RU2751199C1 - Устройство очистки воздуха - Google Patents

Устройство очистки воздуха Download PDF

Info

Publication number
RU2751199C1
RU2751199C1 RU2020140920A RU2020140920A RU2751199C1 RU 2751199 C1 RU2751199 C1 RU 2751199C1 RU 2020140920 A RU2020140920 A RU 2020140920A RU 2020140920 A RU2020140920 A RU 2020140920A RU 2751199 C1 RU2751199 C1 RU 2751199C1
Authority
RU
Russia
Prior art keywords
cathodoluminescent
air purification
lamps
purification device
photocatalytic
Prior art date
Application number
RU2020140920A
Other languages
English (en)
Inventor
Валерий Иванович Глазунов
Георгий Валерьевич Глазунов
Владимир Игоревич Фролов
Николай Александрович Цурков
Евгений Павлович Шешин
Илья Николаевич Косарев
Юрий Рафикович Сиражетдинов
Original Assignee
Общество с ограниченной ответственностью "Торговый Дом ХИММЕД"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Торговый Дом ХИММЕД" filed Critical Общество с ограниченной ответственностью "Торговый Дом ХИММЕД"
Priority to RU2020140920A priority Critical patent/RU2751199C1/ru
Application granted granted Critical
Publication of RU2751199C1 publication Critical patent/RU2751199C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

Изобретение относится к области фотокаталитической очистки атмосферного воздуха. Устройство очистки воздуха включает входной фильтр 3, источник ультрафиолетового излучения, фотокаталитический фильтр, входное окно 1 и выходное окно 6, расположенные друг напротив друга. В качестве источника ультрафиолетового излучения используют по меньшей мере две катодолюминесцентные вакуумные лампы 9 с плоским выходным окном 10, внешняя сторона которого является излучающей поверхностью, а в качестве фотокаталитического фильтра используют облучаемую ультрафиолетовым излучением поверхность 5 фотокаталитического реактора 4, покрытую слоем диоксида титана. Технический результат: создание эффективного устройства очистки и обеззараживания воздуха, снижение электропотребления и повышение экологичности. 7 з.п. ф-лы, 3 ил.

