и pPICZ_Chit19Rice. 2 - electrophoretogram of the culture fluid pPIG_Chit19 and pPICZ_Chit19

Изобретение сопровождается двумя таблицами:The invention is accompanied by two tables:

Таблица 1 - Структура праймеров, использованных при получении интеграционного вектора pPIG-1Table 1 - The structure of the primers used to obtain the integration vector pPIG-1

Таблица 2 - Количество копий гена chi19 в геноме продуцентов хитиназы 19 семейства pPIG_Chit19 и pPICZ_Chit19Table 2 - The number of copies of the chi19 gene in the genome of chitinase 19 producers of the pPIG_Chit19 and pPICZ_Chit19 families

Пример 1 Получение интеграционного вектора pPIG-1Example 1 Obtaining the integration vector pPIG-1

Поставленная задача решена путем конструирования инеграционного вектора pPIG-1 для экспрессии в дрожжах Pichia pastoris. Сконструированный вектор имеет размер 5595 п.о. (SEQ ID NO 1) (рис. 1)The problem was solved by constructing the pPIG-1 injection vector for expression in the yeast Pichia pastoris. The constructed vector has a size of 5595 bp. (SEQ ID NO 1) (Fig. 1)

Фрагмент ДНК размером 1747 п.о. (SEQ ID NO 2), кодирующий последовательность ori и гена устойчивости к ампицилину bla получают при помощи ПЦР с использованием Phusion™ High-Fidelity DNA полимеразы (Thermo Fisher Scientific) и праймеров N3865F и N16R. На концах олигонуклеотидных праймеров добавлены последовательности, кодирующие сайты рестрикции ApaI. В качестве матрицы для ПЦР используют плазмиду pUC19 [https://www.addgene.org/50005/]. A 1747 bp DNA fragment. (SEQ ID NO 2) encoding the sequence for ori and ampicillin resistance gene bla was obtained by PCR using Phusion ™ High-Fidelity DNA Polymerase (Thermo Fisher Scientific) and primers N3865F and N16R. At the ends of the oligonucleotide primers added sequences encoding ApaI restriction sites. Plasmid pUC19 [https://www.addgene.org/50005/ ] was used as a template for PCR.

Фрагмент ДНК (SEQ ID NO 3), кодирующий кассету обеспечивающую устойчивость трансформантов к Зеоцину, который состоит из: фрагмента множественного сайта клонирования, 6His метки, AOX1 терминатора, дрожжевого TEF1 промотора, бактериального промотора EM7, гена ble, CYC1 терминатор размером 1558 п.о. При помощи ПЦР с использованием Phusion™ High-Fidelity DNA полимеразы и праймеров N749F и N1254R. В качестве матрицы для ПЦР используют коммерческую плазмиду pPICZAα (Thermo Fisher Scientific Каталожный номер: V19020). Фрагмент получают при помощи ПЦР с использованием Phusion™ High-Fidelity DNA полимеразы и праймеров N1520F и N3077R.DNA fragment (SEQ ID NO 3) encoding a cassette providing resistance of transformants to Zeocin, which consists of: a fragment of the multiple cloning site, 6His tag, AOX1 terminator, yeast TEF1 promoter, bacterial EM7 promoter, ble gene, CYC1 terminator of 1558 bp ... By PCR using Phusion ™ High-Fidelity DNA Polymerase and primers N749F and N1254R. The commercial plasmid pPICZAα (Thermo Fisher Scientific Catalog number: V19020) was used as a template for PCR. The fragment is obtained by PCR using Phusion ™ High-Fidelity DNA polymerase and primers N1520F and N3077R.

Фрагмент ДНК, кодирующий сигнал секреции α-фактора и часть множественного сайта клонирования длиной 298 п.о. (SEQ ID NO 4) получают при помощи ПЦР с использованием Phusion™ High-Fidelity DNA полимеразы (Thermo Fisher Scientific) и праймеров N1237F и N1534R. В качестве матрицы для ПЦР используют коммерческую плазмиду pPICZAα.A DNA fragment encoding the α-factor secretion signal and part of the multiple cloning site 298 bp in length. (SEQ ID NO 4) was obtained by PCR using Phusion ™ High-Fidelity DNA Polymerase (Thermo Fisher Scientific) and primers N1237F and N1534R. The commercial plasmid pPICZAα was used as a template for PCR.

Для получения нижеперечисленных элементов конструкции, из штамма штамма Pichia pastoris GS115 (Thermo Fisher Scientific cat. № C18100) выделяют хромосомную ДНК [Lõoke, et al 2011], которая служит матрицей для синтеза GAP промотора, и фрагментов гена 18S рРНК.To obtain the following structural elements , chromosomal DNA is isolated from the Pichia pastoris GS115 strain (Thermo Fisher Scientific cat. No. C18100) [ Lõoke, et al 2011 ], which serves as a template for the synthesis of the GAP promoter, and fragments of the 18S rRNA gene.

Фрагмент ДНК кодирующий промотор глицеральдегид-3-фосфат - дегидрогеназы (GAP промотор) [GenBank NC_012964.1] длиной 506 п.о. фланкированный сайтами рестрикции KpnI и NdeI (SEQ ID NO 5),. получают при помощи ПЦР с использованием Phusion™ High-Fidelity DNA полимеразы и праймеров N749F и N1254R. В качестве матрицы для ПЦР используют геномную ДНК штамма Pichia pastoris GS115 A DNA fragment encoding the glyceraldehyde-3-phosphate dehydrogenase promoter (GAP promoter) [GenBank NC_012964.1] 506 bp in length. flanked by restriction sites KpnI and NdeI (SEQ ID NO 5). obtained by PCR using Phusion ™ High-Fidelity DNA polymerase and primers N749F and N1254R. Genomic DNA of the Pichia pastoris GS115 strain is used as a template for PCR.

Фрагмент, кодирующий 3’ конец 18S рРНК (SEQ ID NO 6) получают при помощи ПЦР с использованием Phusion™ High-Fidelity DNA полимеразы и праймеров N1F и N763R. В качестве матрицы для ПЦР используют геномную ДНК штамма Pichia pastoris GS115. A fragment encoding the 3 'end of 18S rRNA (SEQ ID NO 6) was obtained by PCR using Phusion ™ High-Fidelity DNA Polymerase and primers N1F and N763R. Genomic DNA of the Pichia pastoris GS115 strain is used as a template for PCR.

Фрагмент, кодирующий 5’-конец 18S рРНК (SEQ ID NO 7) получают при помощи ПЦР с использованием Phusion™ High-Fidelity DNA полимеразы и праймеров N3062F и N3882R. В качестве матрицы для ПЦР используют геномную ДНК штамма Pichia pastoris GS115. A fragment encoding the 5 'end of 18S rRNA (SEQ ID NO 7) was obtained by PCR using Phusion ™ High-Fidelity DNA Polymerase and primers N3062F and N3882R. Genomic DNA of the Pichia pastoris GS115 strain is used as a template for PCR.

Праймеры, использованные при получении интеграционного вектора представлены в Таблице 1.The primers used to obtain the integration vector are presented in Table 1.

Таблица 1 - Структура праймеров, использованных при получении интеграционного вектора pPIG-1Table 1 - The structure of the primers used to obtain the integration vector pPIG-1

Название Name Последовательность 5'→3'Sequence 5 '→ 3' N1F N1F TGGAAAAACGGGCCCGCAGGTTCACCTACGGAATGGAAAAACGGGCCCGCAGGTTCACCTACGGAA N16R N16R CGGGCCCGTTTTTCCATAGGCTCCGCCGGGCCCGTTTTTCCATAGGCTCCGC N749F N749F CTGGGGTACCATCCTTTTTTGTAGAAATGTCTTGGCTGGGGTACCATCCTTTTTTGTAGAAATGTCTTGG N763R N763R AGGATGGTACCCCAGATACCGTCGTAGTCTTAGGATGGTACCCCAGATACCGTCGTAGTCTT N1237FN1237F CTATCCATATGGAAATGAGATTTCCTTCAATTCTATCCATATGGAAATGAGATTTCCTTCAATT N1254RN1254R TCATTTCCATATGGATAGTTGTTCAATTGATTCATTTCCATATGGATAGTTGTTCAATTGAT N1520FN1520F TGCAGGCGGCCGCGAGCTCATCATCATCATCATCATTGTGCAGGCGGCCGCGAGCTCATCATCATCATCATCATTG N1534RN1534R TCGCGGCCGCCTGCAGAAGCTTCAGCCTCTCTTTTCTCGCGGCCGCCTGCAGAAGCTTCAGCCTCTCTTTTC N3062FN3062F ATTTGCTCATCTTCGATCCCCTAAC ATTTGCTCATCTTCGATCCCCTAAC N3077RN3077R CGAAGATGAGCAAATTAAAGCCTTCGAGC CGAAGATGAGCAAATTAAAGCCTTCGAGC N3865FN3865F GAGACAAGGGCCCGCGGAACCCCTATTTGTT GAGACAAGGGCCCGCGGAACCCCTATTTGTT N3882RN3882R TCCGCGGGCCCTTGTCTCAAAGATTAAGC TCCGCGGGCCCTTGTCTCAAAGATTAAGC

Амплифицированные фрагменты ДНК очищают из геля, используя с этой целью набор Qiagen (Qiagen, cat. №28706)Amplified DNA fragments are purified from gel using a Qiagen kit (Qiagen, cat. No. 28706)

Далее очищенные фрагменты 2, 3, 4, 5, 6 и 7 смешивались в эквимолярных количествах и лигировались по методу Гибсона с применением Gibson Assembly® Master Mix (NEB cat. № E2611S). Полученной лигазной смесью трансформируют компетентные клетки Escherichia coli One Shot™ Mach1™ (Thermo Fisher Scientific cat. № C862003), после стандартной процедуры трансформации [Маниатис, 1984] клетки разводят в три раза средой LB и инкубируют при 37°С 1 час, после чего высевают на агар LB, содержащий ампициллин в концентрации 100 мкг/мл. Посевы инкубируют 24 часа при 37°С, после чего выросшие ампициллин-резистентные колонии выращиваются в 5 мл среды LB, после чего выделяют плазмидную ДНК при помощи набора QIAGEN Plasmid Mini Kit (QIAGEN Cat No.12123). Правильность сборки всех элементов проверяется путем секвенирования по методу Сэнгера. При расщеплении рестриктазами: ApaI, KpnI, HindIII и NdeI вектор pPIG-1 дает фрагменты массой 2363, 1733, 743 и 270 п.о., что позволяет надежно идентифицировать данную конструкцию.Further purified fragments 2, 3, 4, 5, 6 and 7 were mixed in equimolar amounts and ligated by using the method of Gibson Gibson Assembly ® Master Mix (NEB cat . E2611S №). The resulting ligase mixture is used to transform competent cells of Escherichia coli One Shot ™ Mach1 ™ (Thermo Fisher Scientific cat. No. C862003), after a standard transformation procedure [Maniatis, 1984], the cells are diluted three times with LB medium and incubated at 37 ° C for 1 hour, after which plated on LB agar containing ampicillin at a concentration of 100 μg / ml. The inoculations are incubated for 24 hours at 37 ° C, after which the grown ampicillin-resistant colonies are grown in 5 ml of LB medium, after which plasmid DNA is isolated using the QIAGEN Plasmid Mini Kit (QIAGEN Cat No.12123). The correct assembly of all elements is checked by sequencing according to the Sanger method. When cleaved with restriction enzymes: ApaI, KpnI, HindIII and NdeI vector pPIG-1 gives fragments of 2363, 1733, 743 and 270 bp, which allows reliable identification of this construct.

Схема интеграционного вектора pPIG-1 приведено на Рисунке 1.The pPIG-1 integration vector is shown in Figure 1.

Пример 2 Создание штамма продуцента растительной хитиназы 19-ого семейства (pPIG_Chit19Example 2 Creation of a strain producing plant chitinase of the 19th family (pPIG_Chit19 )) на основе вектора pPIG-1 based on vector pPIG-1

Для проверки применимости, полученного в примере 1, интеграционного вектора для создания штаммов продуцентов, был создан штамм-продуцент растительной хитиназы на основе штамма Pichia pastoris GS115.To test the applicability of the integration vector obtained in example 1 for creating producer strains, a plant chitinase producer strain was created based on the Pichia pastoris GS115 strain.

Синтетический ген растительной хитиназы 19 семейства (SEQ ID NO 8) амплифицируют при помощи Phusion™ High-Fidelity полимеразы и праймеров ChitF (5`-AAGCTTGTCCAGTGTGGTAGCGAAGTCG-3`) и ChitR (5`-ATGCGGCCGCTCAGCTGAACGGACGTTGATTG-3`). Полученный ПЦР-фрагмент обрабатывают рестриктазами HindIII и NotI и очищают из геля, используя набор Qiagen (Qiagen, cat. № 28706).A synthetic gene of plant family chitinase 19 (SEQ ID NO 8) is amplified with Phusion ™ High-Fidelity polymerase and ChitF primers (5`-AAGCTTGTCCAGTGTGGTAGCGAAGTCG-3`) and ChitR (5`-ATGCGGCCGCTCACGTGA`GTACGT). The resulting PCR fragment was digested with restriction enzymes HindIII and NotI and purified from gel using a Qiagen kit (Qiagen, cat. No. 28706).

Вектор pPIG-1 обрабатывают рестриктазами HindIII и NotI, после чего очищают из геля, используя набор Qiagen (Qiagen, cat. № 28706).The pPIG-1 vector is digested with restriction enzymes HindIII and NotI and then gel purified using the Qiagen kit (Qiagen, cat. No. 28706).

Вектор и вставка смешиваются в соотношении 1 к 5 и лигируются Т4 лигазой (Thermo Fisher Scientific cat. № EL0011). Лигазной смесью трансформируют компетентные клетки Escherichia coli One Shot™ Mach1™ (Thermo Fisher Scientific cat. № C862003), после стандартной процедуры трансформации [Маниатис, 1984] клетки разводят в три раза средой LB и инкубируют при 37°С 1 час, после чего высевают на агар LB, содержащий ампициллин в концентрации 100 мкг/мл. Посевы инкубируют 24 часа при 37°С, после чего выросшие ампициллинрезистентные колонии выращиваются в 5 мл среды LB, после чего выделяют плазмидную ДНК при помощи набора QIAGEN Plasmid Mini Kit (QIAGEN Cat No. 12123). Правильность сборки плазмидной ДНК проверяют путем секвенирования по методу Сэнгера в обоих направлениях. В результате получена конструкция pPIG_Chit19.The vector and insert are mixed 1 to 5 and ligated with T4 ligase (Thermo Fisher Scientific cat. # EL0011). The ligation mixture is used to transform competent cells of Escherichia coli One Shot ™ Mach1 ™ (Thermo Fisher Scientific cat. No. C862003), after the standard transformation procedure [Maniatis, 1984], the cells are diluted three times with LB medium and incubated at 37 ° C for 1 hour, after which they are plated on LB agar containing ampicillin at a concentration of 100 μg / ml. The inoculations are incubated for 24 hours at 37 ° C, after which the grown ampicillin-resistant colonies are grown in 5 ml of LB medium, after which plasmid DNA is isolated using the QIAGEN Plasmid Mini Kit (QIAGEN Cat No. 12123). The correct assembly of the plasmid DNA is checked by Sanger sequencing in both directions. The result is the pPIG_Chit19 construction.

