RU2745584C1 - Способ ускорения репаративного остеогенеза при бисфосфонатном остеонекрозе - Google Patents

Способ ускорения репаративного остеогенеза при бисфосфонатном остеонекрозе Download PDF

Info

Publication number
RU2745584C1
RU2745584C1 RU2020113948A RU2020113948A RU2745584C1 RU 2745584 C1 RU2745584 C1 RU 2745584C1 RU 2020113948 A RU2020113948 A RU 2020113948A RU 2020113948 A RU2020113948 A RU 2020113948A RU 2745584 C1 RU2745584 C1 RU 2745584C1
Authority
RU
Russia
Prior art keywords
bone
bisphosphonate
osteonecrosis
accelerating
wound
Prior art date
Application number
RU2020113948A
Other languages
English (en)
Inventor
Сергей Владимирович Сирак
Екатерина Сергеевна Сирак
Евгений Вячеславович Щетинин
Елизавета Евгеньевна Щетинина
Александр Анатольевич Слетов
Сергей Петрович Рубникович
Аксинья Антоновна Вафиади
Original Assignee
Сергей Владимирович Сирак
Екатерина Сергеевна Сирак
Федеральное государственное бюджетное образовательное учреждение высшего образования "Ставропольский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО СтГМУ Минздрава России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сергей Владимирович Сирак, Екатерина Сергеевна Сирак, Федеральное государственное бюджетное образовательное учреждение высшего образования "Ставропольский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО СтГМУ Минздрава России) filed Critical Сергей Владимирович Сирак
Priority to RU2020113948A priority Critical patent/RU2745584C1/ru
Application granted granted Critical
Publication of RU2745584C1 publication Critical patent/RU2745584C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/525Isoalloxazines, e.g. riboflavins, vitamin B2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/728Hyaluronic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/32Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/30Compositions for temporarily or permanently fixing teeth or palates, e.g. primers for dental adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Rheumatology (AREA)
  • Molecular Biology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Transplantation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Изобретение относится к области медицины, в частности стоматологии и челюстно-лицевой хирургии, и раскрывает способ ускорения репаративного остеогенеза при бисфосфонатном остеонекрозе, включающий использование хонсурида, растворенного в рибофлавине и гиалуроновой кислоте, с последующим добавлением полученной смеси к гелиокомпозиту в заданном соотношении. Изобретение позволяет ускорить формирование костного регенерата после удаления некротизированной кости при бисфосфонатном остеонекрозе, исключив инфицирование за счет надежной герметизации раны и может быть использовано при операциях по восстановлению утраченного объема костной ткани. 4 ил., 2 пр