Description

Изобретение относится к области фотокаталитической очистки атмосферного воздуха различными устройствами, использующими принцип окисления органических и неорганических веществ, адсорбированных на поверхности фотокатализатора под действием ультрафиолетового излучения с длиной волны меньше 400 нм. Изобретение может быть использовано для нейтрализации токсичных газов, образующихся при техногенных катастрофах и авариях на предприятиях химической и других отраслей промышленности, а также в результате террористических актов с применением отравляющих веществ.
Фотохимические реакции, инициируемые действием светового излучения, хорошо известны и нашли широкое применение, в частности, для обеззараживания больничных помещений. Известно, что диоксид титана TiO2 в кристаллической модификации анатаз демонстрирует превосходные фотокаталитические свойства, которые обеспечивают способность к разрушению различных вредных веществ. В ходе фотокатализа, вызванного радиацией ультрафиолетовой лампы с длиной волны λ<400 нм, различные органические вещества окисляются, а вирусы и бактерии разрушаются.
Физической основой такого фотогенерированного гетерогенного катализа является характерная для ряда оксидов металлов (TiO2, ZnO, Fe2O5) ширина запрещенной зоны Eg≤3.5 эВ, когда энергия светового излучения с длиной волны λ>300 нм достаточна для переброски электрона из валентной зоны в зону проводимости с последующим его участием в фотохимическом процессе адсорбированных катализатором веществ.
Известен целый ряд способов и устройств очистки и обеззараживания воздуха с использованием фотокаталитических фильтров на основе анатазной модификации диоксида титана. В патенте RU 2259866 предложен способ очистки газов, в том числе воздуха, окислением с использованием фотокатализатора на основе диоксида титана, нанесенного на керамические носители. При этом исходную газовую смесь, содержащую окисляемые вредные вещества, насыщают парами перекиси водорода и прокачивают с помощью вентилятора через пластину с фотокатализатором. В патенте RU 48815 предложено несколько вариантов устройств для очистки и обеззараживания воздуха, включающих последовательный набор адсорбционных, электростатических и фотокаталитических фильтров, изготовленных из сетчатого пористого носителя в форме пластины или трубы.
Наиболее близким по технической сущности является устройство, описанное в способе фотокаталитической очистки газов и воздуха, по которому очистку осуществляют в присутствии фотокатализатора, который представляет собой диоксид титана анатазной модификации, нанесенный на пористый носитель, выполненный, например, в форме трубы, пластины, полусферы [Патент RU 2151632].
Недостатками известного устройства являются сравнительно небольшая скорость очистки, быстрое падение активности фотокатализаторов при разложении ароматических и гетероатомных органических соединений, необходимость использования достаточно мощного источника электроэнергии при прокачке вентилятором больших объемов воздуха через фотокаталитические фильтры.
Задачей изобретения является разработка более эффективного устройства фотокаталитической очистки и обеззараживания воздуха от опасных химических и биологических газов с использованием безртутных катодолюминесцентных ламп.
Технический результат изобретения заключается в снижении электропотребления и повышении экологичности.
Указанный технический результат и сущность изобретения заключается в том, что в устройстве очистки воздуха, включающем входной фильтр, источник ультрафиолетового излучения, фотокаталитический фильтр, входное и выходное окна, расположенные друг напротив друга, в качестве источника ультрафиолетового излучения используют, по меньшей мере, две катодолюминесцентные вакуумные лампы с плоским выходным окном, внешняя сторона которого является излучающей поверхностью, а в качестве фотокаталитического фильтра используют облучаемую ультрафиолетовым излучением поверхность фотокаталитического реактора, выполненного в виде плоскостного элемента, покрытого слоем диоксида титана.
Существует вариант, в котором в качестве, по меньшей мере, двух катодолюминесцентных вакуумных ламп с плоским выходным окном используют лампы с термоэлектронной пушкой.
Существует также вариант, в котором в качестве, по меньшей мере, двух катодолюминесцентных вакуумных ламп с плоским выходным окном используют лампы с автокатодами.
Существует также вариант, в котором, по меньшей мере, две катодолюминесцентные вакуумные лампы, с плоским выходным окном расположены между собой на расстоянии, равном их диаметру D.
Существует также вариант, в котором, по меньшей мере, две катодолюминесцентные вакуумные лампы с плоским выходном окном расположены на расстоянии их диаметра D от поверхности фотокаталитического реактора, выполненного в виде плоскостного элемента, покрытого слоем диоксида титана.