Для проведения трансформации pPIG_Chit19 препаративно выделили из клеток Ε.coli и линеаризовали с помощью рестриктазы ApaI. Трансформацию линеаризованной pPIG_Chit19 проводили с использованием электропорации и последующим отбором трансформантов на среде, содержащей 300 мкг/мл зеоцина (Thermo Fisher Scientific, cat. № R25005). Полученные штаммы-трансформанты серии pPIG_Chit19 пересевали на стандартную среду YPD. В результате был получен штамм продуцент pPIG_Chit19.To carry out the transformation, pPIG_Chit19 was preparatively isolated from H. coli cells and linearized with the ApaI restriction enzyme. Transformation of linearized pPIG_Chit19 was performed using electroporation and subsequent selection of transformants on a medium containing 300 μg / ml of zeocin (Thermo Fisher Scientific, cat. No. R25005). The resulting transformant strains of the pPIG_Chit19 series were subcultured on standard YPD medium. As a result, a producer strain pPIG_Chit19 was obtained.

Продуктивность полученного штамма определяют путем скрининга 10 выбранных клонов путем анализа культуральной жидкости на содержание целевого белка. Штаммы культивировали в 10 мл стандартной среды YP c добавлением 2% глицерина в течении 36 часов и анализировали культуральную жидкость методом электрофореза в полиакриламидном геле в денатурирующих условиях (рис. 2).The productivity of the obtained strain is determined by screening 10 selected clones by analyzing the culture fluid for the content of the target protein. The strains were cultured in 10 ml of standard YP medium with the addition of 2% glycerol for 36 hours, and the culture liquid was analyzed by electrophoresis in polyacrylamide gel under denaturing conditions (Fig. 2).

Таким образом за 36 часов культивирования после скрининга определен выход целевой хитиназы в культуральной жидкости каждого штамма, который составил от 20 до 150 мг/л. Выход белка определялся количественно методом Лоури [Lowry и др., 1951] Thus, for 36 hours of cultivation after screening, the yield of the target chitinase in the culture liquid of each strain was determined, which ranged from 20 to 150 mg / l. The protein yield was determined quantitatively by the Lowry method [ Lowry et al., 1951]

Для сравнения эффективности были создан штамм продуцент pPICZ_Chit19 , представляющий собой штамм Pichia pastoris GS115, который был трансформирован плазмидой, представляющей собой коммерческий вектором pPICZAα (Invitrogen, США), трансформированный синтетическим геном хитиназы 19 семейства под контролем AOX1 промотора. Выбранные трансформанты были ферментированы согласно рекомендациям производителя [Thermo Fisher Scientific MAN00000034]. Что позволило получить выходы от 10 до 30 мг/л chit19 на 4 сутки после индукции метанолом.To compare the efficiency, a producer strain pPICZ_Chit19 was created , which is a Pichia pastoris GS115 strain , which was transformed with a plasmid, which is a commercial vector pPICZAα (Invitrogen, USA), transformed with a synthetic gene of chitinase 19 family under the control of the AOX1 promoter. Selected transformants were fermented according to the manufacturer's recommendations [Thermo Fisher Scientific MAN00000034]. This made it possible to obtain yields from 10 to 30 mg / L chit19 on the 4th day after induction with methanol.

В данном примере показано, что при использовании плазмид на основе pPIG-1 удается получать целевой белок (в данном случае растительную хитиназу 19-ой семьи гликозилгидролаз) с эффективностью, сопоставимой с сильным индуцибельным промотором pAOX1, при этом не требуется использование сложных сред и добавление метанола в качестве индукции.This example shows that when using plasmids based on pPIG-1, it is possible to obtain the target protein (in this case, plant chitinase of the 19th family of glycosyl hydrolases) with an efficiency comparable to the strong inducible promoter pAOX1 , without the use of complex media and the addition of methanol as induction.

Пример 3 Определение частоты интеграции структурных элементов вектора pPIG-1 c геном Example 3 Determination of the frequency of integration of the structural elements of the pPIG-1 vector with the genome chi19chi19

Для измерения частоты интеграции конструкции pPIG_Chit19 в геном Pichia Pastoris используют ПЦР в реальном времени. В трех наиболее продуктивных штаммах pPIG_Chit19 и pPICZ_Chit19 (из примера 2) анализировали количество последовательностей pAOX1 (промотор алкогольоксидазы 1) chi19 (хитиназа D.capensis), pGAP (промотор глицеральдегид-3-фосфат - дегидрогеназы) и act (актин) в геноме трансформантов, показавших наибольшую продуктивность. В качестве контроля и образца для построения калибровочных кривых использовали родительский штамм Pichia pastoris GS115. Результаты представлены в Таблице 2.Real-time PCR was used to measure the frequency of integration of the pPIG_Chit19 construct into the Pichia Pastoris genome. In the three most productive strains pPIG_Chit19 and pPICZ_Chit19 (from example 2) analyzed the number of sequencespAOX1 (alcohol oxidase 1 promoter)chi19 (chitinaseD.capensis),pGAP (promoter glyceraldehyde-3-phosphate-dehydrogenase) andact (actin) in the genome of the transformants that showed the highest productivity. The parental strain was used as a control and a sample for plotting calibration curves.Pichia pastoris GS115. The results are shown in Table 2.

Таблица 2 - Количество копий структурных элементов в геноме продуцентов хитиназы 19 семейства pPIG_Chit19 и pPICZ_Chit19.Table 2 - The number of copies of structural elements in the genome of chitinase 19 producers of the pPIG_Chit19 and pPICZ_Chit19 families.

Вариант штамма P.pastorisPastoris strain variant количество копийnumber of copies pAOX1pAOX1 pGAPpGAP chi19chi19 actact GS115GS115 11 11 00 11 pPIG_chit19/1pPIG_chit19 / 1 11 14fourteen 1212 11 pPIG_chit19/2pPIG_chit19 / 2 11 8eight 9nine 11 pPIG_chit19/3pPIG_chit19 / 3 11 10ten 10ten 11 pPICZ_Chit19/1pPICZ_Chit19 / 1 33 11 22 11 pPICZ_Chit19/2pPICZ_Chit19 / 2 33 11 33 11 pPICZ_Chit19/3pPICZ_Chit19 / 3 33 11 11 11

Для проверки точности и стабильности количественного определения были построены стандартные кривые для всех генов. Значения коэффициента вариации (CV) для данных последовательностей составили от 0,55% до 6,15%, а значения стандартного отклонения (SD) варьировалось от 0,03 до 0,16. Эти данные показали, что значения CV и SD незначительно различались в экспериментах, указывая на то, что системы РТ-ПЦР функционировали стабильно и надежно. To verify the accuracy and stability of the assay, standard curves were constructed for all genes. Coefficient of variation (CV) values for these sequences ranged from 0.55% to 6.15%, and standard deviation (SD) values ranged from 0.03 to 0.16. These data showed that the CV and SD values were not significantly different between experiments, indicating that the RT-PCR systems functioned stably and reliably.

Максимальное количество копий гена Chit 19 в геном дрожжей составило 12 для штамма продуцента pPPIG_chit19/1, что в 4 раза выше, чем максимальное число интеграций при использовании конструкций на основе коммерческого вектора pPICZAα. Количество GAP промоторов увеличивается пропорционально количеству интеграций гена Chit 19, что говорит о введении полной экспрессионной кассеты, а не отдельных ее элементов. The maximum number of Chit 19 gene copies in the yeast genome was 12 for the producer strain pPPIG_chit19 / 1, which is 4 times higher than the maximum number of integrations when using constructs based on the commercial vector pPICZAα. The number of GAP promoters increases in proportion to the number of Chit 19 gene integrations, which indicates the introduction of a complete expression cassette, rather than its individual elements.

Таким образом, полученный интеграционный вектор pPIG-1 повышает эффективность интеграции экспрессионной кассеты в геном P. pastoris GS115 в 4~12 раз по сравнению с коммерческим вектором pPICZAα.Thus, the resulting integration vector pPIG-1 increases the efficiency of integration of the expression cassette into the P. pastoris GS115 genome by 4 ~ 12 times as compared to the commercial vector pPICZAα.

Список используемых источниковList of sources used

1. Gibson D.G., Young L., Venter C., Hutchinson C., Smith H. Enzymatic assembly of DNA molecules up to several hundred kilobases // Nat. Methods. 2009. Т. 6. № 5. С. 343–345. 1. Gibson D.G., Young L., Venter C., Hutchinson C., Smith H. Enzymatic assembly of DNA molecules up to several hundred kilobases // Nat. Methods. 2009. T. 6. No. 5. P. 343–345.

2. RU 2388823 (10.05.2010). Интегративный плазмидный вектор для экспрессии генов в дрожжах.2. RU 2388823 (10.05.2010). Integrative plasmid vector for gene expression in yeast.

3. Lõoke M., Kristjuhan K., Kristjuhan A. Extraction of genomic DNA from yeasts for PCR-based applications // Biotechniques. 2011. Т. 50. № 5. С. 325–328.3. Lõoke M., Kristjuhan K., Kristjuhan A. Extraction of genomic DNA from yeasts for PCR-based applications // Biotechniques. 2011.Vol. 50, No. 5, pp. 325–328.

4. Методы генетической инженерии. Молекулярное клонирование'; Маниатис, Т.И; Фрич, Э.; Сэмбрук, Дж.; Изд-во: М.: Мир, 1984 г4. Methods of genetic engineering . Molecular cloning '; Maniatis, T.I .; Fritsch, E .; Sambrook, J .; Publishing house: M .: Mir, 1984

5. Lowry O.H. Protein measurement with the Folin phenol reagent. // J. Biol. Chem. 1951. Т. 193. № 1. С. 265–275.5. Lowry O.H. Protein measurement with the Folin phenol reagent. // J. Biol. Chem. 1951. T. 193. No. 1. P. 265–275.

6. Näätsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A. Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology// PLoS One. 2012;7(6):e39720.6. Näätsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A. Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology // PLoS One. 2012; 7 (6): e39720.

7. Schutter K. De, Lin Y-C., Van Hecke A., Glinka S., Weber-Lehmann J., Rouze P., Peer Y., Cakkewaert N. Genome sequence of the recombinant protein production host Pichia pastoris // Nat. Biotechnol. 2009. Т. 27. № 6. С. 561–566.7. Schutter K. De, Lin YC., Van Hecke A., Glinka S., Weber-Lehmann J., Rouze P., Peer Y., Cakkewaert N. Genome sequence of the recombinant protein production host Pichia pastoris // Nat ... Biotechnol. 2009. T. 27. No. 6. P. 561–566.

8. Vogl T., Gebbie L., Palfreyman R., Speight, R. Effect of plasmid design and type of integration event on recombinant protein expression in Pichia pastoris // Appl. Environ. Microbiol. 2018. Т. 84. № 6.8. Vogl T., Gebbie L., Palfreyman R., Speight, R. Effect of plasmid design and type of integration event on recombinant protein expression in Pichia pastoris // Appl. Environ. Microbiol. 2018.Vol. 84.No. 6.

9. Синельников И.Г. и др. Клонирование и экспрессия новой хитиназы из хищных растений Drosera Capensis // Вестник Московского университета. Серия 2 Химия. 2020. Т. 61. № 5. С. 361–368.9. Sinelnikov I.G. et al. Cloning and expression of new chitinase from carnivorous plants Drosera Capensis // Moscow University Bulletin. Series 2 Chemistry. 2020.Vol. 61. No. 5. P. 361–368.