Description

Изобретение относится к медицине, в частности, стоматологии и челюстно-лицевой хирургии, и может быть использовано при операциях по восстановлению утраченного объема костной ткани при бисфосфонатных остеонекрозах челюстных костей.
Известно, что в целом ряде патологических состояний организма, связанных с нарушением репаративного остеогенеза, таких, как, переломов челюстных костей, осложненных остеопорозом, инфицированием и ослаблением иммунитета, ложных суставах и послеоперационных дефектах верхней и нижней челюстей после цистэктомий и цистотомий требуется направленная стимуляция костеобразования, которая выполняется хирургом путем проведения операции остеопластики.
Для ускорения репаративного процесса активно используют остеопластические биоматериалы, которым присущи остеоиндуктивные и/или остеокондуктивные свойства, причем первый вариант наиболее предпочтителен, поскольку под остеоиндукцией в стоматологии и челюстно-лицевой хирургии понимают собственно, сам остеогенез, дентиногенез и рост пародонтальной связки.
Истинным остеоиндуктивным костным биоматериалом является только собственная кость пациента, однако ее дефицит и сложности по забору и хранению привели к более широкому использованию аналогов - аллогенной кости, где донором является другой индивидуум. Поэтому сегодня очень широко используют модификации остеопластических материалов на основе гидроксида кальция, например, в виде пористой гидроксиапатитной керамики и трикальцийфосфата (Tanaka, Т., Komaki, Н., Chazono, М., Kitasato, S., Kakuta, A., Akiyama, S., Marumo, K. Basic research and clinical application of beta-tricalcium phosphate (β-TCP). Morphologie. 2017; 101(334):164-172. https://doi.org/10.1016/j.morpho.2017.03.002), а также костезамещающие биоматериалы на основе костного коллагена и морфогенетических белков (Song, Y., Wan, L., Zhang, S., Du, Y. Biological response to recombinant human bone morphogenetic protein-2 on bone-implant osseointegration in ovariectomized experimental design. Journal of Craniofacial Surgery. 2019; 30(1): 141-144. https://doi.org/10.1097/SCS. 0000000000004992). Всем перечисленным выше биоматериалам присущи только остеокондуктивные свойства, в это понятие включается способность материала служить матрицей, основой для роста новообразованной костной ткани. Для проявления остеоиндуктивных свойств в составе таких биоматериалов должны присутствовать факторы роста и другие стимулирующие остеогенез вещества, например, сульфатированные или несульфатированные гликозаминогликаны (гиалуроновая кислота).
В этой связи проблема ускорения репаративного остеогенеза имеет большую актуальность и разработка способа ускорения репаративного остеогенеза с использованием остеопластических материалов, представляет большую практическую значимость.
Одним из опасных осложнений антирезорбтивной терапии при лечении метастатических поражений скелетных костей (при раке молочной железы и простаты), множественной миеломы у онкологических больных, а также остеопороза, с использованием аналогов пирофосфата, является бисфосфонатный остеонекроз челюстей. Данное осложнение клинически проявляется в виде оголения и последующего омертвления целого участки верхней или нижней челюсти, причем некроз может затрагивать не только кортикальную кость, но и сам костный мозг. Достоверно известно, что бисфосфонаты, действие которых заключается в основном, в блокировке самообновления кости за счет преобразований в клеточной структуре остеокластов, обладают достаточно высоким сродством к костной ткани, аккумулируются в ней до тех пор, пока не будут резорбированы новым поколением клеток-остеокластов, что является длительным и трудноустранимым явлением. В этой связи, даже при отмене использования бисфосфонатов у пациентов с бисфосфонатным остеонекрозом челюстных костей остаются длительно незаживающие очаги деструкции костной ткани, в которых процесс самообновления костной ткани остановлен.
Такие некротизированные участки кости удаляют хирургическим путем до здоровой кости, операция имеет сходный характер с секвестрэктомией и компактостеотомии при остеомиелите костной ткани. Затем с целью повышения эффективности репаративного остеогенеза послеоперационные костные полости заполняют аутокостью, пористой гидроксиапатитной керамикой, костным коллагеном, а также другими биоматериалами, используемыми для стимулирования репаративных процессов в челюстных костях: «Биальгин», «Остеогенокс», «Биоматрикс», «Коллапан» и другие. Все они в той или иной степени обладают остеотропными, гемостатическими и антибиктериальными свойствами и иммунной инертностью, несут положительные и отрицательные стороны.
В аспекте ускорения репаративного остеогенеза в костных полостях после удаления пораженных участков костной ткани челюсти при бисфосфонатном остеонекрозе наиболее близким предлагаемому способу по технической сути и достигаемому результату является использование полисахарида животного происхождения хонсурида для заполнения послеоперационных костных полостей (RU 2112550 С1, заявка на изобретение RU №94027755/14 от 20.07.1994, МГЖ А61К 6/097).
Установлено, что использование хонсурида ускоряет течение репаративного остеогенеза в послеоперационных костных полостях челюстей при достаточном кровоостанавливающем и противовоспалительном эффекте, а также хорошей биосовместимости и простой методике применения.
Вместе с этим, при использовании хонсурида скорость репаративного остеогенеза невелика, поскольку формирование полноценного костного регенерата в послеоперационной костной полости происходит не ранее 6 месяцев после хирургического вмешательства. Кроме этого, при бисфосфонатном остеонекрозе челюсти чаще всего происходит поражение кости вместе со слизистой оболочкой полости рта, это требует изоляции и герметизации раны от слюны ввиду высокой вероятности присоединения вторичной инфекции, что не всегда возможно обеспечить только за счет пластики местными тканями.
Поставлена задача: ускорить формирование костного регенерата после удаления некротизированной кости при бисфосфонатном остеонекрозе, исключив инфицирование за счет надежной герметизации раны.
Поставленная задача решена путем использования смеси хонсурида, рибофлавина и гиалуроновой кислоты, введенных в состав гелиокомпозита, отверждаемого после помещения в рану под действием ультрафиолетовых лучей мощностью 450 мВт с длиной волны 450-470 нм в течение 40 секунд.
Хонсурид использован в виде стерильного деминерализованного и лиофилизированного (лишенного антигенной активности) порошка, представляющего собой полисахарид животного происхождения, способствующий формированию новых коллагеновых микрофибрилл, необходимых для восстановления трабекулярной структуры костной ткани в процессе репаративного остеогенеза в костных полостях челюстей в послеоперационном периоде.
Рибофлавин (витамин В2) ускоряет рост и регенерацию клеток, участвует в обезвреживании токсинов и других вредных веществ, оказывает антиоксидантное действие, регулирует окислительно-восстановительные процессы. Известно, что рибофлавин разрушается на свету (поэтому его рекомендуют хранить в темном месте), однако, при воздействии ультрафиолетовых лучей высокой интенсивности происходит активизация рибофлавина, в результате которой он оказывается способным сшивать коллагеновые волокна (Источники: https://www.vesti.ru/doc.html?id=3248406; https://news.cornell.edu/stories/2020/03/two-step-method-patches-herniated-disc).