Существует также вариант, в котором облучаемая ультрафиолетовым излучением поверхность фотокаталитического реактора, выполненного в виде плоскостного элемента, покрытого слоем диоксида титана, представляет собой рифленую поверхность.
Существует также вариант, в котором удлиненные фрагменты рифленой поверхности расположены вдоль линии, соединяющей входное окно и выходное окно.
Существует также вариант, в котором излучающие поверхности плоских окон, по меньшей мере, двух катодолюминесцентных ламп расположены в плоскости внутренней поверхности корпуса.
На фиг. 1 изображено устройство очистки воздуха в общем виде.
На фиг. 2 изображен вариант выполнения рифленой поверхности в виде волнообразного профиля.
На фиг. 3. изображен вариант выполнения рифленой поверхности в виде треугольного профиля.
Устройство очистки воздуха включает входное окно 1 (фиг. 1), геометрически сопряженное с вентилятором 2 и входным фильтром 3. В качестве вентилятора 2 можно использовать изделие ERA PROFIT 6 ВВ производства ООО "ЭРА".
Входной фильтр 3 может быть механическим, состоящий из многослойного фильтрующего материала, выполненный в виде плоского элемента. В качестве входного фильтра 3 можно использовать, например, грубопористый волокнистый лавсан с плотностью упаковки волокон менее 5%. Устройство включает также фотокаталитический реактор 4 выполненный в виде плоскостного элемента, расположенного под углом к плоскости входного фильтра 3. В предпочтительном варианте этот угол может равняться 90°. Поверхность 5 фотокаталитического реактора 4, обращенная в сторону входного фильтра 3, покрыта тонким слоем диоксида титана, толщиной 10 мкм -20 мкм. В качестве материала фотокаталитического реактора 4 можно использовать металл, стекло, пористые материалы. Напротив входного окна 1 вдоль прямой линии расположено выходное окно 6. В одном из вариантов входное окно 1 и выходное окно 6 осесимметричны и прямая линия может быть их осью симметрии O1-O2. Прямая линия и, в частности ось симметрии O1-O2 определяет направление очищенного потока воздуха 7. Но возможны и другие варианты выполнения входного окна 1 и выходного окна 6, например, под углом к оси симметрии O1-O2. Входное окно 1 и выходное окно 6 наиболее оптимальны для простоты конструкции выполняются по форме вентилятора 2. Обычно это квадрат или круг. Однако можно использовать любые другие (например, овальные, прямоугольные), необходимые для улучшения дизайна конструкции. Вентилятор 2 подключен (условно не показано) к блоку управления 8. Основным отличительным признаком предложенного решения является использование в качестве источника ультрафиолетового излучения, по меньшей мере, двух катодолюминесцентных вакуумных ламп 9 с плоскими выходными окнами 10, внешняя сторона которых является излучающей поверхностью. При этом вакуумные лампы 9 расположены таким образом, что они облучают ультрафиолетовым излучением поверхность 5 фотокаталитического реактора 4. Катодолюминесцентные вакуумные лампы 9 подключены к блоку управления 8. Перечисленные элементы могут быть расположены в корпусе 11, преимущественно имеющем прямоугольную форму. Но блок управления 8 может быть вынесен (условно не показано) за пределы корпуса 11. В качестве блока управления 8 можно использовать модуль, включающий в себя блок центрального процессора, цифровую электронную систему управления оборотами вентиляторов и мощностью УФ ламп, модуль беспроводной связи, цифровой счетчик («тахометр») изделия, ведущий учет времени его работы.
Существует вариант, в котором в качестве, по меньшей мере, двух катодолюминесцентных вакуумных ламп 9 с плоским выходным окном 10 используют лампы с термоэлектронной пушкой. В качестве этих ламп можно использовать лампы, катодолюминесцентные лампы термоэмиссионные (КЛЛТ) разработанные ООО «МЭЛЗ».
Существует также вариант, в котором в качестве, по меньшей мере, двух катодолюминесцентных вакуумных ламп 9 с плоским выходным окном 10 используют лампы с автокатодами. В качестве этих ламп можно использовать катодолюминесцентные лампы автокатодные (КЛЛА), разработанные в МФТИ.
Существует также вариант, в котором, по меньшей мере, две катодолюминесцентные вакуумные лампы 9 с плоским выходным окном 10 расположены между собой на расстоянии, равном их диаметру D.
Существует также вариант, в котором, по меньшей мере, две катодолюминесцентные вакуумные лампы 9 с плоским выходном окном 10 расположены на расстоянии их диаметра D от поверхности 5 фотокаталитического реактора 4, покрытой слоем диоксида титана.