SEQ ID NO 1SEQ ID NO 1

TGGAAAAACGGGCCCGCAGGTTCACCTACGGAAACCTTGTTACGACTTTTACTTCCTCTAAATGACCAAGTTTGTCCAAGTTCAGGCTCGCGCCCTCCCAAAGCCTCACTAAACCATTCAATCGGTAGTAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCGCGAGCTGATGACTCGCGCTTACTAGGAATTCCTCGTTGAAGCGCCTCTTGCAAAGCGCTATCCCCAGCACGACGGAGTCTAAGATTCCCCGGCCATCTCTGGCAAGGACTCGCTGCCTCCGTCAGTGTAGCGCGCGTGCGGCCCAGAACGTCTAAGGGCATCACAGACCTGTTATTGCCTCGCTTCCGCTGGCTTGCGCCAGTTGTCCTTCTAAGAAGATCCCCCAGCAATGCCAGGTAACCTAGTTAAAAGCCAAGGTCTCGTTCGTTATCGCAATTAAGCAGACAAATCACTCCACCAACTAAGAACGGCCATGCACCACCACCCACAAAATCAAGAAAGTGCTCTCATCCTGTCAATCCTCATTGTGTCTGGACCTGGTGAGTTTCCCCGTGTTGAGTCAAATTAAGCCGCAGGCTCCACTCCTGGTGGTGCCCTTCCGTCAATTCCTTTAAGTTTCAGCCTTGCGACCATACTCCCCCCAGAACCCAAAGACTTTGATTTCTCGTAAGGTGCCGGGGAAGGCTATTCCCCGATCCCTAGTCGGCATCGTTTATGGTTAAGACTACGACGGTATCTGGGGTACCATCCTTTTTTGTAGAAATGTCTTGGTGTCCTCGTCCAATCAGGTAGCCATCTCTGAAATATCTGGCTCCGTTGCAACTCCGAACGACCTGCTGGCAACGTAAAATTCTCCGGGGTAAAACTTAAATGTGGAGTAATGGAACCAGAAACGTCTCTTCCCTTCTCTCTCCTTCCACCGCCCGTTACCGTCCCTAGGAAATTTTACTCTGCTGGAGAGCTTCTTCTACGGCCCCCTTGCAGCAATGCTCTTCCCAGCATTACGTTGCGGGTAAAACGGAAGTCGTGTACCCGACCTAGCAGCCCAGGGATGGAAAAGTCCCGGCCGTCGCTGGCAATAATAGCGGGCGGACGCATGTCATGAGATTATTGGAAACCACCAGAATCGAATATAAAAGGCGAACACCTTTCCCAATTTTGGTTTCTCCTGACCCAAAGACTTTAAATTTAATTTATTTGTCCCTATTTCAATCAATTGAACAACTATCCATATGGAAATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTTCTGCAGGCGGCCGCGAGCTCATCATCATCATCATCATTGAGTTTGTAGCCTTAGACATGACTGTTCCTCAGTTCAAGTTGGGCACTTACGAGAAGACCGGTCTTGCTAGATTCTAATCAAGAGGATGTCAGAATGCCATTTGCCTGAGAGATGCAGGCTTCATTTTTGATACTTTTTTATTTGTAACCTATATAGTATAGGATTTTTTTTGTCATTTTGTTTCTTCTCGTACGAGCTTGCTCCTGATCAGCCTATCTCGCAGCTGATGAATATCTTGTGGTAGGGGTTTGGGAAAATCATTCGAGTTTGATGTTTTTCTTGGTATTTCCCACTCCTCTTCAGAGTACAGAAGATTAAGTGAGACCTTCGTTTGTGCGGATCCCCCACACACCATAGCTTCAAAATGTTTCTACTCCTTTTTTACTCTTCCAGATTTTCTCGGACTCCGCGCATCGCCGTACCACTTCAAAACACCCAAGCACAGCATACTAAATTTTCCCTCTTTCTTCCTCTAGGGTGTCGTTAATTACCCGTACTAAAGGTTTGGAAAAGAAAAAAGAGACCGCCTCGTTTCTTTTTCTTCGTCGAAAAAGGCAATAAAAATTTTTATCACGTTTCTTTTTCTTGAAATTTTTTTTTTTAGTTTTTTTCTCTTTCAGTGACCTCCATTGATATTTAAGTTAATAAACGGTCTTCAATTTCTCAAGTTTCAGTTTCATTTTTCTTGTTCTATTACAACTTTTTTTACTTCTTGTTCATTAGAAAGAAAGCATAGCAATCTAATCTAAGGGGCGGTGTTGACAATTAATCATCGGCATAGTATATCGGCATAGTATAATACGACAAGGTGAGGAACTAAACCATGGCCAAGTTGACCAGTGCCGTTCCGGTGCTCACCGCGCGCGACGTCGCCGGAGCGGTCGAGTTCTGGACCGACCGGCTCGGGTTCTCCCGGGACTTCGTGGAGGACGACTTCGCCGGTGTGGTCCGGGACGACGTGACCCTGTTCATCAGCGCGGTCCAGGACCAGGTGGTGCCGGACAACACCCTGGCCTGGGTGTGGGTGCGCGGCCTGGACGAGCTGTACGCCGAGTGGTCGGAGGTCGTGTCCACGAACTTCCGGGACGCCTCCGGGCCGGCCATGACCGAGATCGGCGAGCAGCCGTGGGGGCGGGAGTTCGCCCTGCGCGACCCGGCCGGCAACTGCGTGCACTTCGTGGCCGAGGAGCAGGACTGACACGTCCGACGGCGGCCCACGGGTCCCAGGCCTCGGAGATCCGTCCCCCTTTTCCTTTGTCGATATCATGTAATTAGTTATGTCACGCTTACATTCACGCCCTCCCCCCACATCCGCTCTAACCGAAAAGGAAGGAGTTAGACAACCTGAAGTCTAGGTCCCTATTTATTTTTTTATAGTTATGTTAGTATTAAGAACGTTATTTATATTTCAAATTTTTCTTTTTTTTCTGTACAGACGCGTGTACGCATGTAACATTATACTGAAAACCTTGCTTGAGAAGGTTTTGGGACGCTCGAAGGCTTTAATTTGCTCATCTTCGATCCCCTAACTTTCGTTCTTGATTAATGAAAACGTCCTTGGCGAATGCTTTCGCAGTAGTTAGTCTTGGGGCGATCCAAGAATTTCACCTCTGACGCCCCAATACTGACGCCCCCGACCGTCCCTGTTAATCATTACGCGGCCCCGAACCAACAAAAGAACCGTATCCTCTTCTGTTATTCCATGCTAATATATTCAACTACTGCCTTGAACACTCTAATTTCCTCAAAGTAACGTCCGTTCAACTACGAGCTTTTTAACTGCAACAACTTTAATATACGCTATTGGAGCTGGAATTACCGCGGCTGCTGGCACCAGACTTGCCCTCCAATTGTTCCTCGTTAAGGTATTTACGTTGTACTCATTCCAATTACAAGACCAAAGGCCCTGTATCGTTATTTATTGTCACTACCTCCCTGTGTCAGGATTGGGTAATTTGCGCGCCTGCTGCCTTCCTTGGATGTGGTAGCCGTCTCTCAGGCTCCCTCTCCGGAATCGAACCCTTATTCCCCGTTACCCGTAGAAACCATGGTAGGCCTCTATCCTACCATCGAAAGTTGATAGGGCAGAAATTTGAATGAACCATCCTAAGATTCGAAAAGTTATTATGAATCACCAAAACGAAGGTTTTATCTAATAAATACGCCCGAGGGCTGATCAAGTATTAGCTCTAGAATTACCACGGTTATCCTTGTAGCAACACTATCAAATAAACGATAACTGATTTAATGAGCCATTCGCAGTTTCACCGTATAATGCTATACTTAGACATGCATGGCTTAATCTTTGAGACAAGGGCCCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGGGCCCGCAGGTTCACCTACGGAAACCTTGTTACGACTTTTACTTCCTCTAAATGACCAAGTTTGTCCAAGTTCAGGCTCGCGCCCTCCCAAAGCCTCACTAAACCATTCAATCGGTAGTAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCGCGAGCTGATGACTCGCGCTTACTAGGAATTCCTCGTTGAAGCGCCTCTTGCAAAGCGCTATCCCCAGCACGACGGAGTCTAAGATTCCCCGGCCATCTCTGGCAAGGACTCGCTGCCTCCGTCAGTGTAGCGCGCGTGCGGCCCAGAACGTCTAAGGGCATCACAGACCTGTTATTGCCTCGCTTCCGCTGGCTTGCGCCAGTTGTCCTTCTAAGAAGATCCCCCAGCAATGCCAGGTAACCTAGTTAAAAGCCAAGGTCTCGTTCGTTATCGCAATTAAGCAGACAAATCACTCCACCAACTAAGAACGGCCATGCACCACCACCCACAAAATCAAGAAAGTGCTCTCATCCTGTCAATCCTCATTGTGTCTGGACCTGGTGAGTTTCCCCGTGTTGAGTCAAATTAAGCCGCAGGCTCCACTCCTGGTGGTGCCCTTCCGTCAATTCCTTTAAGTTTCAGCCTTGCGACCATACTCCCCCCAGAACCCAAAGACTTTGATTTCTCGTAAGGTGCCGGGGAAGGCTATTCCCCGATCCCTAGTCGGCATCGTTTATGGTTAAGACTACGACGGTATCTGGGGTACCATCCTTTTTTGTAGAAATGTCTTGGTGTCCTCGTCCAATCAGGTAGCCATCTCTGAAATATCTGGCTCCGTTGCAACTCCGAACGACCTGCTGGCAACGTAAAATTCTCCGGGGTAAAACTTAAATGTGGAGTAATGGAACCAGAAACGTCTCTTCCCTTCTCTCTCCTTCCACCGCCCGTTACCGTCCCTAGGAAATTTTACTCTGCTGGAGAGCTTCTTCTACGGCCCCCTTGCAGCAAT GCTCTTCCCAGCATTACGTTGCGGGTAAAACGGAAGTCGTGTACCCGACCTAGCAGCCCAGGGATGGAAAAGTCCCGGCCGTCGCTGGCAATAATAGCGGGCGGACGCATGTCATGAGATTATTGGAAACCACCAGAATCGAATATAAAAGGCGAACACCTTTCCCAATTTTGGTTTCTCCTGACCCAAAGACTTTAAATTTAATTTATTTGTCCCTATTTCAATCAATTGAACAACTATCCATATGGAAATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTTCTGCAGGCGGCCGCGAGCTCATCATCATCATCATCATTGAGTTTGTAGCCTTAGACATGACTGTTCCTCAGTTCAAGTTGGGCACTTACGAGAAGACCGGTCTTGCTAGATTCTAATCAAGAGGATGTCAGAATGCCATTTGCCTGAGAGATGCAGGCTTCATTTTTGATACTTTTTTATTTGTAACCTATATAGTATAGGATTTTTTTTGTCATTTTGTTTCTTCTCGTACGAGCTTGCTCCTGATCAGCCTATCTCGCAGCTGATGAATATCTTGTGGTAGGGGTTTGGGAAAATCATTCGAGTTTGATGTTTTTCTTGGTATTTCCCACTCCTCTTCAGAGTACAGAAGATTAAGTGAGACCTTCGTTTGTGCGGATCCCCCACACACCATAGCTTCAAAATGTTTCTACTCCTTTTTTACTCTTCCAGATTTTCTCGGACTCCGCGCATCGCCGTACCACTTCAAAACACCCAAGCAC AGCATACTAAATTTTCCCTCTTTCTTCCTCTAGGGTGTCGTTAATTACCCGTACTAAAGGTTTGGAAAAGAAAAAAGAGACCGCCTCGTTTCTTTTTCTTCGTCGAAAAAGGCAATAAAAATTTTTATCACGTTTCTTTTTCTTGAAATTTTTTTTTTTAGTTTTTTTCTCTTTCAGTGACCTCCATTGATATTTAAGTTAATAAACGGTCTTCAATTTCTCAAGTTTCAGTTTCATTTTTCTTGTTCTATTACAACTTTTTTTACTTCTTGTTCATTAGAAAGAAAGCATAGCAATCTAATCTAAGGGGCGGTGTTGACAATTAATCATCGGCATAGTATATCGGCATAGTATAATACGACAAGGTGAGGAACTAAACCATGGCCAAGTTGACCAGTGCCGTTCCGGTGCTCACCGCGCGCGACGTCGCCGGAGCGGTCGAGTTCTGGACCGACCGGCTCGGGTTCTCCCGGGACTTCGTGGAGGACGACTTCGCCGGTGTGGTCCGGGACGACGTGACCCTGTTCATCAGCGCGGTCCAGGACCAGGTGGTGCCGGACAACACCCTGGCCTGGGTGTGGGTGCGCGGCCTGGACGAGCTGTACGCCGAGTGGTCGGAGGTCGTGTCCACGAACTTCCGGGACGCCTCCGGGCCGGCCATGACCGAGATCGGCGAGCAGCCGTGGGGGCGGGAGTTCGCCCTGCGCGACCCGGCCGGCAACTGCGTGCACTTCGTGGCCGAGGAGCAGGACTGACACGTCCGACGGCGGCCCACGGGTCCCAGGCCTCGGAGATCCGTCCCCCTTTTCCTTTGTCGATATCATGTAATTAGTTATGTCACGCTTACATTCACGCCCTCCCCCCACATCCGCTCTAACCGAAAAGGAAGGAGTTAGACAACCTGAAGTCTAGGTCCCTATTTATTTTTTTATAGTTATGTTAGTATTAAGAACGTTATTTATATTTCAAATTTTTCTTTTTTTTCTGTACAGACGCGTGT ACGCATGTAACATTATACTGAAAACCTTGCTTGAGAAGGTTTTGGGACGCTCGAAGGCTTTAATTTGCTCATCTTCGATCCCCTAACTTTCGTTCTTGATTAATGAAAACGTCCTTGGCGAATGCTTTCGCAGTAGTTAGTCTTGGGGCGATCCAAGAATTTCACCTCTGACGCCCCAATACTGACGCCCCCGACCGTCCCTGTTAATCATTACGCGGCCCCGAACCAACAAAAGAACCGTATCCTCTTCTGTTATTCCATGCTAATATATTCAACTACTGCCTTGAACACTCTAATTTCCTCAAAGTAACGTCCGTTCAACTACGAGCTTTTTAACTGCAACAACTTTAATATACGCTATTGGAGCTGGAATTACCGCGGCTGCTGGCACCAGACTTGCCCTCCAATTGTTCCTCGTTAAGGTATTTACGTTGTACTCATTCCAATTACAAGACCAAAGGCCCTGTATCGTTATTTATTGTCACTACCTCCCTGTGTCAGGATTGGGTAATTTGCGCGCCTGCTGCCTTCCTTGGATGTGGTAGCCGTCTCTCAGGCTCCCTCTCCGGAATCGAACCCTTATTCCCCGTTACCCGTAGAAACCATGGTAGGCCTCTATCCTACCATCGAAAGTTGATAGGGCAGAAATTTGAATGAACCATCCTAAGATTCGAAAAGTTATTATGAATCACCAAAACGAAGGTTTTATCTAATAAATACGCCCGAGGGCTGATCAAGTATTAGCTCTAGAATTACCACGGTTATCCTTGTAGCAACACTATCAAATAAACGATAACTGATTTAATGAGCCATTCGCAGTTTCACCGTATAATGCTATACTTAGACATGCATGGCTTAATCTTTGAGACAAGGGCCCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCC GTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGAT CAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTA

SEQ ID NO 2SEQ ID NO 2

GAGACAAGGGCCCGCGGAACCCCTATTtgtTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACgggcccgGAGACAAGGGCCCGCGGAACCCCTATTtgtTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCAT ATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACgggcccg

