RU2742925C1 - Способ определения относительных дальностей от источника радиоизлучения - Google Patents

Способ определения относительных дальностей от источника радиоизлучения Download PDF

Info

Publication number
RU2742925C1
RU2742925C1 RU2020134735A RU2020134735A RU2742925C1 RU 2742925 C1 RU2742925 C1 RU 2742925C1 RU 2020134735 A RU2020134735 A RU 2020134735A RU 2020134735 A RU2020134735 A RU 2020134735A RU 2742925 C1 RU2742925 C1 RU 2742925C1
Authority
RU
Russia
Prior art keywords
given
quadrature components
group
stations
radio
Prior art date
Application number
RU2020134735A
Other languages
English (en)
Inventor
Владимир Петрович Панов
Виктор Владимирович Приходько
Original Assignee
Акционерное общество "Национальное РадиоТехническое Бюро" (АО "НРТБ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Национальное РадиоТехническое Бюро" (АО "НРТБ") filed Critical Акционерное общество "Национальное РадиоТехническое Бюро" (АО "НРТБ")
Priority to RU2020134735A priority Critical patent/RU2742925C1/ru
Application granted granted Critical
Publication of RU2742925C1 publication Critical patent/RU2742925C1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S13/48Indirect determination of position data using multiple beams at emission or reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/48Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being continuous or intermittent and the phase difference of signals derived therefrom being measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Изобретение относится к радионавигации и может использоваться для определения относительных дальностей от источника радиоизлучения (ИР), находящегося на стационарном или подвижном объекте. Достигаемый технический результат - повышение точности и увеличение зоны однозначного определения упомянутых относительных дальностей. В заявленном способе на объекте синхронизировано формируют и передают радиосигнал в виде двух групп, каждую из которых формируют из трех компонент, являющихся гармоническими колебаниями с равными амплитудами и с заданными частотами. Одно из трех гармонических колебаний первой группы является общим с одним из трех гармонических колебаний второй группы. На каждой станции синхронизировано квадратурно принимают передаваемый с объекта радиосигнал. Потактно с заданными частотой дискретизации и количеством тактов в цикле формируют его цифровые квадратурные компоненты (ЦКК). Из сформированных ЦКК выделяют и формируют для каждой группы три пары цифровых квадратурных компонент (КК), соответствующих компонентам передаваемых радиосигналов. Затем путем накопления КК по заданному количеству тактов формируют три пары цифровых квадратурных компонент, соответствующих указанным группам. С использованием полученных таким образом цифровых квадратурных компонент формируют приведенные в способе параметры и по ним для каждой k-й группы станций определяют временные задержки (ВЗ) относительно k-й группы заданной станции. ВЗ передают в единый центр приема и обработки радиосигналов. По ВЗ и при выполнении заданных в способе условий однозначно определяют относительные дальности от ИР до антенн станций независимо от удаленности движущегося объекта до станций. Способ позволяет исключить влияние отраженных, например, от земли радиосигналов и случайных фаз гетеродинов передатчика и приемников. Между ИР и совокупностью принимающих станций не требуется общая синхронизация.