Существует также вариант, в котором облучаемая ультрафиолетовым излучением поверхность 5 фотокаталитического реактора 4, покрытая тонким слоем диоксида титана представляет собой рифленую поверхность 12 (фиг. 2, фиг. 3). Рифленая поверхность 12 может иметь волнообразный профиль (фиг. 2) с высотой H1 и шагом А1, треугольный профиль (фиг. 3) с высотой Н2 и шагом А2, а также иные формы профиля, например, П-образный, пупырчатый. При этом H1 может быть в диапазоне 1-5 мм, Н2 может быть в диапазоне 1-5 мм, А1 может быть в диапазоне 1-10 мм, А2 может быть в диапазоне 1-10 мм. Технология формирования рифленой поверхности 12 может представлять собой прокатку, литье или механическую обработку.
Существует также вариант, в котором удлиненные фрагменты рифленой поверхности 12 расположены вдоль линии, соединяющей входное окно 1 и выходное окно 6 и в частном случае вдоль оси O1-O2.
Существует также вариант, в котором излучающие поверхности плоских окон 10, по меньшей мере, двух катодолюминесцентных ламп 9 расположены в плоскости внутренней поверхности корпуса 11.
Устройство очистки воздуха работает следующим образом. Загрязненный воздух засасывается вентилятором 2 через входное окно 1, проходит через входной фильтр 3 и взаимодействует с поверхностью 5 фотокаталитического реактора 4, облучаемой катодолюминесцентными вакуумными лампами 9, которые в данном случае образуют двухступенчатую систему для повышения эффективности очистки и обеззараживания входящего воздуха. Очищенный воздух выходит через выходное окно 6.
То, что в устройстве очистки воздуха, включающем входной фильтр 3, источник ультрафиолетового излучения, фотокаталитический фильтр, входное окном 1 и выходное окно 6, расположенными друг напротив друга, в качестве источника ультрафиолетового излучения используют, по меньшей мере, две катодолюминесцентные вакуумные лампы 9 с плоским выходным окном 10, внешняя сторона которого является излучающей поверхностью, а в качестве фотокаталитического фильтра используют облучаемую ультрафиолетовым излучением поверхность 5 фотокаталитического реактора 4, выполненного в виде плоскостного элемента, покрытого слоем диоксида титана снижает электропотребление и повышает экологичность устройства за счет прямого потока воздуха с минимальным сопротивлением его проходу и использования катодолюминесцентных вакуумных ламп 9 с высоким КПД.
То, что в качестве, по меньшей мере, двух катодолюминесцентных вакуумных ламп 9 с плоским выходным окном 10 используют лампы с термоэлектронной пушкой снижает электропотребление за счет их высокого КПД.
То, что в качестве, по меньшей мере, двух катодолюминесцентных вакуумных ламп 9 с плоским выходным окном 10 используют лампы с автокатодами снижает электропотребление за счет их высокого КПД.
То, что, по меньшей мере, две катодолюминесцентные вакуумные лампы 9 с плоским выходным окном 10 расположены между собой на расстоянии, равном их диаметру D позволяет оптимально использовать их потоки излучения таким образом, создавая максимальную площадь поверхности, покрытой катализатором, освещаемой УФ излучением достаточной интенсивности для протекания процесса фотокатализа.
То, что, по меньшей мере, две катодолюминесцентные вакуумные лампы 9 с плоским выходным окном 10 расположены на расстоянии их диаметра D от поверхности 5 фотокаталитического реактора 4, выполненного в виде плоскостного элемента, покрытого слоем диоксида титана, приводит к повышению эффективности очистки и обеззараживания входящего воздуха. При расстоянии между каталитической пластиной и лампами меньшем D рабочая площадь поверхности каталитической пластины сокращается в силу законов геометрической оптики. При расстоянии между каталитической пластиной и лампами большем D рабочая площадь поверхности каталитической пластины сокращается из-за уменьшения мощности потока излучения с расстоянием.
То, что облучаемая ультрафиолетовым излучением поверхность 5 фотокаталитического реактора 4, выполненного в виде плоскостного элемента, покрытого тонким слоем диоксида титана, представляет собой рифленую поверхность 12 увеличивает площадь взаимодействия тонкого слоя диоксида титана с ультрафиолетовым излучением катодолюминесцентных вакуумных ламп 9 повышает эффективность работы устройства и снижает электропотребление.
То, что удлиненные фрагменты рифленой поверхности 12 расположены вдоль линии, соединяющей входное окно 1 и выходное окно 6, уменьшает сопротивление прохода воздуха и снижает электропотребление.
Применение рифленой поверхности катализатора увеличивает площадь, на которой могут проходить фотокаталитические реакции, а, значит, увеличивается степень очистки воздуха при сохранении габаритов устройства.
То, что излучающие поверхности плоских окон 10, по меньшей мере, двух катодолюминесцентных ламп 9 расположены в плоскости внутренней поверхности корпуса 11 уменьшает сопротивление прохода воздуха и снижает электропотребление.