Гиалуроновая кислота является активным хондропротекторным средством, оказывает стимулирующее влияние на репаративные процессы в структурах соединительнотканного происхождения, а также способствует ингибированию в них дистрофических посттравматических процессов. Механизмом репаративного действия гиалуроновой кислоты выступает стимулирование синтеза гликозаминогликанов и коллагена.
Суть лечебного воздействия разработанного способа заключается в следующем. Воздействие ультрафиолетовых лучей мощностью 450 мВт с длиной волны 450-470 нм в течение 40 секунд активирует рибофлавин, в результате чего хонсурид из смеси и коллагеновые волокна из раны соединяются, формируя вместе с гелиокомпозитом прочную и герметичную костную пломбу. В течение короткого промежутка времени (1-6 часов) под стимулирующем влиянием 2% гиалуроновой кислоты в рану начинают мигрировать плюрипотентные клетки из неповрежденных участков костной ткани, способствуя ускорению репаративного остеогенеза и формированию трабекулярной структуры новообразованной кости, которая через 2-3 месяца полностью замещает гелиокомпозит.
Способ осуществляется следующим образом. Производят разведение 40 мг хонсурида в рибофлавине и 2% гиалуроновой кислоте с последующем добавлением полученной смеси к гелиокомпозиту из расчета 40 мг хонсурида на 20 мг рибофлавина, 40 мг 2% гиалуроновой кислоты и 120 мг гелиокомпозита. Полученную смесь вносят на шпателе в рану, аккуратно утрамбовывая по краям костной раны и отверждают с помощью стоматологической фотополимеризационной лампы ультрафиолетовыми лучами мощностью 450 мВт с длиной волны 450-470 нм в течение 40 секунд. В результате получается прочная герметичная костная заплата на месте костной раны, которая не требует дополнительной изоляции от слюны лоскутом из местных тканей.
Опыт использования разработанного способа показал, что во всех случаях его применения отмечается ускорение репаративного остеогенеза без воспалительных осложнений и рецидивов заболевания, подтвержденное клиническими примерами, которые приводим ниже.
1. Больная С., 55 лет, обратилась с жалобами на боли в районе верхней челюсти слева, неприятный запах изо рта, периодическое появление гноя в полости рта в области оголенных участков кости вокруг 22, 23, 24 зубов (фиг. 1). Из анамнеза установлено, что больная наблюдается у онколога с диагнозом «Первичный множественный рак левой молочной железы, T2N1M0, состояние после проведенного комплексного лечения (мастэктомия слева, лучевая, бисфосфонатотерапия): прогрессирование в кости таза, головки бедренных костей, в область челюстных костей стабилизация процесса». Больная принимала препараты золедроновой кислоты по 40 мг внутривенно 1 раз в 2,5 месяца в течение 3 лет.
Лечение. Под инфильтрационной и проводниковой анестезией Sol.Ultracaini 4% с адреналином 1:100000 выполнена операция с удалением небной кортикальной пластинки вокруг 22, 23, 24 зубов по поводу бисфосфонатного остеонекроза верхней челюсти (фиг. 2) с кюретажем раны и удалением грануляций. Послеоперационная костная полость диаметром 35 мм во время операции заполнена смесью хонсурида, рибофлавина и гиалуроновой кислоты, введенных в состав гелиокомпозита, отвержденного после помещения в рану под действием ультрафиолетовых лучей мощностью 450 мВт с длиной волны 450-470 нм в течение 40 секунд.
В результате достигнута надежная герметизация раны и обеспечено ускорение репаративного остеогенеза, что подтверждено результатами дальнейшего клинического наблюдения. Динамическое наблюдение в раннем послеоперационном периоде (1-7 суток) показало, что у больной отсутствовали болевой синдром, гноетечение и отек околочелюстных мягких тканей. При рентгенологическом обследовании в позднем послеоперационном периоде (через 3 месяца) установлено, что заживление послеоперационного костного дефекта завершилось формированием полноценного костного регенерата со средней плотностью 450 ЕД Хаунсфилда.
На фиг. 1 изображен участок оголенной некротизированной кортикальной пластинки верхней челюсти (1) больной С. в области отсутствующих 22, 23, 24 зубов (2) до операции.
На фиг. 2 изображен фрагмент удаленной у больной С. некротизированной кортикальной пластинки кости верхней челюсти (3) и грануляции (4).
2. Больной К., 47 лет, обратился с жалобами на боли в области нижней челюсти с иррадиацией по ходу 2 ветви V пары черепно-мозговых нервов слева, общую слабость, дефект слизистой оболочки полости рта с оголением костной ткани челюсти и гноетечение из свищевого хода на месте отсутствующего 37 зуба. Из анамнеза установлено, что больной наблюдается у онколога с диагнозом «Рак предстательной железы, T2N1M0, состояние после проведенного комплексного лечения (лучевая, бисфосфонатотерапия): прогрессирование в область челюстных костей, позвоночника, стабилизация процесса». Больной принимал препараты золедроновой кислоты по 40 мг внутривенно 1 раз каждые 2 месяца в течение 2 лет. Лечение. Под инфильтрационной и проводниковой анестезией Sol. Ultracaini 4% с адреналином 1:100000 больному К. выполнена операция с удалением некротизированной костной ткани по поводу бисфосфонатного остеонекроза в области тела и ветви нижней челюсти слева (фиг. 3).
Послеоперационная костная полость диаметром 49 мм во время операции заполнена смесью хонсурида, рибофлавина и гиалуроновой кислоты, введенных в состав гелиокомпозита, отвержденного после помещения в рану под действием ультрафиолетовых лучей мощностью 450 мВт с длиной волны 450-470 нм в течение 40 секунд. В результате достигнута надежная герметизация раны и обеспечено ускорение репаративного остеогенеза, что подтверждено результатами дальнейшего клинического наблюдения. Клиническое наблюдение показало, что в послеоперационном периоде у больного отсутствовали болевой синдром и отек околочелюстных мягких тканей. При динамическом обзорном рентгенологическом обследовании в сроки 1-4 месяца после операции выявлено ускоренное заживление оперированного участка остеонекроза, который заполнился сформированной молодой костной тканью плотностью 475 ЕД Хаунсфилда спустя 4 месяца после операции (фиг. 4).
На фиг. 3 изображена ортопантомограмма больного К., выполненная до операции, на которой отчетливо видны очаги деструкции и некроза костной ткани в области тела (5) и ветви (6) нижней челюсти слева.
На фиг. 4 изображена ортопантомограмма больного К., выполненная через 4 месяца после операции с удалением некротизированной костной ткани по поводу бисфосфонатного остеонекроза, на которой видно успешное восстановление плотности кости в области тела (7) и ветви (8) нижней челюсти слева.
Таким образом, в результате применения заявляемого способа обеспечивается ускорение репаративного остеогенеза при бисфосфонатном остеонекрозе, репарация кости происходит с образованием полноценной трабекулярной структуры, полностью идентичной нативной кости, отсутствует иммунный ответ даже в больших по протяженности костных ранах, достигается надежная герметизация раны, исключающая инфицирование.