SEQ ID NO 3SEQ ID NO 3

TGCAGGCGGCCGCGAGCTCATCATCATCATCATCATTGAGTTTGTAGCCTTAGACATGACTGTTCCTCAGTTCAAGTTGGGCACTTACGAGAAGACCGGTCTTGCTAGATTCTAATCAAGAGGATGTCAGAATGCCATTTGCCTGAGAGATGCAGGCTTCATTTTTGATACTTTTTTATTTGTAACCTATATAGTATAGGATTTTTTTTGTCATTTTGTTTCTTCTCGTACGAGCTTGCTCCTGATCAGCCTATCTCGCAGCTGATGAATATCTTGTGGTAGGGGTTTGGGAAAATCATTCGAGTTTGATGTTTTTCTTGGTATTTCCCACTCCTCTTCAGAGTACAGAAGATTAAGTGAGACCTTCGTTTGTGCGGATCCCCCACACACCATAGCTTCAAAATGTTTCTACTCCTTTTTTACTCTTCCAGATTTTCTCGGACTCCGCGCATCGCCGTACCACTTCAAAACACCCAAGCACAGCATACTAAATTTTCCCTCTTTCTTCCTCTAGGGTGTCGTTAATTACCCGTACTAAAGGTTTGGAAAAGAAAAAAGAGACCGCCTCGTTTCTTTTTCTTCGTCGAAAAAGGCAATAAAAATTTTTATCACGTTTCTTTTTCTTGAAATTTTTTTTTTTAGTTTTTTTCTCTTTCAGTGACCTCCATTGATATTTAAGTTAATAAACGGTCTTCAATTTCTCAAGTTTCAGTTTCATTTTTCTTGTTCTATTACAACTTTTTTTACTTCTTGTTCATTAGAAAGAAAGCATAGCAATCTAATCTAAGGGGCGGTGTTGACAATTAATCATCGGCATAGTATATCGGCATAGTATAATACGACAAGGTGAGGAACTAAACCATGGCCAAGTTGACCAGTGCCGTTCCGGTGCTCACCGCGCGCGACGTCGCCGGAGCGGTCGAGTTCTGGACCGACCGGCTCGGGTTCTCCCGGGACTTCGTGGAGGACGACTTCGCCGGTGTGGTCCGGGACGACGTGACCCTGTTCATCAGCGCGGTCCAGGACCAGGTGGTGCCGGACAACACCCTGGCCTGGGTGTGGGTGCGCGGCCTGGACGAGCTGTACGCCGAGTGGTCGGAGGTCGTGTCCACGAACTTCCGGGACGCCTCCGGGCCGGCCATGACCGAGATCGGCGAGCAGCCGTGGGGGCGGGAGTTCGCCCTGCGCGACCCGGCCGGCAACTGCGTGCACTTCGTGGCCGAGGAGCAGGACTGACACGTCCGACGGCGGCCCACGGGTCCCAGGCCTCGGAGATCCGTCCCCCTTTTCCTTTGTCGATATCATGTAATTAGTTATGTCACGCTTACATTCACGCCCTCCCCCCACATCCGCTCTAACCGAAAAGGAAGGAGTTAGACAACCTGAAGTCTAGGTCCCTATTTATTTTTTTATAGTTATGTTAGTATTAAGAACGTTATTTATATTTCAAATTTTTCTTTTTTTTCTGTACAGACGCGTGTACGCATGTAACATTATACTGAAAACCTTGCTTGAGAAGGTTTTGGGACGCTCGAAGGCTTTAATTTGCtcatcttcgTGCAGGCGGCCGCGAGCTCATCATCATCATCATCATTGAGTTTGTAGCCTTAGACATGACTGTTCCTCAGTTCAAGTTGGGCACTTACGAGAAGACCGGTCTTGCTAGATTCTAATCAAGAGGATGTCAGAATGCCATTTGCCTGAGAGATGCAGGCTTCATTTTTGATACTTTTTTATTTGTAACCTATATAGTATAGGATTTTTTTTGTCATTTTGTTTCTTCTCGTACGAGCTTGCTCCTGATCAGCCTATCTCGCAGCTGATGAATATCTTGTGGTAGGGGTTTGGGAAAATCATTCGAGTTTGATGTTTTTCTTGGTATTTCCCACTCCTCTTCAGAGTACAGAAGATTAAGTGAGACCTTCGTTTGTGCGGATCCCCCACACACCATAGCTTCAAAATGTTTCTACTCCTTTTTTACTCTTCCAGATTTTCTCGGACTCCGCGCATCGCCGTACCACTTCAAAACACCCAAGCACAGCATACTAAATTTTCCCTCTTTCTTCCTCTAGGGTGTCGTTAATTACCCGTACTAAAGGTTTGGAAAAGAAAAAAGAGACCGCCTCGTTTCTTTTTCTTCGTCGAAAAAGGCAATAAAAATTTTTATCACGTTTCTTTTTCTTGAAATTTTTTTTTTTAGTTTTTTTCTCTTTCAGTGACCTCCATTGATATTTAAGTTAATAAACGGTCTTCAATTTCTCAAGTTTCAGTTTCATTTTTCTTGTTCTATTACAACTTTTTTTACTTCTTGTTCATTAGAAAGAAAGCATAGCAATCTAATCTAAGGGGCGGTGTTGACAATTAATCATCGGCATAGTATATCGGCATAGTATAATACGACAAGGTGAGGAACTAAACCATGGCCAAGTTGACCAGTGCCGTTCCGGTGCTCACCGCGCGCGACGTCGCCGGAGCGGTCGAGTTCTGGACCGACCGGCTCGGGTTCTCCCGGGACTTCGTGGAGGACGACTTCGCCGGTGTGGTCCGGGACGACGTGA CCCTGTTCATCAGCGCGGTCCAGGACCAGGTGGTGCCGGACAACACCCTGGCCTGGGTGTGGGTGCGCGGCCTGGACGAGCTGTACGCCGAGTGGTCGGAGGTCGTGTCCACGAACTTCCGGGACGCCTCCGGGCCGGCCATGACCGAGATCGGCGAGCAGCCGTGGGGGCGGGAGTTCGCCCTGCGCGACCCGGCCGGCAACTGCGTGCACTTCGTGGCCGAGGAGCAGGACTGACACGTCCGACGGCGGCCCACGGGTCCCAGGCCTCGGAGATCCGTCCCCCTTTTCCTTTGTCGATATCATGTAATTAGTTATGTCACGCTTACATTCACGCCCTCCCCCCACATCCGCTCTAACCGAAAAGGAAGGAGTTAGACAACCTGAAGTCTAGGTCCCTATTTATTTTTTTATAGTTATGTTAGTATTAAGAACGTTATTTATATTTCAAATTTTTCTTTTTTTTCTGTACAGACGCGTGTACGCATGTAACATTATACTGAAAACCTTGCTTGAGAAGGTTTTGGGACGCTCGAAGGCTTTAATTTGCtcatcttcg

SEQ ID NO 4SEQ ID NO 4

ctatcCATATGGaaATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTTCTGCAGGCGGCCGCGActatcCATATGGaaATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACAACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTTGCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCTAAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTTCTGCAGGCGGCCGCGA

SEQ ID NO 5SEQ ID NO 5

CTGGGGTACCATCCTTTTTTGTAGAAATGTCTTGGTGTCCTCGTCCAATCAGGTAGCCATCTCTGAAATATCTGGCTCCGTTGCAACTCCGAACGACCTGCTGGCAACGTAAAATTCTCCGGGGTAAAACTTAAATGTGGAGTAATGGAACCAGAAACGTCTCTTCCCTTCTCTCTCCTTCCACCGCCCGTTACCGTCCCTAGGAAATTTTACTCTGCTGGAGAGCTTCTTCTACGGCCCCCTTGCAGCAATGCTCTTCCCAGCATTACGTTGCGGGTAAAACGGAAGTCGTGTACCCGACCTAGCAGCCCAGGGATGGAAAAGTCCCGGCCGTCGCTGGCAATAATAGCGGGCGGACGCATGTCATGAGATTATTGGAAACCACCAGAATCGAATATAAAAGGCGAACACCTTTCCCAATTTTGGTTTCTCCTGACCCAAAGACTTTAAATTTAATTTATTTGTCCCTATTTCAATCAATTGAACAACTATCCATATGGAAATGACTGGGGTACCATCCTTTTTTGTAGAAATGTCTTGGTGTCCTCGTCCAATCAGGTAGCCATCTCTGAAATATCTGGCTCCGTTGCAACTCCGAACGACCTGCTGGCAACGTAAAATTCTCCGGGGTAAAACTTAAATGTGGAGTAATGGAACCAGAAACGTCTCTTCCCTTCTCTCTCCTTCCACCGCCCGTTACCGTCCCTAGGAAATTTTACTCTGCTGGAGAGCTTCTTCTACGGCCCCCTTGCAGCAATGCTCTTCCCAGCATTACGTTGCGGGTAAAACGGAAGTCGTGTACCCGACCTAGCAGCCCAGGGATGGAAAAGTCCCGGCCGTCGCTGGCAATAATAGCGGGCGGACGCATGTCATGAGATTATTGGAAACCACCAGAATCGAATATAAAAGGCGAACACCTTTCCCAATTTTGGTTTCTCCTGACCCAAAGACTTTAAATTTAATTTATTTGTCCCTATTTCAATCAATTGAACAACTATCCATATGGAAATGA

SEQ ID NO 6SEQ ID NO 6

TGGAAAAACGGGCCCGCAGGTTCACCTACGGAAACCTTGTTACGACTTTTACTTCCTCTAAATGACCAAGTTTGTCCAAGTTCAGGCTCGCGCCCTCCCAAAGCCTCACTAAACCATTCAATCGGTAGTAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCGCGAGCTGATGACTCGCGCTTACTAGGAATTCCTCGTTGAAGCGCCTCTTGCAAAGCGCTATCCCCAGCACGACGGAGTCTAAGATTCCCCGGCCATCTCTGGCAAGGACTCGCTGCCTCCGTCAGTGTAGCGCGCGTGCGGCCCAGAACGTCTAAGGGCATCACAGACCTGTTATTGCCTCGCTTCCGCTGGCTTGCGCCAGTTGTCCTTCTAAGAAGATCCCCCAGCAATGCCAGGTAACCTAGTTAAAAGCCAAGGTCTCGTTCGTTATCGCAATTAAGCAGACAAATCACTCCACCAACTAAGAACGGCCATGCACCACCACCCACAAAATCAAGAAAGTGCTCTCATCCTGTCAATCCTCATTGTGTCTGGACCTGGTGAGTTTCCCCGTGTTGAGTCAAATTAAGCCGCAGGCTCCACTCCTGGTGGTGCCCTTCCGTCAATTCCTTTAAGTTTCAGCCTTGCGACCATACTCCCCCCAGAACCCAAAGACTTTGATTTCTCGTAAGGTGCCGGGGAAGGCTATTCCCCGATCCCTAGTCGGCATCGTTTATGGTTAAGACTACGACGGTATCTGGGGTACCATCCTTGGAAAAACGGGCCCGCAGGTTCACCTACGGAAACCTTGTTACGACTTTTACTTCCTCTAAATGACCAAGTTTGTCCAAGTTCAGGCTCGCGCCCTCCCAAAGCCTCACTAAACCATTCAATCGGTAGTAGCGACGGGCGGTGTGTACAAAGGGCAGGGACGTAATCAGCGCGAGCTGATGACTCGCGCTTACTAGGAATTCCTCGTTGAAGCGCCTCTTGCAAAGCGCTATCCCCAGCACGACGGAGTCTAAGATTCCCCGGCCATCTCTGGCAAGGACTCGCTGCCTCCGTCAGTGTAGCGCGCGTGCGGCCCAGAACGTCTAAGGGCATCACAGACCTGTTATTGCCTCGCTTCCGCTGGCTTGCGCCAGTTGTCCTTCTAAGAAGATCCCCCAGCAATGCCAGGTAACCTAGTTAAAAGCCAAGGTCTCGTTCGTTATCGCAATTAAGCAGACAAATCACTCCACCAACTAAGAACGGCCATGCACCACCACCCACAAAATCAAGAAAGTGCTCTCATCCTGTCAATCCTCATTGTGTCTGGACCTGGTGAGTTTCCCCGTGTTGAGTCAAATTAAGCCGCAGGCTCCACTCCTGGTGGTGCCCTTCCGTCAATTCCTTTAAGTTTCAGCCTTGCGACCATACTCCCCCCAGAACCCAAAGACTTTGATTTCTCGTAAGGTGCCGGGGAAGGCTATTCCCCGATCCCTAGTCGGCATCGTTTATGGTTAAGACTACGACGGTATCTGGGGTACCATCCT

SEQ ID NO 7SEQ ID NO 7

ATTTGCTCATCTTCGATCCCCTAACTTTCGTTCTTGATTAATGAAAACGTCCTTGGCGAATGCTTTCGCAGTAGTTAGTCTTGGGGCGATCCAAGAATTTCACCTCTGACGCCCCAATACTGACGCCCCCGACCGTCCCTGTTAATCATTACGCGGCCCCGAACCAACAAAAGAACCGTATCCTCTTCTGTTATTCCATGCTAATATATTCAACTACTGCCTTGAACACTCTAATTTCCTCAAAGTAACGTCCGTTCAACTACGAGCTTTTTAACTGCAACAACTTTAATATACGCTATTGGAGCTGGAATTACCGCGGCTGCTGGCACCAGACTTGCCCTCCAATTGTTCCTCGTTAAGGTATTTACGTTGTACTCATTCCAATTACAAGACCAAAGGCCCTGTATCGTTATTTATTGTCACTACCTCCCTGTGTCAGGATTGGGTAATTTGCGCGCCTGCTGCCTTCCTTGGATGTGGTAGCCGTCTCTCAGGCTCCCTCTCCGGAATCGAACCCTTATTCCCCGTTACCCGTAGAAACCATGGTAGGCCTCTATCCTACCATCGAAAGTTGATAGGGCAGAAATTTGAATGAACCATCCTAAGATTCGAAAAGTTATTATGAATCACCAAAACGAAGGTTTTATCTAATAAATACGCCCGAGGGCTGATCAAGTATTAGCTCTAGAATTACCACGGTTATCCTTGTAGCAACACTATCAAATAAACGATAACTGATTTAATGAGCCATTCGCAGTTTCACCGTATAATGCTATACTTAGACATGCATGGCTTAATCTTTGAGACAAGGGCCCGCGGA ATTTGCTCATCTTCGATCCCCTAACTTTCGTTCTTGATTAATGAAAACGTCCTTGGCGAATGCTTTCGCAGTAGTTAGTCTTGGGGCGATCCAAGAATTTCACCTCTGACGCCCCAATACTGACGCCCCCGACCGTCCCTGTTAATCATTACGCGGCCCCGAACCAACAAAAGAACCGTATCCTCTTCTGTTATTCCATGCTAATATATTCAACTACTGCCTTGAACACTCTAATTTCCTCAAAGTAACGTCCGTTCAACTACGAGCTTTTTAACTGCAACAACTTTAATATACGCTATTGGAGCTGGAATTACCGCGGCTGCTGGCACCAGACTTGCCCTCCAATTGTTCCTCGTTAAGGTATTTACGTTGTACTCATTCCAATTACAAGACCAAAGGCCCTGTATCGTTATTTATTGTCACTACCTCCCTGTGTCAGGATTGGGTAATTTGCGCGCCTGCTGCCTTCCTTGGATGTGGTAGCCGTCTCTCAGGCTCCCTCTCCGGAATCGAACCCTTATTCCCCGTTACCCGTAGAAACCATGGTAGGCCTCTATCCTACCATCGAAAGTTGATAGGGCAGAAATTTGAATGAACCATCCTAAGATTCGAAAAGTTATTATGAATCACCAAAACGAAGGTTTTATCTAATAAATACGCCCGAGGGCTGATCAAGTATTAGCTCTAGAATTACCACGGTTATCCTTGTAGCAACACTATCAAATAAACGATAACTGATTTAATGAGCCATTCGCAGTTTCACCGTATAATGCTATACTTAGACATGCATGGCTTAATCTTTGAGACAAGGGCCCGCGGA