Claims (8)

1. Устройство очистки воздуха, включающее входной фильтр, источник ультрафиолетового излучения, фотокаталитический фильтр, входное и выходное окна, расположенные друг напротив друга, отличающееся тем, что в качестве источника ультрафиолетового излучения используют по меньшей мере две катодолюминесцентные вакуумные лампы с плоским выходным окном, внешняя сторона которого является излучающей поверхностью, а в качестве фотокаталитического фильтра используют облучаемую ультрафиолетовым излучением поверхность фотокаталитического реактора, выполненного в виде плоскостного элемента, покрытого слоем диоксида титана.
2. Устройство очистки воздуха по п. 1, отличающееся тем, что в качестве по меньшей мере двух катодолюминесцентных вакуумных ламп с плоским выходным окном используют лампы с термоэлектронной пушкой.
3. Устройство очистки воздуха по п. 1, отличающееся тем, что в качестве по меньшей мере двух катодолюминесцентных вакуумных ламп с плоским выходным окном используют лампы с автокатодами.
4. Устройство очистки воздуха по п. 1, отличающееся тем, что по меньшей мере две катодолюминесцентные вакуумные лампы с плоским выходным окном расположены между собой на расстоянии, равном их диаметру D.
5. Устройство очистки воздуха по п. 1, отличающееся тем, что по меньшей мере две катодолюминесцентные вакуумные лампы с плоским выходном окном расположены на расстоянии их диаметра D от поверхности фотокаталитического реактора, выполненного в виде плоскостного элемента, покрытого слоем диоксида титана.
6. Устройство очистки воздуха по п. 1, отличающееся тем, что облучаемая ультрафиолетовым излучением поверхность фотокаталитического реактора, выполненного в виде плоскостного элемента, покрытого слоем диоксида титана, представляет собой рифленую поверхность.
7. Устройство очистки воздуха по п. 6, отличающееся тем, что удлиненные фрагменты рифленой поверхности расположены вдоль линии, соединяющей входное окно и выходное окно.
8. Устройство очистки воздуха по п. 1, отличающееся тем, что излучающие поверхности плоских окон по меньшей мере двух катодолюминесцентных ламп расположены в плоскости внутренней поверхности корпуса.
RU2020140920A 2020-12-11 2020-12-11 Устройство очистки воздуха RU2751199C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020140920A RU2751199C1 (ru) 2020-12-11 2020-12-11 Устройство очистки воздуха

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020140920A RU2751199C1 (ru) 2020-12-11 2020-12-11 Устройство очистки воздуха

Publications (1)

Publication Number Publication Date
RU2751199C1 true RU2751199C1 (ru) 2021-07-12

Family

ID=77019608

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020140920A RU2751199C1 (ru) 2020-12-11 2020-12-11 Устройство очистки воздуха

Country Status (1)

Country Link
RU (1) RU2751199C1 (ru)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996038212A2 (en) * 1995-05-23 1996-12-05 United Technologies Corp Back-side illuminated organic pollutant removal system
RU8634U1 (ru) * 1998-06-30 1998-12-16 Товарищество с ограниченной ответственностью Информационно-технологический институт Фотокаталитический очиститель воздуха - светильник
RU48815U1 (ru) * 2005-05-26 2005-11-10 Институт Катализа Имени Г.К. Борескова Сибирского Отделения Российской Академии Наук Устройство для очистки и обеззараживания воздуха (варианты)
KR100627972B1 (ko) * 2003-04-29 2006-09-26 나노솔루션주식회사 섬유 다발형 광촉매 필터를 이용한 대기처리 장치
RU68353U1 (ru) * 2007-06-05 2007-11-27 Борисов Сергей Ренатович Фотокаталитическое устройство для очистки воздуха
RU98134U1 (ru) * 2010-04-15 2010-10-10 Учреждение Российской Академии Наук Институт Проблем Химической Физики Ран (Ипхф Ран) Бытовой фотокаталитический очиститель воздуха
RU169520U1 (ru) * 2015-10-13 2017-03-21 Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) Очиститель и обеззараживатель воздуха
KR20170142731A (ko) * 2016-06-20 2017-12-28 한국광기술원 유연기판을 이용한 정화필터 및 이를 이용한 정화장치
AU2018100807A4 (en) * 2017-07-29 2018-08-09 Thermax Limited An Air purification system
RU2664447C1 (ru) * 2017-10-04 2018-08-17 Общество с ограниченной ответственностью "Научно-медицинская фирма "Амбилайф" Установка фотокаталитическая со светодиодным модулем для обеззараживания и очистки воздуха и модуль светодиодный для облучения фотокатализатора ультрафиолетовым излучением