Description

Изобретение относится к радионавигации и может быть использовано для определения относительных дальностей от фазового центра (ФЦ) антенны источника радиоизлучения (ИР), находящегося на передающем радиосигналы объекте, в том числе подвижном, до ФЦ антенн станций наземной системы, и управления его движением в зоне навигации. Радиосигнал формирует и передает источник радиоизлучения. Его принимают системой стационарных наземных станций с заданными координатами ФЦ их антенн, передают результаты принятых и обработанных на станциях радиосигналов в единый центр приема и обработки и в нем определяют упомянутые относительные дальности. Реализация способа позволит, в том числе, упростить соответствующие системы позиционирования, обеспечить точность и однозначность измерения указанных относительных дальностей.
Известны способы определения относительных дальностей, основанные на применении угломерных, дальномерных, разностно и суммарно-дальномерных и комбинированных методов определения местоположения объекта с амплитудными, временными, частотными, фазовыми и импульсно-фазовыми методами измерения параметров радиосигнала (Патенты РФ №№2115137, 2213979, 2258242, 2264598, 2309420, 2325666, 2363117, 2371737, 2378660, 2430385, 2439617, 2506605, 2507529, 2510518, 2539968, 2558640, 2559813, 2567114, 2568104, 2572589, 2584976, 2597007, 2598000, 2599984, 2602506, 2617711, 2617448, 2620359, 2653506, 2657237, 2715059, 2725106; Патенты США №№9423502 В2, 9465099 В2, 9485629 В2, 9488735 В2, 9661604 В1, 9681267 В2, 2016/0327630 А1. 2016/0330584 А1, 2016/0337933 А1, 2019265363 А1; Основы испытаний летательных аппаратов / Е.И. Кринецкий и др. Под ред. Е.И. Кринецкого. - М.: Машиностр., 1979, с. 64-89; Радиотехнические системы / Ю.М. Казаринов и др. Под ред. Ю.М. Казаринова. - М.: ИЦ «Академия», 2008, с. 7, 17-18, п.п. 7.1-7.4, гл. 10.; Мельников Ю.П., Попов С.В. Радиотехническая разведка. Методы оценки эффективности местоопределения источников излучения. - М.; «Радиотехника», 2008, гл. 5; Кинкулькин И.Е. и др. Фазовый метод определения координат. - М.: Сов. радио, 1979, с. 10-11, 97-100). Известные способы имеют те или иные недостатки, например, необходимость механического перемещения антенной системы, невозможность однозначного определения координат объекта, необходимость априорной информации о местоположении объекта, необходимость общей синхронизации передающих и принимающих радиосигналы радиотехнических объектов, не учитывают влияние на результат отражения радиоволн, например, от земли, не исключают случайные фазы гетеродинов, имеют недостаточные быстродействие и точность.
По критерию минимальной достаточности наиболее близким является способ определения относительных дальностей по патенту RU №2718618.
Преимуществом заявляемого способа определения относительных дальностей от ФЦ антенны ИР, находящегося на передающем радиосигналы объекте, в том числе подвижном, до ФЦ антенн станций наземной системы по сравнению с известными способами является повышение точности и увеличение зоны однозначного определения указанных относительных дальностей. Это достигается тем, что на объекте синхронизировано формируют и передают радиосигнал в виде двух групп, каждую из которых формируют из трех компонент, являющихся гармоническими колебаниями с равными амплитудами и с заданными частотами, причем одно из трех гармонических колебаний первой группы является общим с одним из трех гармонических колебаний второй группы. На каждой станции синхронизировано квадратурно принимают передаваемый с объекта радиосигнал. Потактно с заданными частотой дискретизации и количеством тактов в цикле формируют его цифровые квадратурные компоненты (ЦКК). Из сформированных ЦКК выделяют и формируют для каждой группы три пары цифровых квадратурных компонент (КК), соответствующих компонентам передаваемых радиосигналов. Затем путем накопления КК по заданному количеству тактов формируют три пары цифровых квадратурных компонент, соответствующих указанным группам. С использованием полученных таким образом цифровых квадратурных компонент формируют приведенные в способе параметры и по ним для каждой k-й группы станций определяют временные задержки (ВЗ) относительно k-й группы заданной станции. ВЗ передают в единый центр приема и обработки радиосигналов. По ВЗ и при выполнении заданных в способе условий однозначно определяют относительные дальности от ИР до антенн станций независимо от удаленности движущегося объекта до станций.
Для достижения указанного технического результата в соответствии с настоящим изобретением в способе определения относительных дальностей от источника радиоизлучения, находящегося на передающем радиосигналы объекте, в том числе подвижном, передаваемые им радиосигналы принимают системой, состоящей из n-х упорядоченно пронумерованных наземных станций, где индекс n изменяется от 1 до заданного N, с известными в заданной трехмерной декартовой системе координатами фазовых центров их антенн, а на объекте синхронизировано формируют и передают радиосигнал в виде двух k-тых групп, каждую из которых формируют из трех компонент, являющихся гармоническими колебаниями с равными амплитудами и соответственно заданными частотами
Figure 00000001