SEQ ID NO 8SEQ ID NO 8

atgCGCATCACGGTCCTGTTGCTCTTGTGTGTCGCTCCTCTGTTGTCTGGCACGTATGCTGTCCAGTGTGGTAGCGAAGTCGGTGGAGCTCTGTGTCCGAATGGTCTGTGTTGCAGCAAGTATGGCTACTGTGGCACTACGTCTGCCTACTGTGGTCCGGGCTGTCAGAGCCAGTGTGGTGGTTCCTCTCCTCCGCCTGCTCCTCCCAGCCCGACTCCGAGTCCTCCGTCTCCCTCTGGAGGTGGTGATGTGTCCAGCATCATCACCTCCCAGATCTTCAATCAGATGCTGCTCCATCGCAATGACAATGCCTGTCCTGCCCATGGCTTCTACAGCTATCAAGCCTTCTTGGATGCTGCACGCAAGTTTACTGGTTTCGGTACGACTGGTGACATCAACACTCGCAAACGTGAACTGGCTGCCTTCTTTGGTCAGACGAGCCACGAGACCACTGGTGGCTGGCCCACTGCTCCTGATGGTCCGTATGCCTGGGGCTACTGCTTCAAACAGGAACAAGGCAATCCTGGTGACTACTGTGTCCAGTCTTCCACGTATCCCTGTGCCCCTGGCAAGAAGTACTATGGTCGTGGACCGATTCAGATCTCCTACAACTACAACTATGGTCAGTGTGGAGCCGCCATTAATCAACCCCTGCTGAGCAATCCGGATCTGGTCGCGTCCAATGCCGATGTGTCCTTCGAGACTGCCATCTGGTTCTGGATGACTCCTCAAGGTAGCAAACCCTCCTGTCATGCCGTCGCCACTGGTCAGTGGACTCCGTCCGTCGCCGATCAAGCTGCTGGACGTGTTCCTGGCTATGGTGTCATTACGAACATCATCAATGGAGGTGTCGAGTGTGGCAAAGGCACGGTCCCGCAAGTTGCCGATCGCATTGGCTTCTATCAACGCTACTGCTCCATCATGGGTATTGCGCCTGGTGGCAATCTTGGCTGCTACAATCAACGTCCGTTCAGCGCGGCCGCatatgCGCATCACGGTCCTGTTGCTCTTGTGTGTCGCTCCTCTGTTGTCTGGCACGTATGCTGTCCAGTGTGGTAGCGAAGTCGGTGGAGCTCTGTGTCCGAATGGTCTGTGTTGCAGCAAGTATGGCTACTGTGGCACTACGTCTGCCTACTGTGGTCCGGGCTGTCAGAGCCAGTGTGGTGGTTCCTCTCCTCCGCCTGCTCCTCCCAGCCCGACTCCGAGTCCTCCGTCTCCCTCTGGAGGTGGTGATGTGTCCAGCATCATCACCTCCCAGATCTTCAATCAGATGCTGCTCCATCGCAATGACAATGCCTGTCCTGCCCATGGCTTCTACAGCTATCAAGCCTTCTTGGATGCTGCACGCAAGTTTACTGGTTTCGGTACGACTGGTGACATCAACACTCGCAAACGTGAACTGGCTGCCTTCTTTGGTCAGACGAGCCACGAGACCACTGGTGGCTGGCCCACTGCTCCTGATGGTCCGTATGCCTGGGGCTACTGCTTCAAACAGGAACAAGGCAATCCTGGTGACTACTGTGTCCAGTCTTCCACGTATCCCTGTGCCCCTGGCAAGAAGTACTATGGTCGTGGACCGATTCAGATCTCCTACAACTACAACTATGGTCAGTGTGGAGCCGCCATTAATCAACCCCTGCTGAGCAATCCGGATCTGGTCGCGTCCAATGCCGATGTGTCCTTCGAGACTGCCATCTGGTTCTGGATGACTCCTCAAGGTAGCAAACCCTCCTGTCATGCCGTCGCCACTGGTCAGTGGACTCCGTCCGTCGCCGATCAAGCTGCTGGACGTGTTCCTGGCTATGGTGTCATTACGAACATCATCAATGGAGGTGTCGAGTGTGGCAAAGGCACGGTCCCGCAAGTTGCCGATCGCATTGGCTTCTATCAACGCTACTGCTCCATCATGGGTATTGCGCCTGGTGGCAATCTTGGCTGCTACAATCAACGTCCGTTCAGCGCGGCCGCat

--->--->

Перечень последовательностейSequence listing

<110> Федеральное государственное учреждение «Федеральный<110> Federal state institution "Federal

Исследовательский центр «Фундаментальные основы биотехнологии»Research Center "Fundamentals of Biotechnology"

Российской академии наук»Russian Academy of Sciences "

<120> Интеграционный вектор для многокопийной интеграции в 18S рРНК<120> Integration vector for multi-copy integration into 18S rRNA

дрожжей Pichia pastorisyeast Pichia pastoris

<160> 7<160> 7

<210> 1<210> 1

<211> 5595<211> 5595

<212> plasmid DNA<212> plasmid DNA

<213> synthetic DNA construct<213> synthetic DNA construct

<221> misc_feature<221> misc_feature

<222> (18)...(750)<222> (18) ... (750)

<223> 18S ArmI<223> 18S ArmI

<221> promoter<221> promoter

<222> (764)...(1240)<222> (764) ... (1240)

<223> GAP promoter. Pichia pastoris promoter<223> GAP promoter. Pichia pastoris promoter

glyceraldehyde-3-phosphate dehydrogenaseglyceraldehyde-3-phosphate dehydrogenase

<221> CDS<221> CDS

<222> (1251)...(1517)<222> (1251) ... (1517)

<223> N-terminal secretion signal from S. cerevisiae<223> N-terminal secretion signal from S. cerevisiae

MF-alpha-factor-1MF-alpha-factor-1

<221> misc_feature<221> misc_feature

<222> (1514)...(1537)<222> (1514) ... (1537)

<223> multiple cloning site<223> multiple cloning site

<221> CDS<221> CDS

<222> (1538)...(1555)<222> (1538) ... (1555)

<223> 6xHis affinity tag<223> 6xHis affinity tag

<221> terminator<221> terminator

<222> (1635)...(1881)<222> (1635) ... (1881)

<223> Pichia pastoris AOX1 terminator<223> Pichia pastoris AOX1 terminator

<221> promoter<221> promoter

<222> (1921)...(2307)<222> (1921) ... (2307)

<223> TEF1 promoter from S. cerevisiae<223> TEF1 promoter from S. cerevisiae

<221> promoter<221> promoter

<222> (2315)...(2362)<222> (2315) ... (2362)

<223> synthetic bacterial promoter EM7<223> synthetic bacterial promoter EM7

<221> CDS<221> CDS

<222> (2381)...(2755)<222> (2381) ... (2755)

<223> Sh ble gene product from Streptoalloteichus hindustanus <223> Sh ble gene product from Streptoalloteichus hindustanus

<221> terminator<221> terminator

<222> (2821)...(3068)<222> (2821) ... (3068)

<223> S. cerevisiae CYC1 terminator<223> S. cerevisiae CYC1 terminator

<221> misc_feature<221> misc_feature

<222> (3069)...(3870)<222> (3069) ... (3870)

<223> 18S ArmII<223> 18S ArmII

<221> promoter<221> promoter

<222> (3878)...(3981)<222> (3878) ... (3981)

<223> AmpR promoter<223> AmpR promoter

<221> CDS<221> CDS

<222> (3982)...(4842)<222> (3982) ... (4842)

<223> beta-lactamase<223> beta-lactamase

<221> rep_origin<221> rep_origin

<222> (5013)...(6)<222> (5013) ... (6)

<223> high-copy-number ColE1/pMB1/pBR322/pUC origin of replication<223> high-copy-number ColE1 / pMB1 / pBR322 / pUC origin of replication

<400> 1<400> 1

1 tggaaaaacg ggcccgcagg ttcacctacg gaaaccttgt tacgactttt acttcctcta1 tggaaaaacg ggcccgcagg ttcacctacg gaaaccttgt tacgactttt acttcctcta

61 aatgaccaag tttgtccaag ttcaggctcg cgccctccca aagcctcact aaaccattca61 aatgaccaag tttgtccaag ttcaggctcg cgccctccca aagcctcact aaaccattca

121 atcggtagta gcgacgggcg gtgtgtacaa agggcaggga cgtaatcagc gcgagctgat121 atcggtagta gcgacgggcg gtgtgtacaa agggcaggga cgtaatcagc gcgagctgat

181 gactcgcgct tactaggaat tcctcgttga agcgcctctt gcaaagcgct atccccagca181 gactcgcgct tactaggaat tcctcgttga agcgcctctt gcaaagcgct atccccagca

241 cgacggagtc taagattccc cggccatctc tggcaaggac tcgctgcctc cgtcagtgta241 cgacggagtc taagattccc cggccatctc tggcaaggac tcgctgcctc cgtcagtgta

301 gcgcgcgtgc ggcccagaac gtctaagggc atcacagacc tgttattgcc tcgcttccgc301 gcgcgcgtgc ggcccagaac gtctaagggc atcacagacc tgttattgcc tcgcttccgc

361 tggcttgcgc cagttgtcct tctaagaaga tcccccagca atgccaggta acctagttaa361 tggcttgcgc cagttgtcct tctaagaaga tcccccagca atgccaggta acctagttaa

421 aagccaaggt ctcgttcgtt atcgcaatta agcagacaaa tcactccacc aactaagaac421 aagccaaggt ctcgttcgtt atcgcaatta agcagacaaa tcactccacc aactaagaac

481 ggccatgcac caccacccac aaaatcaaga aagtgctctc atcctgtcaa tcctcattgt481 ggccatgcac caccacccac aaaatcaaga aagtgctctc atcctgtcaa tcctcattgt

541 gtctggacct ggtgagtttc cccgtgttga gtcaaattaa gccgcaggct ccactcctgg541 gtctggacct ggtgagtttc cccgtgttga gtcaaattaa gccgcaggct ccactcctgg

601 tggtgccctt ccgtcaattc ctttaagttt cagccttgcg accatactcc ccccagaacc601 tggtgccctt ccgtcaattc ctttaagttt cagccttgcg accatactcc ccccagaacc

661 caaagacttt gatttctcgt aaggtgccgg ggaaggctat tccccgatcc ctagtcggca661 caaagacttt gatttctcgt aaggtgccgg ggaaggctat tccccgatcc ctagtcggca

721 tcgtttatgg ttaagactac gacggtatct ggggtaccat ccttttttgt agaaatgtct721 tcgtttatgg ttaagactac gacggtatct ggggtaccat ccttttttgt agaaatgtct

781 tggtgtcctc gtccaatcag gtagccatct ctgaaatatc tggctccgtt gcaactccga781 tggtgtcctc gtccaatcag gtagccatct ctgaaatatc tggctccgtt gcaactccga

841 acgacctgct ggcaacgtaa aattctccgg ggtaaaactt aaatgtggag taatggaacc841 acgacctgct ggcaacgtaa aattctccgg ggtaaaactt aaatgtggag taatggaacc

901 agaaacgtct cttcccttct ctctccttcc accgcccgtt accgtcccta ggaaatttta901 agaaacgtct cttcccttct ctctccttcc accgcccgtt accgtcccta ggaaatttta

961 ctctgctgga gagcttcttc tacggccccc ttgcagcaat gctcttccca gcattacgtt961 ctctgctgga gagcttcttc tacggccccc ttgcagcaat gctcttccca gcattacgtt

1021 gcgggtaaaa cggaagtcgt gtacccgacc tagcagccca gggatggaaa agtcccggcc1021 gcgggtaaaa cggaagtcgt gtacccgacc tagcagccca gggatggaaa agtcccggcc

1081 gtcgctggca ataatagcgg gcggacgcat gtcatgagat tattggaaac caccagaatc1081 gtcgctggca ataatagcgg gcggacgcat gtcatgagat tattggaaac caccagaatc

1141 gaatataaaa ggcgaacacc tttcccaatt ttggtttctc ctgacccaaa gactttaaat1141 gaatataaaa ggcgaacacc tttcccaatt ttggtttctc ctgacccaaa gactttaaat

1201 ttaatttatt tgtccctatt tcaatcaatt gaacaactat ccatatggaa atgagatttc1201 ttaatttatt tgtccctatt tcaatcaatt gaacaactat ccatatggaa atgagatttc

1261 cttcaatttt tactgctgtt ttattcgcag catcctccgc attagctgct ccagtcaaca1261 cttcaatttt tactgctgtt ttattcgcag catcctccgc attagctgct ccagtcaaca

1321 ctacaacaga agatgaaacg gcacaaattc cggctgaagc tgtcatcggt tactcagatt1321 ctacaacaga agatgaaacg gcacaaattc cggctgaagc tgtcatcggt tactcagatt

1381 tagaagggga tttcgatgtt gctgttttgc cattttccaa cagcacaaat aacgggttat1381 tagaagggga tttcgatgtt gctgttttgc cattttccaa cagcacaaat aacgggttat

1441 tgtttataaa tactactatt gccagcattg ctgctaaaga agaaggggta tctctcgaga1441 tgtttataaa tactactatt gccagcattg ctgctaaaga agaaggggta tctctcgaga

1501 aaagagaggc tgaagcttct gcaggcggcc gcgagctcat catcatcatc atcattgagt1501 aaagagaggc tgaagcttct gcaggcggcc gcgagctcat catcatcatc atcattgagt

1561 ttgtagcctt agacatgact gttcctcagt tcaagttggg cacttacgag aagaccggtc1561 ttgtagcctt agacatgact gttcctcagt tcaagttggg cacttacgag aagaccggtc

1621 ttgctagatt ctaatcaaga ggatgtcaga atgccatttg cctgagagat gcaggcttca1621 ttgctagatt ctaatcaaga ggatgtcaga atgccatttg cctgagagat gcaggcttca

1681 tttttgatac ttttttattt gtaacctata tagtatagga ttttttttgt cattttgttt1681 tttttgatac ttttttattt gtaacctata tagtatagga ttttttttgt cattttgttt

1741 cttctcgtac gagcttgctc ctgatcagcc tatctcgcag ctgatgaata tcttgtggta1741 cttctcgtac gagcttgctc ctgatcagcc tatctcgcag ctgatgaata tcttgtggta

1801 ggggtttggg aaaatcattc gagtttgatg tttttcttgg tatttcccac tcctcttcag1801 ggggtttggg aaaatcattc gagtttgatg tttttcttgg tatttcccac tcctcttcag

1861 agtacagaag attaagtgag accttcgttt gtgcggatcc cccacacacc atagcttcaa1861 agtacagaag attaagtgag accttcgttt gtgcggatcc cccacacacc atagcttcaa

1921 aatgtttcta ctcctttttt actcttccag attttctcgg actccgcgca tcgccgtacc1921 aatgtttcta ctcctttttt actcttccag attttctcgg actccgcgca tcgccgtacc

1981 acttcaaaac acccaagcac agcatactaa attttccctc tttcttcctc tagggtgtcg1981 acttcaaaac acccaagcac agcatactaa attttccctc tttcttcctc tagggtgtcg

2041 ttaattaccc gtactaaagg tttggaaaag aaaaaagaga ccgcctcgtt tctttttctt2041 ttaattaccc gtactaaagg tttggaaaag aaaaaagaga ccgcctcgtt tctttttctt

2101 cgtcgaaaaa ggcaataaaa atttttatca cgtttctttt tcttgaaatt ttttttttta2101 cgtcgaaaaa ggcaataaaa atttttatca cgtttctttt tcttgaaatt ttttttttta

2161 gtttttttct ctttcagtga cctccattga tatttaagtt aataaacggt cttcaatttc2161 gtttttttct ctttcagtga cctccattga tatttaagtt aataaacggt cttcaatttc

2221 tcaagtttca gtttcatttt tcttgttcta ttacaacttt ttttacttct tgttcattag2221 tcaagtttca gtttcatttt tcttgttcta ttacaacttt ttttacttct tgttcattag

2281 aaagaaagca tagcaatcta atctaagggg cggtgttgac aattaatcat cggcatagta2281 aaagaaagca tagcaatcta atctaagggg cggtgttgac aattaatcat cggcatagta

2341 tatcggcata gtataatacg acaaggtgag gaactaaacc atggccaagt tgaccagtgc2341 tatcggcata gtataatacg acaaggtgag gaactaaacc atggccaagt tgaccagtgc

2401 cgttccggtg ctcaccgcgc gcgacgtcgc cggagcggtc gagttctgga ccgaccggct2401 cgttccggtg ctcaccgcgc gcgacgtcgc cggagcggtc gagttctgga ccgaccggct

2461 cgggttctcc cgggacttcg tggaggacga cttcgccggt gtggtccggg acgacgtgac2461 cgggttctcc cgggacttcg tggaggacga cttcgccggt gtggtccggg acgacgtgac

2521 cctgttcatc agcgcggtcc aggaccaggt ggtgccggac aacaccctgg cctgggtgtg2521 cctgttcatc agcgcggtcc aggaccaggt ggtgccggac aacaccctgg cctgggtgtg

2581 ggtgcgcggc ctggacgagc tgtacgccga gtggtcggag gtcgtgtcca cgaacttccg2581 ggtgcgcggc ctggacgagc tgtacgccga gtggtcggag gtcgtgtcca cgaacttccg