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996038212A2 (en) * 1995-05-23 1996-12-05 United Technologies Corp Back-side illuminated organic pollutant removal system
RU8634U1 (ru) * 1998-06-30 1998-12-16 Товарищество с ограниченной ответственностью Информационно-технологический институт Фотокаталитический очиститель воздуха - светильник
KR100627972B1 (ko) * 2003-04-29 2006-09-26 나노솔루션주식회사 섬유 다발형 광촉매 필터를 이용한 대기처리 장치
RU48815U1 (ru) * 2005-05-26 2005-11-10 Институт Катализа Имени Г.К. Борескова Сибирского Отделения Российской Академии Наук Устройство для очистки и обеззараживания воздуха (варианты)
RU68353U1 (ru) * 2007-06-05 2007-11-27 Борисов Сергей Ренатович Фотокаталитическое устройство для очистки воздуха
RU98134U1 (ru) * 2010-04-15 2010-10-10 Учреждение Российской Академии Наук Институт Проблем Химической Физики Ран (Ипхф Ран) Бытовой фотокаталитический очиститель воздуха
RU169520U1 (ru) * 2015-10-13 2017-03-21 Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) Очиститель и обеззараживатель воздуха
KR20170142731A (ko) * 2016-06-20 2017-12-28 한국광기술원 유연기판을 이용한 정화필터 및 이를 이용한 정화장치
AU2018100807A4 (en) * 2017-07-29 2018-08-09 Thermax Limited An Air purification system
RU2664447C1 (ru) * 2017-10-04 2018-08-17 Общество с ограниченной ответственностью "Научно-медицинская фирма "Амбилайф" Установка фотокаталитическая со светодиодным модулем для обеззараживания и очистки воздуха и модуль светодиодный для облучения фотокатализатора ультрафиолетовым излучением

Similar Documents

Publication Publication Date Title
CN100473453C (zh) 光解和光催化反应增强装置
US4892712A (en) Fluid purification
US4966759A (en) Fluid purification
US5032241A (en) Fluid purification
KR101351485B1 (ko) 섬유필터 및 공기청정기
US6524447B1 (en) Apparatus and method for photocatalytic purification and disinfection of water and ultrapure water
US8709341B2 (en) System for purifying air through germicidal irradiation and method of manufacture
US20030150707A1 (en) Apparatus and method for photocatalytic purification and disinfection of fluids
US20090041632A1 (en) Air Purifier System and Method
US5449443A (en) Photocatalytic reactor with flexible supports
EP1843401A1 (en) Surface emitting device
US20050224335A1 (en) Apparatus and method for photocatalytic purification and disinfection of fluids
KR20100061665A (ko) Uv 공기처리 방법 및 장치
EP2625145B1 (en) Enhanced photo-catalytic cells
JP2006237563A (ja) 面発光デバイス
KR20080008501A (ko) 공기 청정기
RU2751199C1 (ru) Устройство очистки воздуха
JPH11335187A (ja) 光触媒モジュール及び光触媒装置
WO2021254795A1 (en) Filter medium for air and water purification and disinfection
JP2018143636A (ja) 反応管及び空気浄化装置
US20230173133A1 (en) Atmospheric plasma filter
JPH10235202A (ja) 光触媒体および空気清浄装置
RU2497584C1 (ru) Фотокаталитический воздухоочиститель
JP2000316373A (ja) 農産物から発生するエチレンガスの光触媒ガス分解装置
KR102367092B1 (ko) VUV 자외선 포토플라즈마 TiO2 광촉매용 램프를 포함하는 공기 살균기