Claims (1)

  1. Способ ускорения репаративного остеогенеза при бисфосфонатном остеонекрозе, включающий использование хонсурида, отличающийся тем, что производят разведение хонсурида в рибофлавине и 2% гиалуроновой кислоте, с последующим добавлением полученной смеси к гелиокомпозиту из расчета: 40 мг хонсурида на 20 мг рибофлавина, 40 мг 2% гиалуроновой кислоты и 120 мг гелиокомпозита, внесение полученного состава в рану и отверждение его в течение 40 секунд фитополимеризационной лампой мощностью 450 мВт с диной волны 450-470 нм.
RU2020113948A 2020-04-03 2020-04-03 Способ ускорения репаративного остеогенеза при бисфосфонатном остеонекрозе RU2745584C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020113948A RU2745584C1 (ru) 2020-04-03 2020-04-03 Способ ускорения репаративного остеогенеза при бисфосфонатном остеонекрозе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020113948A RU2745584C1 (ru) 2020-04-03 2020-04-03 Способ ускорения репаративного остеогенеза при бисфосфонатном остеонекрозе

Publications (1)

Publication Number Publication Date
RU2745584C1 true RU2745584C1 (ru) 2021-03-29

Family

ID=75353159

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020113948A RU2745584C1 (ru) 2020-04-03 2020-04-03 Способ ускорения репаративного остеогенеза при бисфосфонатном остеонекрозе