2641 ggacgcctcc gggccggcca tgaccgagat cggcgagcag ccgtgggggc gggagttcgc2641 ggacgcctcc gggccggcca tgaccgagat cggcgagcag ccgtgggggc gggagttcgc

2701 cctgcgcgac ccggccggca actgcgtgca cttcgtggcc gaggagcagg actgacacgt2701 cctgcgcgac ccggccggca actgcgtgca cttcgtggcc gaggagcagg actgacacgt

2761 ccgacggcgg cccacgggtc ccaggcctcg gagatccgtc ccccttttcc tttgtcgata2761 ccgacggcgg cccacgggtc ccaggcctcg gagatccgtc ccccttttcc tttgtcgata

2821 tcatgtaatt agttatgtca cgcttacatt cacgccctcc ccccacatcc gctctaaccg2821 tcatgtaatt agttatgtca cgcttacatt cacgccctcc ccccacatcc gctctaaccg

2881 aaaaggaagg agttagacaa cctgaagtct aggtccctat ttattttttt atagttatgt2881 aaaaggaagg agttagacaa cctgaagtct aggtccctat ttattttttt atagttatgt

2941 tagtattaag aacgttattt atatttcaaa tttttctttt ttttctgtac agacgcgtgt2941 tagtattaag aacgttattt atatttcaaa tttttctttt ttttctgtac agacgcgtgt

3001 acgcatgtaa cattatactg aaaaccttgc ttgagaaggt tttgggacgc tcgaaggctt3001 acgcatgtaa cattatactg aaaaccttgc ttgagaaggt tttgggacgc tcgaaggctt

3061 taatttgctc atcttcgatc ccctaacttt cgttcttgat taatgaaaac gtccttggcg3061 taatttgctc atcttcgatc ccctaacttt cgttcttgat taatgaaaac gtccttggcg

3121 aatgctttcg cagtagttag tcttggggcg atccaagaat ttcacctctg acgccccaat3121 aatgctttcg cagtagttag tcttggggcg atccaagaat ttcacctctg acgccccaat

3181 actgacgccc ccgaccgtcc ctgttaatca ttacgcggcc ccgaaccaac aaaagaaccg3181 actgacgccc ccgaccgtcc ctgttaatca ttacgcggcc ccgaaccaac aaaagaaccg

3241 tatcctcttc tgttattcca tgctaatata ttcaactact gccttgaaca ctctaatttc3241 tatcctcttc tgttattcca tgctaatata ttcaactact gccttgaaca ctctaatttc

3301 ctcaaagtaa cgtccgttca actacgagct ttttaactgc aacaacttta atatacgcta3301 ctcaaagtaa cgtccgttca actacgagct ttttaactgc aacaacttta atatacgcta

3361 ttggagctgg aattaccgcg gctgctggca ccagacttgc cctccaattg ttcctcgtta3361 ttggagctgg aattaccgcg gctgctggca ccagacttgc cctccaattg ttcctcgtta

3421 aggtatttac gttgtactca ttccaattac aagaccaaag gccctgtatc gttatttatt3421 aggtatttac gttgtactca ttccaattac aagaccaaag gccctgtatc gttatttatt

3481 gtcactacct ccctgtgtca ggattgggta atttgcgcgc ctgctgcctt ccttggatgt3481 gtcactacct ccctgtgtca ggattgggta atttgcgcgc ctgctgcctt ccttggatgt

3541 ggtagccgtc tctcaggctc cctctccgga atcgaaccct tattccccgt tacccgtaga3541 ggtagccgtc tctcaggctc cctctccgga atcgaaccct tattccccgt tacccgtaga

3601 aaccatggta ggcctctatc ctaccatcga aagttgatag ggcagaaatt tgaatgaacc3601 aaccatggta ggcctctatc ctaccatcga aagttgatag ggcagaaatt tgaatgaacc

3661 atcctaagat tcgaaaagtt attatgaatc accaaaacga aggttttatc taataaatac3661 atcctaagat tcgaaaagtt attatgaatc accaaaacga aggttttatc taataaatac

3721 gcccgagggc tgatcaagta ttagctctag aattaccacg gttatccttg tagcaacact3721 gcccgagggc tgatcaagta ttagctctag aattaccacg gttatccttg tagcaacact

3781 atcaaataaa cgataactga tttaatgagc cattcgcagt ttcaccgtat aatgctatac3781 atcaaataaa cgataactga tttaatgagc cattcgcagt ttcaccgtat aatgctatac

3841 ttagacatgc atggcttaat ctttgagaca agggcccgcg gaacccctat ttgtttattt3841 ttagacatgc atggcttaat ctttgagaca agggcccgcg gaacccctat ttgtttattt

3901 ttctaaatac attcaaatat gtatccgctc atgagacaat aaccctgata aatgcttcaa3901 ttctaaatac attcaaatat gtatccgctc atgagacaat aaccctgata aatgcttcaa

3961 taatattgaa aaaggaagag tatgagtatt caacatttcc gtgtcgccct tattcccttt3961 taatattgaa aaaggaagag tatgagtatt caacatttcc gtgtcgccct tattcccttt

4021 tttgcggcat tttgccttcc tgtttttgct cacccagaaa cgctggtgaa agtaaaagat4021 tttgcggcat tttgccttcc tgtttttgct cacccagaaa cgctggtgaa agtaaaagat

4081 gctgaagatc agttgggtgc acgagtgggt tacatcgaac tggatctcaa cagcggtaag4081 gctgaagatc agttgggtgc acgagtgggt tacatcgaac tggatctcaa cagcggtaag

4141 atccttgaga gttttcgccc cgaagaacgt tttccaatga tgagcacttt taaagttctg4141 atccttgaga gttttcgccc cgaagaacgt tttccaatga tgagcacttt taaagttctg

4201 ctatgtggcg cggtattatc ccgtattgac gccgggcaag agcaactcgg tcgccgcata4201 ctatgtggcg cggtattatc ccgtattgac gccgggcaag agcaactcgg tcgccgcata

4261 cactattctc agaatgactt ggttgagtac tcaccagtca cagaaaagca tcttacggat4261 cactattctc agaatgactt ggttgagtac tcaccagtca cagaaaagca tcttacggat

4321 ggcatgacag taagagaatt atgcagtgct gccataacca tgagtgataa cactgcggcc4321 ggcatgacag taagagaatt atgcagtgct gccataacca tgagtgataa cactgcggcc

4381 aacttacttc tgacaacgat cggaggaccg aaggagctaa ccgctttttt gcacaacatg4381 aacttacttc tgacaacgat cggaggaccg aaggagctaa ccgctttttt gcacaacatg

4441 ggggatcatg taactcgcct tgatcgttgg gaaccggagc tgaatgaagc cataccaaac4441 ggggatcatg taactcgcct tgatcgttgg gaaccggagc tgaatgaagc cataccaaac

4501 gacgagcgtg acaccacgat gcctgtagca atggcaacaa cgttgcgcaa actattaact4501 gacgagcgtg acaccacgat gcctgtagca atggcaacaa cgttgcgcaa actattaact

4561 ggcgaactac ttactctagc ttcccggcaa caattaatag actggatgga ggcggataaa4561 ggcgaactac ttactctagc ttcccggcaa caattaatag actggatgga ggcggataaa

4621 gttgcaggac cacttctgcg ctcggccctt ccggctggct ggtttattgc tgataaatct4621 gttgcaggac cacttctgcg ctcggccctt ccggctggct ggtttattgc tgataaatct

4681 ggagccggtg agcgtgggtc tcgcggtatc attgcagcac tggggccaga tggtaagccc4681 ggagccggtg agcgtgggtc tcgcggtatc attgcagcac tggggccaga tggtaagccc

4741 tcccgtatcg tagttatcta cacgacgggg agtcaggcaa ctatggatga acgaaataga4741 tcccgtatcg tagttatcta cacgacgggg agtcaggcaa ctatggatga acgaaataga

4801 cagatcgctg agataggtgc ctcactgatt aagcattggt aactgtcaga ccaagtttac4801 cagatcgctg agataggtgc ctcactgatt aagcattggt aactgtcaga ccaagtttac

4861 tcatatatac tttagattga tttaaaactt catttttaat ttaaaaggat ctaggtgaag4861 tcatatatac tttagattga tttaaaactt catttttaat ttaaaaggat ctaggtgaag

4921 atcctttttg ataatctcat gaccaaaatc ccttaacgtg agttttcgtt ccactgagcg4921 atcctttttg ataatctcat gaccaaaatc ccttaacgtg agttttcgtt ccactgagcg

4981 tcagaccccg tagaaaagat caaaggatct tcttgagatc ctttttttct gcgcgtaatc4981 tcagaccccg tagaaaagat caaaggatct tcttgagatc ctttttttct gcgcgtaatc

5041 tgctgcttgc aaacaaaaaa accaccgcta ccagcggtgg tttgtttgcc ggatcaagag5041 tgctgcttgc aaacaaaaaa accaccgcta ccagcggtgg tttgtttgcc ggatcaagag

5101 ctaccaactc tttttccgaa ggtaactggc ttcagcagag cgcagatacc aaatactgtt5101 ctaccaactc tttttccgaa ggtaactggc ttcagcagag cgcagatacc aaatactgtt

5161 cttctagtgt agccgtagtt aggccaccac ttcaagaact ctgtagcacc gcctacatac5161 cttctagtgt agccgtagtt aggccaccac ttcaagaact ctgtagcacc gcctacatac

5221 ctcgctctgc taatcctgtt accagtggct gctgccagtg gcgataagtc gtgtcttacc5221 ctcgctctgc taatcctgtt accagtggct gctgccagtg gcgataagtc gtgtcttacc

5281 gggttggact caagacgata gttaccggat aaggcgcagc ggtcgggctg aacggggggt5281 gggttggact caagacgata gttaccggat aaggcgcagc ggtcgggctg aacggggggt

5341 tcgtgcacac agcccagctt ggagcgaacg acctacaccg aactgagata cctacagcgt5341 tcgtgcacac agcccagctt ggagcgaacg acctacaccg aactgagata cctacagcgt

5401 gagctatgag aaagcgccac gcttcccgaa gggagaaagg cggacaggta tccggtaagc5401 gagctatgag aaagcgccac gcttcccgaa gggagaaagg cggacaggta tccggtaagc

5461 ggcagggtcg gaacaggaga gcgcacgagg gagcttccag ggggaaacgc ctggtatctt5461 ggcagggtcg gaacaggaga gcgcacgagg gagcttccag ggggaaacgc ctggtatctt

5521 tatagtcctg tcgggtttcg ccacctctga cttgagcgtc gatttttgtg atgctcgtca5521 tatagtcctg tcgggtttcg ccacctctga cttgagcgtc gatttttgtg atgctcgtca

5581 ggggggcgga gccta5581 ggggggcgga gccta

<210> 2<210> 2

<211> 1747 <211> 1747

<212> DNA<212> DNA

<213> The sequence encodes part of vector pPIG-1 responsible for<213> The sequence encodes part of vector pPIG-1 responsible for

replication in E.colireplication in E.coli

<221> misc_feature<221> misc_feature

<222> (1)...(15)<222> (1) ... (15)

<223> sequence encodes 5 'end for Gibson assembly <223> sequence encodes 5 'end for Gibson assembly

<221> promoter<221> promoter

<222> (13)...(117)<222> (13) ... (117)

<223> AmpR promoter<223> AmpR promoter

<221> CDS<221> CDS

<222> (118)...(978)<222> (118) ... (978)

<223> beta-lactamase<223> beta-lactamase

<221> rep_origin<221> rep_origin

<222> (1149)...(1737)<222> (1149) ... (1737)

<223> high-copy-number ColE1/pMB1/pBR322/pUC origin of replication<223> high-copy-number ColE1 / pMB1 / pBR322 / pUC origin of replication

<221> misc_feature<221> misc_feature

<222> (1730)...(1747)<222> (1730) ... (1747)

<223> sequence encodes 3 'end for Gibson assembly <223> sequence encodes 3 'end for Gibson assembly

<400> 1<400> 1

1 gagacaaggg cccgcggaac ccctatttgt ttatttttct aaatacattc aaatatgtat1 gagacaaggg cccgcggaac ccctatttgt ttatttttct aaatacattc aaatatgtat

61 ccgctcatga gacaataacc ctgataaatg cttcaataat attgaaaaag gaagagtatg61 ccgctcatga gacaataacc ctgataaatg cttcaataat attgaaaaag gaagagtatg

121 agtattcaac atttccgtgt cgcccttatt cccttttttg cggcattttg ccttcctgtt121 agtattcaac atttccgtgt cgcccttatt cccttttttg cggcattttg ccttcctgtt

181 tttgctcacc cagaaacgct ggtgaaagta aaagatgctg aagatcagtt gggtgcacga181 tttgctcacc cagaaacgct ggtgaaagta aaagatgctg aagatcagtt gggtgcacga

241 gtgggttaca tcgaactgga tctcaacagc ggtaagatcc ttgagagttt tcgccccgaa241 gtgggttaca tcgaactgga tctcaacagc ggtaagatcc ttgagagttt tcgccccgaa

301 gaacgttttc caatgatgag cacttttaaa gttctgctat gtggcgcggt attatcccgt301 gaacgttttc caatgatgag cacttttaaa gttctgctat gtggcgcggt attatcccgt

361 attgacgccg ggcaagagca actcggtcgc cgcatacact attctcagaa tgacttggtt361 attgacgccg ggcaagagca actcggtcgc cgcatacact attctcagaa tgacttggtt

421 gagtactcac cagtcacaga aaagcatctt acggatggca tgacagtaag agaattatgc421 gagtactcac cagtcacaga aaagcatctt acggatggca tgacagtaag agaattatgc

481 agtgctgcca taaccatgag tgataacact gcggccaact tacttctgac aacgatcgga481 agtgctgcca taaccatgag tgataacact gcggccaact tacttctgac aacgatcgga

541 ggaccgaagg agctaaccgc ttttttgcac aacatggggg atcatgtaac tcgccttgat541 ggaccgaagg agctaaccgc ttttttgcac aacatggggg atcatgtaac tcgccttgat

601 cgttgggaac cggagctgaa tgaagccata ccaaacgacg agcgtgacac cacgatgcct601 cgttgggaac cggagctgaa tgaagccata ccaaacgacg agcgtgacac cacgatgcct

661 gtagcaatgg caacaacgtt gcgcaaacta ttaactggcg aactacttac tctagcttcc661 gtagcaatgg caacaacgtt gcgcaaacta ttaactggcg aactacttac tctagcttcc

721 cggcaacaat taatagactg gatggaggcg gataaagttg caggaccact tctgcgctcg721 cggcaacaat taatagactg gatggaggcg gataaagttg caggaccact tctgcgctcg

781 gcccttccgg ctggctggtt tattgctgat aaatctggag ccggtgagcg tgggtctcgc781 gcccttccgg ctggctggtt tattgctgat aaatctggag ccggtgagcg tgggtctcgc

841 ggtatcattg cagcactggg gccagatggt aagccctccc gtatcgtagt tatctacacg841 ggtatcattg cagcactggg gccagatggt aagccctccc gtatcgtagt tatctacacg

901 acggggagtc aggcaactat ggatgaacga aatagacaga tcgctgagat aggtgcctca901 acggggagtc aggcaactat ggatgaacga aatagacaga tcgctgagat aggtgcctca

961 ctgattaagc attggtaact gtcagaccaa gtttactcat atatacttta gattgattta961 ctgattaagc attggtaact gtcagaccaa gtttactcat atatacttta gattgattta

1021 aaacttcatt tttaatttaa aaggatctag gtgaagatcc tttttgataa tctcatgacc1021 aaacttcatt tttaatttaa aaggatctag gtgaagatcc tttttgataa tctcatgacc

1081 aaaatccctt aacgtgagtt ttcgttccac tgagcgtcag accccgtaga aaagatcaaa1081 aaaatccctt aacgtgagtt ttcgttccac tgagcgtcag accccgtaga aaagatcaaa

1141 ggatcttctt gagatccttt ttttctgcgc gtaatctgct gcttgcaaac aaaaaaacca1141 ggatcttctt gagatccttt ttttctgcgc gtaatctgct gcttgcaaac aaaaaaacca

1201 ccgctaccag cggtggtttg tttgccggat caagagctac caactctttt tccgaaggta1201 ccgctaccag cggtggtttg tttgccggat caagagctac caactctttt tccgaaggta

1261 actggcttca gcagagcgca gataccaaat actgttcttc tagtgtagcc gtagttaggc1261 actggcttca gcagagcgca gataccaaat actgttcttc tagtgtagcc gtagttaggc

1321 caccacttca agaactctgt agcaccgcct acatacctcg ctctgctaat cctgttacca1321 caccacttca agaactctgt agcaccgcct acatacctcg ctctgctaat cctgttacca

1381 gtggctgctg ccagtggcga taagtcgtgt cttaccgggt tggactcaag acgatagtta1381 gtggctgctg ccagtggcga taagtcgtgt cttaccgggt tggactcaag acgatagtta

1441 ccggataagg cgcagcggtc gggctgaacg gggggttcgt gcacacagcc cagcttggag1441 ccggataagg cgcagcggtc gggctgaacg gggggttcgt gcacacagcc cagcttggag

1501 cgaacgacct acaccgaact gagataccta cagcgtgagc tatgagaaag cgccacgctt1501 cgaacgacct acaccgaact gagataccta cagcgtgagc tatgagaaag cgccacgctt

1561 cccgaaggga gaaaggcgga caggtatccg gtaagcggca gggtcggaac aggagagcgc1561 cccgaaggga gaaaggcgga caggtatccg gtaagcggca gggtcggaac aggagagcgc

1621 acgagggagc ttccaggggg aaacgcctgg tatctttata gtcctgtcgg gtttcgccac1621 acgagggagc ttccaggggg aaacgcctgg tatctttata gtcctgtcgg gtttcgccac

1681 ctctgacttg agcgtcgatt tttgtgatgc tcgtcagggg ggcggagcct atggaaaaac1681 ctctgacttg agcgtcgatt tttgtgatgc tcgtcagggg ggcggagcct atggaaaaac

1741 gggcccg1741 gggcccg

<210> 3<210> 3

<211> 1558 <211> 1558

<212> DNA<212> DNA

<213> The sequence encodes part of vector pPIG-1: MCS, 6xHis-tag, AOX1<213> The sequence encodes part of vector pPIG-1: MCS, 6xHis-tag, AOX1

terminator and cassette required forterminator and cassette required for

zeocin selection zeocin selection

<221> misc_feature<221> misc_feature

<222> (1)...(15)<222> (1) ... (15)

<223> sequence encodes 5 'end for Gibson assembly <223> sequence encodes 5 'end for Gibson assembly

<221> CDS<221> CDS

<222> (19)...(39)<222> (19) ... (39)

<223> 6xHis affinity tag<223> 6xHis affinity tag

<221> terminator<221> terminator

<222> (116)...(362)<222> (116) ... (362)

<223> Pichia pastoris AOX1 terminator<223> Pichia pastoris AOX1 terminator

<221> promoter<221> promoter

<222> (402)...(788)<222> (402) ... (788)

<223> TEF1 promoter from S. cerevisiae<223> TEF1 promoter from S. cerevisiae

<221> promoter<221> promoter

<222> (796)...(843)<222> (796) ... (843)

<223> synthetic bacterial promoter EM7<223> synthetic bacterial promoter EM7

<221> CDS<221> CDS

<222> (862)...(1236)<222> (862) ... (1236)

<223> Sh ble gene product from Streptoalloteichus hindustanus <223> Sh ble gene product from Streptoalloteichus hindustanus

<221> terminator<221> terminator

<222> (1302)...(1549)<222> (1302) ... (1549)

<223> S. cerevisiae CYC1 terminator<223> S. cerevisiae CYC1 terminator

<221> misc_feature<221> misc_feature

<222> (1544)...(1558)<222> (1544) ... (1558)

<223> sequence encodes 3 'end for Gibson assembly <223> sequence encodes 3 'end for Gibson assembly

<400> 1<400> 1

1 tgcaggcggc cgcgagctca tcatcatcat catcattgag tttgtagcct tagacatgac1 tgcaggcggc cgcgagctca tcatcatcat catcattgag tttgtagcct tagacatgac

61 tgttcctcag ttcaagttgg gcacttacga gaagaccggt cttgctagat tctaatcaag61 tgttcctcag ttcaagttgg gcacttacga gaagaccggt cttgctagat tctaatcaag

121 aggatgtcag aatgccattt gcctgagaga tgcaggcttc atttttgata cttttttatt121 aggatgtcag aatgccattt gcctgagaga tgcaggcttc atttttgata cttttttatt

181 tgtaacctat atagtatagg attttttttg tcattttgtt tcttctcgta cgagcttgct181 tgtaacctat atagtatagg attttttttg tcattttgtt tcttctcgta cgagcttgct

241 cctgatcagc ctatctcgca gctgatgaat atcttgtggt aggggtttgg gaaaatcatt241 cctgatcagc ctatctcgca gctgatgaat atcttgtggt aggggtttgg gaaaatcatt

301 cgagtttgat gtttttcttg gtatttccca ctcctcttca gagtacagaa gattaagtga301 cgagtttgat gtttttcttg gtatttccca ctcctcttca gagtacagaa gattaagtga

361 gaccttcgtt tgtgcggatc ccccacacac catagcttca aaatgtttct actccttttt361 gaccttcgtt tgtgcggatc ccccacacac catagcttca aaatgtttct actccttttt

421 tactcttcca gattttctcg gactccgcgc atcgccgtac cacttcaaaa cacccaagca421 tactcttcca gattttctcg gactccgcgc atcgccgtac cacttcaaaa cacccaagca

481 cagcatacta aattttccct ctttcttcct ctagggtgtc gttaattacc cgtactaaag481 cagcatacta aattttccct ctttcttcct ctagggtgtc gttaattacc cgtactaaag

541 gtttggaaaa gaaaaaagag accgcctcgt ttctttttct tcgtcgaaaa aggcaataaa541 gtttggaaaa gaaaaaagag accgcctcgt ttctttttct tcgtcgaaaa aggcaataaa

601 aatttttatc acgtttcttt ttcttgaaat tttttttttt agtttttttc tctttcagtg601 aatttttatc acgtttcttt ttcttgaaat tttttttttt agtttttttc tctttcagtg

661 acctccattg atatttaagt taataaacgg tcttcaattt ctcaagtttc agtttcattt661 acctccattg atatttaagt taataaacgg tcttcaattt ctcaagtttc agtttcattt

721 ttcttgttct attacaactt tttttacttc ttgttcatta gaaagaaagc atagcaatct721 ttcttgttct attacaactt tttttacttc ttgttcatta gaaagaaagc atagcaatct

781 aatctaaggg gcggtgttga caattaatca tcggcatagt atatcggcat agtataatac781 aatctaaggg gcggtgttga caattaatca tcggcatagt atatcggcat agtataatac

841 gacaaggtga ggaactaaac catggccaag ttgaccagtg ccgttccggt gctcaccgcg841 gacaaggtga ggaactaaac catggccaag ttgaccagtg ccgttccggt gctcaccgcg

901 cgcgacgtcg ccggagcggt cgagttctgg accgaccggc tcgggttctc ccgggacttc901 cgcgacgtcg ccggagcggt cgagttctgg accgaccggc tcgggttctc ccgggacttc

961 gtggaggacg acttcgccgg tgtggtccgg gacgacgtga ccctgttcat cagcgcggtc961 gtggaggacg acttcgccgg tgtggtccgg gacgacgtga ccctgttcat cagcgcggtc

1021 caggaccagg tggtgccgga caacaccctg gcctgggtgt gggtgcgcgg cctggacgag1021 caggaccagg tggtgccgga caacaccctg gcctgggtgt gggtgcgcgg cctggacgag

1081 ctgtacgccg agtggtcgga ggtcgtgtcc acgaacttcc gggacgcctc cgggccggcc1081 ctgtacgccg agtggtcgga ggtcgtgtcc acgaacttcc gggacgcctc cgggccggcc

1141 atgaccgaga tcggcgagca gccgtggggg cgggagttcg ccctgcgcga cccggccggc1141 atgaccgaga tcggcgagca gccgtggggg cgggagttcg ccctgcgcga cccggccggc

1201 aactgcgtgc acttcgtggc cgaggagcag gactgacacg tccgacggcg gcccacgggt1201 aactgcgtgc acttcgtggc cgaggagcag gactgacacg tccgacggcg gcccacgggt

1261 cccaggcctc ggagatccgt cccccttttc ctttgtcgat atcatgtaat tagttatgtc1261 cccaggcctc ggagatccgt cccccttttc ctttgtcgat atcatgtaat tagttatgtc

1321 acgcttacat tcacgccctc cccccacatc cgctctaacc gaaaaggaag gagttagaca1321 acgcttacat tcacgccctc cccccacatc cgctctaacc gaaaaggaag gagttagaca

1381 acctgaagtc taggtcccta tttatttttt tatagttatg ttagtattaa gaacgttatt1381 acctgaagtc taggtcccta tttatttttt tatagttatg ttagtattaa gaacgttatt

1441 tatatttcaa atttttcttt tttttctgta cagacgcgtg tacgcatgta acattatact1441 tatatttcaa atttttcttt tttttctgta cagacgcgtg tacgcatgta acattatact

1501 gaaaaccttg cttgagaagg ttttgggacg ctcgaaggct ttaatttgct catcttcg1501 gaaaaccttg cttgagaagg ttttgggacg ctcgaaggct ttaatttgct catcttcg

<210> 4<210> 4

<211> 298 <211> 298

<212> DNA<212> DNA

<213> The sequence encodes part of vector pPIG-1: N-terminal<213> The sequence encodes part of vector pPIG-1: N-terminal

secretion signal from S. cerevisiae MF-alpha-factor-1 and MCSsecretion signal from S. cerevisiae MF-alpha-factor-1 and MCS

<221> misc_feature<221> misc_feature

<222> (1)...(18)<222> (1) ... (18)

<223> sequence encodes 5 'end for Gibson assembly <223> sequence encodes 5 'end for Gibson assembly

<221> CDS<221> CDS

<222> (15)...(281)<222> (15) ... (281)

<223> N-terminal secretion signal from S. cerevisiae MF-alpha-factor-1<223> N-terminal secretion signal from S. cerevisiae MF-alpha-factor-1

<221> misc_feature<221> misc_feature

<222> (277)...(298)<222> (277) ... (298)

<223> multiple cloning site<223> multiple cloning site

<221> misc_feature<221> misc_feature

<222> (284)...(298)<222> (284) ... (298)

<223> sequence encodes 3 'end for Gibson assembly <223> sequence encodes 3 'end for Gibson assembly

<400> 1<400> 1

1 ctatccatat ggaaatgaga tttccttcaa tttttactgc tgttttattc gcagcatcct1 ctatccatat ggaaatgaga tttccttcaa tttttactgc tgttttattc gcagcatcct

61 ccgcattagc tgctccagtc aacactacaa cagaagatga aacggcacaa attccggctg61 ccgcattagc tgctccagtc aacactacaa cagaagatga aacggcacaa attccggctg

121 aagctgtcat cggttactca gatttagaag gggatttcga tgttgctgtt ttgccatttt121 aagctgtcat cggttactca gatttagaag gggatttcga tgttgctgtt ttgccatttt

181 ccaacagcac aaataacggg ttattgttta taaatactac tattgccagc attgctgcta181 ccaacagcac aaataacggg ttattgttta taaatactac tattgccagc attgctgcta

241 aagaagaagg ggtatctctc gagaaaagag aggctgaagc ttctgcaggc ggccgcga241 aagaagaagg ggtatctctc gagaaaagag aggctgaagc ttctgcaggc ggccgcga

<210> 5<210> 5

<211> 506 <211> 506

<212> DNA<212> DNA

<213> The sequence encodes part of vector pPIG-1: GAP promoter<213> The sequence encodes part of vector pPIG-1: GAP promoter

<221> misc_feature<221> misc_feature

<222> (1)...(15)<222> (1) ... (15)

<223> sequence encodes 5 'end for Gibson assembly <223> sequence encodes 5 'end for Gibson assembly

<221> promoter<221> promoter

<222> (16)...(492)<222> (16) ... (492)

<223> GAP promoter. Pichia pastoris promoter<223> GAP promoter. Pichia pastoris promoter

glyceraldehyde-3-phosphate dehydrogenaseglyceraldehyde-3-phosphate dehydrogenase

<221> misc_feature<221> misc_feature

<222> (489)...(506)<222> (489) ... (506)

<223> sequence encodes 3 'end for Gibson assembly <223> sequence encodes 3 'end for Gibson assembly

<400> 1 <400> 1

1 ctggggtacc atcctttttt gtagaaatgt cttggtgtcc tcgtccaatc aggtagccat1 ctggggtacc atcctttttt gtagaaatgt cttggtgtcc tcgtccaatc aggtagccat

61 ctctgaaata tctggctccg ttgcaactcc gaacgacctg ctggcaacgt aaaattctcc61 ctctgaaata tctggctccg ttgcaactcc gaacgacctg ctggcaacgt aaaattctcc

121 ggggtaaaac ttaaatgtgg agtaatggaa ccagaaacgt ctcttccctt ctctctcctt121 ggggtaaaac ttaaatgtgg agtaatggaa ccagaaacgt ctcttccctt ctctctcctt

181 ccaccgcccg ttaccgtccc taggaaattt tactctgctg gagagcttct tctacggccc181 ccaccgcccg ttaccgtccc taggaaattt tactctgctg gagagcttct tctacggccc

241 ccttgcagca atgctcttcc cagcattacg ttgcgggtaa aacggaagtc gtgtacccga241 ccttgcagca atgctcttcc cagcattacg ttgcgggtaa aacggaagtc gtgtacccga

301 cctagcagcc cagggatgga aaagtcccgg ccgtcgctgg caataatagc gggcggacgc301 cctagcagcc cagggatgga aaagtcccgg ccgtcgctgg caataatagc gggcggacgc

361 atgtcatgag attattggaa accaccagaa tcgaatataa aaggcgaaca cctttcccaa361 atgtcatgag attattggaa accaccagaa tcgaatataa aaggcgaaca cctttcccaa