Country Status (1)

Country Link
RU (1) RU2745584C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2074702C1 (ru) * 1994-09-30 1997-03-10 Виктор Николаевич Балин Материал для восстановления костной ткани
RU2112550C1 (ru) * 1994-07-20 1998-06-10 Виктор Николаевич Балин Хонсурид как препарат для заполнения послеоперационных костных полостей
US8834928B1 (en) * 2011-05-16 2014-09-16 Musculoskeletal Transplant Foundation Tissue-derived tissugenic implants, and methods of fabricating and using same
RU2593817C2 (ru) * 2014-10-20 2016-08-10 Андрей Константинович Иорданишвили Способ ускорения процесса репаративного остеогенеза

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2112550C1 (ru) * 1994-07-20 1998-06-10 Виктор Николаевич Балин Хонсурид как препарат для заполнения послеоперационных костных полостей
RU2074702C1 (ru) * 1994-09-30 1997-03-10 Виктор Николаевич Балин Материал для восстановления костной ткани
US8834928B1 (en) * 2011-05-16 2014-09-16 Musculoskeletal Transplant Foundation Tissue-derived tissugenic implants, and methods of fabricating and using same
RU2593817C2 (ru) * 2014-10-20 2016-08-10 Андрей Константинович Иорданишвили Способ ускорения процесса репаративного остеогенеза

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GENDLER E. (1986). Perforated demineralized bone matrix: A new form of osteoinductive biomaterial. Journal of Biomedical Materials Research, 20(6), 687-697. doi:10.1002/jbm.820200603. *

Similar Documents

Publication Publication Date Title
INCHINGOLO et al. Trial with Platelet-Rich Fibrin and Bio-Oss used as grafting materials in the treatment of the severe maxillar bone atrophy: clinical and radiological evaluations.
Thomas et al. Calcium sulfate: a review
RU2620884C1 (ru) Способ направленной регенерации костной ткани
Cardoso et al. Current considerations on bone substitutes in maxillary sinus lifting
You et al. Platelet-enriched fibrin glue and platelet-rich plasma in the repair of bone defects adjacent to titanium dental implants.
Deenadayalan et al. Management of large preiapical lesion with the combination of second generation platelet extract and hydroxyapatite bone graft: A report of three cases
Fernandes et al. Calcium sulfate as a scaffold for bone tissue engineering: a descriptive review
Zhou et al. Effect of Choukroun platelet-rich fibrin combined with autologous Micro-Morselized bone on the repair of mandibular defects in rabbits
Mohammed et al. The role of adding hyaluronic acid in the grafting process for the repair of an experimentally induced tibial defect in dogs' model
RU2745584C1 (ru) Способ ускорения репаративного остеогенеза при бисфосфонатном остеонекрозе
Gökmenoğlu et al. Treatment of different types of bone defects with concentrated growth factor: four case reports
RU2738085C1 (ru) Способ ускорения репаративной регенерации костной ткани
Mohammed et al. Evaluation the effect of high and low viscosity Nano-hydroxylapatite gel in repairing of an induced critical-size tibial bone defect in dogs: Radiolographical study
Assadi et al. Concentrated growth factor application in alveolar ridge preservation on anterior teeth. A split-mouth, randomized, controlled clinical trial
Melek et al. The use of injectable platelet rich fibrin in conjunction to guided bone regeneration for the management of well contained ridge defect at the time of extraction
de Camargo Major approaches to dental implants in the biological environment of bone regeneration: a systematic review
Cunningham The use of calcium phosphate cements in the maxillofacial region
Aroni et al. Guided Bone Regeneration in Post-Extraction Socket with Partial Absence of Vestibular Table and the Use of L-PRF
da Silva Esteves et al. Major aproaches of the use of FRP and Bio-Oss® in bone regeneration and elevation for implantology: a concise systematic review
RU2765850C1 (ru) Остеопластическая композиция для ремоделирования периимплантной зоны челюстной кости
DUDEK et al. THE USE OF BIPHASIC CALCIUM SULFATE IN TWO-STAGE TREATMENT OF A DENTIGEROUS CYST OF THE MANDIBLE-A CASE REPORT.
RU2729651C1 (ru) Остеопластическая композиция для субантральной аугментации
Tuersun et al. Application of filling materials in autologous tooth transplantation
RU2330623C2 (ru) Способ пластики костных дефектов в челюстно-лицевой области
Arısan Biodegradation of injectable calcium phosphate bone cements: a dental perspective