421 ttttggtttc tcctgaccca aagactttaa atttaattta tttgtcccta tttcaatcaa421 ttttggtttc tcctgaccca aagactttaa atttaattta tttgtcccta tttcaatcaa

481 ttgaacaact atccatatgg aaatga481 ttgaacaact atccatatgg aaatga

<210> 6<210> 6

<211> 763 <211> 763

<212> DNA<212> DNA

<213> The sequence encodes 18s rRNA from Pichia pastoris<213> The sequence encodes 18s rRNA from Pichia pastoris

<221> misc_feature<221> misc_feature

<222> (1)...(16)<222> (1) ... (16)

<223> sequence encodes 5 'end for Gibson assembly <223> sequence encodes 5 'end for Gibson assembly

<221> misc_feature<221> misc_feature

<222> (18)...(750)<222> (18) ... (750)

<223> Pichia pastoris 18s rRNA <223> Pichia pastoris 18s rRNA

<221> misc_feature<221> misc_feature

<222> (749)...(763)<222> (749) ... (763)

<223> sequence encodes 3 'end for Gibson assembly <223> sequence encodes 3 'end for Gibson assembly

<210> 7<210> 7

<211> 820 <211> 820

<212> DNA<212> DNA

<213> The sequence encodes 18s rRNA from Pichia pastoris<213> The sequence encodes 18s rRNA from Pichia pastoris

<221> misc_feature<221> misc_feature

<222> (1)...(15)<222> (1) ... (15)

<223> sequence encodes 5 'end for Gibson assembly <223> sequence encodes 5 'end for Gibson assembly

<221> misc_feature<221> misc_feature

<222> (7)...(808)<222> (7) ... (808)

<223> Pichia pastoris 18s rRNA <223> Pichia pastoris 18s rRNA

<221> misc_feature<221> misc_feature

<222> (803)...(820)<222> (803) ... (820)

<223> sequence encodes 3 'end for Gibson assembly <223> sequence encodes 3 'end for Gibson assembly

<210> 8<210> 8

<211> 975 <211> 975

<212> DNA<212> DNA

<213> The sequence encodes of chitinase 19 family frome Drosera capensis<213> The sequence encodes of chitinase 19 family frome Drosera capensis

<221> CDS<221> CDS

<222> (1)...(975)<222> (1) ... (975)

<223> chitinase 19 family frome Drosera capensis<223> chitinase 19 family frome Drosera capensis

<400> 1<400> 1

ATG CGC ATC ACG GTC CTG TTG CTC TTG TGT GTC GCT CCT CTG TTG TCT GGC ACG TAT GCTATG CGC ATC ACG GTC CTG TTG CTC TTG TGT GTC GCT CCT CTG TTG TCT GGC ACG TAT GCT

M R I T V L L L L C V A P L L S G T Y A M R I T V L L L L C V A P L L S G T Y A

GTC CAG TGT GGT AGC GAA GTC GGT GGA GCT GTC CAG TGT GGT AGC GAA GTC GGT GGA GCT

V Q C G S E V G G A V Q C G S E V G G A

CTG TGT CCG AAT GGT CTG TGT TGC AGC AAG TAT GGC TAC TGT GGC ACT ACG TCT GCC TAC CTG TGT CCG AAT GGT CTG TGT TGC AGC AAG TAT GGC TAC TGT GGC ACT ACG TCT GCC TAC

L C P N G L C C S K Y G Y C G T T S A Y L C P N G L C C S K Y G Y C G T T S A Y

TGT GGT CCG GGC TGT CAG AGC CAG TGT GGT TGT GGT CCG GGC TGT CAG AGC CAG TGT GGT

C G P G C Q S Q C G C G P G C Q S Q C G

GGT TCC TCT CCT CCG CCT GCT CCT CCC AGC CCG ACT CCG AGT CCT CCG TCT CCC TCT GGA GGT TCC TCT CCT CCG CCT GCT CCT CCC AGC CCG ACT CCG AGT CCT CCG TCT CCC TCT GGA

G S S P P P A P P S P T P S P P S P S G G S S P P P A P P S P T P S P P S P S G

GGT GGT GAT GTG TCC AGC ATC ATC ACC TCC GGT GGT GAT GTG TCC AGC ATC ATC ACC TCC

G G D V S S I I T S G G D V S S I I T S

CAG ATC TTC AAT CAG ATG CTG CTC CAT CGC AAT GAC AAT GCC TGT CCT GCC CAT GGC TTC CAG ATC TTC AAT CAG ATG CTG CTC CAT CGC AAT GAC AAT GCC TGT CCT GCC CAT GGC TTC

Q I F N Q M L L H R N D N A C P A H G F Q I F N Q M L L H R N D N A C P A H G F

TAC AGC TAT CAA GCC TTC TTG GAT GCT GCA TAC AGC TAT CAA GCC TTC TTG GAT GCT GCA

Y S Y Q A F L D A A Y S Y Q A F L D A A

CGC AAG TTT ACT GGT TTC GGT ACG ACT GGT GAC ATC AAC ACA CGC AAA CGT GAA CTG GCT CGC AAG TTT ACT GGT TTC GGT ACG ACT GGT GAC ATC AAC ACA CGC AAA CGT GAA CTG GCT

R K F T G F G T T G D I N T R K R E L A R K F T G F G T T G D I N T R K R E L A

GCC TTC TTT GGT CAG ACG AGC CAC GAG ACCGCC TTC TTT GGT CAG ACG AGC CAC GAG ACC

A F F G Q T S H E T A F F G Q T S H E T

ACT GGT GGC TGG CCC ACT GCT CCT GAT GGT CCG TAT GCC TGG GGC TAC TGC TTC AAA CAG ACT GGT GGC TGG CCC ACT GCT CCT GAT GGT CCG TAT GCC TGG GGC TAC TGC TTC AAA CAG

T G G W P T A P D G P Y A W G Y C F K Q T G G W P T A P D G P Y A W G Y C F K Q

GAA CAA GGC AAT CCT GGT GAC TAC TGT GTCGAA CAA GGC AAT CCT GGT GAC TAC TGT GTC

E Q G N P G D Y C V E Q G N P G D Y C V

CAG TCT TCC ACG TAT CCC TGT GCC CCT GGC AAG AAG TAC TAT GGT CGT GGA CCG ATT CAG CAG TCT TCC ACG TAT CCC TGT GCC CCT GGC AAG AAG TAC TAT GGT CGT GGA CCG ATT CAG

Q S S T Y P C A P G K K Y Y G R G P I Q Q S S T Y P C A P G K K Y Y G R G P I Q

ATC TCC TAC AAC TAC AAC TAT GGT CAG TGTATC TCC TAC AAC TAC AAC TAT GGT CAG TGT

I S Y N Y N Y G Q C I S Y N Y N Y G Q C

GGA GCC GCC ATT AAT CAA CCC CTG CTG AGC AAT CCG GAT CTG GTC GCG TCC AAT GCC GATGGA GCC GCC ATT AAT CAA CCC CTG CTG AGC AAT CCG GAT CTG GTC GCG TCC AAT GCC GAT

G A A I N Q P L L S N P D L V A S N A D G A A I N Q P L L S N P D L V A S N A D

GTG TCC TTC GAG ACT GCC ATC TGG TTC TGGGTG TCC TTC GAG ACT GCC ATC TGG TTC TGG

V S F E T A I W F W V S F E T A I W F W

ATG ACT CCT CAA GGT AGC AAA CCC TCC TGT CAT GCC GTC GCC ACT GGT CAG TGG ACT CCGATG ACT CCT CAA GGT AGC AAA CCC TCC TGT CAT GCC GTC GCC ACT GGT CAG TGG ACT CCG

M T P Q G S K P S C H A V A T G Q W T P M T P Q G S K P S C H A V A T G Q W T P

TCC GTC GCC GAT CAA GCT GCT GGA CGT GTTTCC GTC GCC GAT CAA GCT GCT GGA CGT GTT

S V A D Q A A G R V S V A D Q A A G R V

CCT GGC TAT GGT GTC ATT ACG AAC ATC ATC AAT GGA GGT GTC GAG TGT GGC AAA GGC ACGCCT GGC TAT GGT GTC ATT ACG AAC ATC ATC AAT GGA GGT GTC GAG TGT GGC AAA GGC ACG

P G Y G V I T N I I N G G V E C G K G T P G Y G V I T N I I N G G V E C G K G T

GTC CCG CAA GTT GCC GAT CGC ATT GGC TTCGTC CCG CAA GTT GCC GAT CGC ATT GGC TTC

V P Q V A D R I G F V P Q V A D R I G F

TAT CAA CGC TAC TGC TCC ATC ATG GGT ATT GCG CCT GGT GGC AAT CTT GGC TGC TAC AATTAT CAA CGC TAC TGC TCC ATC ATG GGT ATT GCG CCT GGT GGC AAT CTT GGC TGC TAC AAT

Y Q R Y C S I M G I A P G G N L G C Y N Y Q R Y C S I M G I A P G G N L G C Y N

CAA CGT CCG TTC AGC TGACAA CGT CCG TTC AGC TGA

Q R P F S * Q R P F S *

<---<---

Claims (1)

Интеграционный вектор pPIG-1 для осуществления экспрессии рекомбинантных белков в дрожжах P. pastoris, имеющий размер 5595 п.о. и характеризующийся нуклеотидной последовательностью, приведенной в SEQ ID NO 1.Integration vector pPIG-1 for the expression of recombinant proteins in the yeast P. pastoris, having a size of 5595 bp. and characterized by the nucleotide sequence shown in SEQ ID NO 1.
RU2020129013A 2020-09-02 2020-09-02 Integration vector for multi-copy gene integration in 18spphk of pichia pastoris yeast RU2752904C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020129013A RU2752904C1 (en) 2020-09-02 2020-09-02 Integration vector for multi-copy gene integration in 18spphk of pichia pastoris yeast

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020129013A RU2752904C1 (en) 2020-09-02 2020-09-02 Integration vector for multi-copy gene integration in 18spphk of pichia pastoris yeast

Publications (1)

Publication Number Publication Date
RU2752904C1 true RU2752904C1 (en) 2021-08-11

Family

ID=77349248

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020129013A RU2752904C1 (en) 2020-09-02 2020-09-02 Integration vector for multi-copy gene integration in 18spphk of pichia pastoris yeast

Country Status (1)

Country Link
RU (1) RU2752904C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657197A (en) * 2022-04-06 2022-06-24 暨南大学 Application of Gsm1p as positive regulatory factor in improving protein expression in host cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2388823C1 (en) * 2008-08-21 2010-05-10 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов" (ФГУП ГосНИИгенетика) Integrative plasmid vector for expression of genes in yeast
RU2409670C1 (en) * 2009-07-10 2011-01-20 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов" (ФГУП ГосНИИгенетика) Recombinant plasmid for phytase gene expression in pichia pastoris yeast (versions), pichia pastoris yeast strain -phytase producer (versions)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2388823C1 (en) * 2008-08-21 2010-05-10 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов" (ФГУП ГосНИИгенетика) Integrative plasmid vector for expression of genes in yeast
RU2409670C1 (en) * 2009-07-10 2011-01-20 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов" (ФГУП ГосНИИгенетика) Recombinant plasmid for phytase gene expression in pichia pastoris yeast (versions), pichia pastoris yeast strain -phytase producer (versions)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NААTSAARI L. ET AL. Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS One. 2012;7(6):e39720. doi: 10.1371/journal.pone.0039720. *
pGAPZα A Plasmid. Найдено онлайн: https://www.snapgene.com/resources/plasmid-files/?set=yeast_plasmids&plasmid=pGAPZ(alpha)_A Находится в электронной среде по данным сайта web.archive.org 03.09.2019 (см. https://web.archive.org/web/20191001000000*/https://www.snapgene.com/resources/plasmid-files/?set=yeast_plasmids&plasmid=pGAPZ(alpha)_A ) Дата обращения 12.03.2021. *
pGAPZα A Plasmid. Найдено онлайн: https://www.snapgene.com/resources/plasmid-files/?set=yeast_plasmids&plasmid=pGAPZ(alpha)_A Находится в электронной среде по данным сайта web.archive.org 03.09.2019 (см. https://web.archive.org/web/20191001000000*/https://www.snapgene.com/resources/plasmid-files/?set=yeast_plasmids&plasmid=pGAPZ(alpha)_A ) Дата обращения 12.03.2021. NААTSAARI L. ET AL. Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS One. 2012;7(6):e39720. doi: 10.1371/journal.pone.0039720. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657197A (en) * 2022-04-06 2022-06-24 暨南大学 Application of Gsm1p as positive regulatory factor in improving protein expression in host cell
CN114657197B (en) * 2022-04-06 2023-07-21 暨南大学 Application of Gsm1p as positive control factor in improving protein expression in host cell

Similar Documents

Publication Publication Date Title
CN110527697B (en) RNA fixed-point editing technology based on CRISPR-Cas13a
CN101835901B (en) High throughput screening of genetically modified photosynthetic organisms
CN101835898B (en) Solubility tags for the expression and purification of bioactive peptides
CN107739728A (en) A kind of recombination bacillus coli of efficiently production Glucosamine and its application
RU2752904C1 (en) Integration vector for multi-copy gene integration in 18spphk of pichia pastoris yeast
CN113106113A (en) Recombinant bacterium and construction and application thereof
CN114480474B (en) Construction and application of marine nannochloropsis transcription activation CRISPRa system
CN111394399A (en) Method for reducing content of acylglyceride impurities in long-chain dibasic acid
CN110684783B (en) Long-chain dibasic acid with low content of fatty acid impurities and production method thereof
CN110684784B (en) Long-chain dibasic acid with low content of monobasic acid impurity and production method thereof
CN112280797B (en) Can improve coenzyme Q in tomato 10 Content combined vector and construction method and application thereof
CN111394400B (en) Application of SCT1 gene in production of long-chain dicarboxylic acid
CN112011579B (en) Method for reducing non-target carbon chain length diacid impurities in diacid production
CN111433220A (en) Algal lipid productivity enhancement by genetic modification of TRP domain-containing proteins
CN113736797B (en) Culture method for improving yield of microalgae Triglyceride (TAG) and application thereof
CN110684676B (en) Long-chain dibasic acid with low content of hydroxy acid impurities and production method thereof
US20030084474A1 (en) Antibiotics-independent vector for constant high-expression and method for gene expression using the same
CN115216464B (en) Recombinant microorganism for obtaining alpha-farnesene and beta-farnesene and construction method thereof
CN114045302A (en) Single-base editing vector and construction and application thereof
CN108410901B (en) Double-antigen anchoring expression vector pLQ2a for non-resistance screening and preparation method thereof
CN110343675B (en) Directed evolution of CYP52A12 gene and application thereof in dibasic acid production
CN110684785B (en) Long-chain dibasic acid with low content of low-carbon-chain long-chain dibasic acid hetero acid and preparation method thereof
CN1426474A (en) Novel promoters and gene expression method by using same
CN112094832B (en) Mutant xylanase for heat-resistant alkali-resistant papermaking and application thereof
CN114908030B (en) Recombinant bacterium for displaying beta-cyclodextrin glucosyltransferase on surface of bacillus subtilis and application thereof