где индекс k изменяется от 1 до 2, а индекс i изменяется от 1 до 3, F0k - заданные частоты, ΔFk - интервал между соседними i-ми частотами k-й группы, при этом ΔF1 и ΔF2 заданы таким образом, что ΔF1<ΔF2 и ΔF2/ΔF1 является заданным целым числом, причем одно из трех его гармонических колебаний первой группы является общим с одним из трех его гармонических колебаний второй группы, упомянутый радиосигнал синхронизировано квадратурно принимают на каждой наземной n-й станции, при этом либо осуществляют перенос его спектра посредством сдвига на частоту гетеродина, либо его не осуществляют, потактно с заданной частотой дискретизации df на каждом j-м такте, где индекс j изменяется от 0 до заданного в цикле количества тактов J, формируют соответствующие ему цифровые квадратурные компоненты
Figure 00000002
из сформированных таким образом цифровых квадратурных компонент выделяют и формируют для каждой k-й группы три пары цифровых квадратурных компонент
Figure 00000003
соответствующих i-м компонентам передаваемых радиосигналов, принимаемых на n-тых станциях, формируют путем накопления компонент
Figure 00000004
по j на заданном интервале от j=0 до заданного J три пары цифровых квадратурных компонент
Figure 00000005
для каждого принимаемого на n-й станции радиосигнала последовательно с использованием ранее сформированных цифровых квадратурных компонент формируют параметры, соответствующие k-тым группам принимаемых на n-тых станциях радиосигналов
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
формируют первую и вторую пары квадратурных компонент
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
где a tan2(x,y) равно величине угла (в радианах), образованного осью х и прямой, содержащей начало (0,0) и точку (x,y), в интервале от -π до π, исключая (-π), а π - известное число, равное отношению длины окружности к ее диаметру,
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
где |A| - модуль числа А,
Figure 00000022
- соответственно, либо частоты, полученные из упомянутых частот
Figure 00000023
посредством сдвига на частоту гетеродина при указанном переносе спектра, либо частоты, равные
Figure 00000024
в противном случае, по сформированным таким образом параметрам в качестве квадратурных компонент
Figure 00000025
выбирают при условии
Figure 00000026
первую пару квадратурных компонент
Figure 00000027
в противном случае выбирают вторую пару квадратурных компонент
Figure 00000028
по выбранным парам квадратурных компонент для каждой k-й группы n-й станции определяют временные задержки
Figure 00000029
относительно k-й группы заданной станции с индексом n=n0 в соответствии с выражением
Figure 00000030
Figure 00000031
передают значения
Figure 00000032
в единый центр приема и обработки радиосигналов по соответствующим n-м линиям связи, в нем по полученным таким образом временным задержкам однозначно с учетом скорости распространения радиосигнала с определяют относительные дальности до фазового центра антенны объекта от указанных фазовых центров антенн станций Dn в зоне однозначного определения относительных дальностей независимо от удаленности объекта до станций, равной с/ΔF1, с точностью, определяемой гармоническим колебанием с частотой ΔF2, при условии, что расстояние между фазовыми центрами антенн станций для любой пары из N станций, отнесенное к скорости распространения радиосигнала, не должно превышать значение периода Т, равного 1/ΔF1.
Совокупность всех признаков позволяет определить упомянутые относительные дальности с достижением указанного технического результата.
В существующем уровне техники не выявлено источников информации, которые содержали бы сведения о способах того же назначения с указанной совокупностью признаков. Ниже изобретение описано более детально.
Сущность способа заключается в следующем. Источник радиоизлучения находится на передающем радиосигналы объекте, в том числе подвижном. Радиосигнал принимают системой, состоящей из n-х упорядоченно пронумерованных наземных станций, где индекс n изменяется от 1 до заданного N, с известными в заданной трехмерной декартовой системе координатами ФЦ их антенн. На объекте синхронизировано формируют и передают радиосигнал в виде двух k-х групп, каждую из которых формируют из трех компонент, являющихся гармоническими колебаниями с равными амплитудами и соответственно заданными частотами
Figure 00000033
где индекс k изменяется от 1 до 2, а индекс i изменяется от 1 до 3, F0k - заданные частоты, ΔFk - интервал между соседними i-ми частотами k-й группы. При этом ΔF1 и ΔF2 заданы таким образом, что ΔF1<ΔF2 и ΔF2/ΔF1 является заданным целым числом, причем одно из трех его гармонических колебаний первой группы является общим с одним из трех его гармонических колебаний второй группы. Этот радиосигнал синхронизировано квадратурно принимают на каждой наземной n-й станции. При этом либо осуществляют перенос его спектра посредством сдвига на частоту гетеродина, либо его не осуществляют (в зависимости от располагаемой при реализации способа элементной базы и используемого частотного диапазона). Затем потактно с заданной частотой дискретизации df на каждом j-том такте, где индекс j изменяется от 0 до заданного в цикле количества тактов J, формируют соответствующие ему цифровые квадратурные компоненты (ЦКК) In,j и Qn,j. Из сформированных таким образом ЦКК выделяют и формируют для каждой k-й группы три пары цифровых квадратурных компонент
Figure 00000034
соответствующих i-тым компонентам передаваемых радиосигналов, принимаемых на n-тых станциях. Формируют путем накопления компонент
Figure 00000035
по j на заданном интервале от j=0 до заданного J три пары цифровых квадратурных компонент
Figure 00000036
и
Figure 00000037
Для каждого принимаемого на n-й станции радиосигнала последовательно с использованием ранее сформированных цифровых квадратурных компонент формируют параметры (1). По сформированным таким образом параметрам (1) определяют временные задержки
Figure 00000038
в соответствии с выражением (2). Значения
Figure 00000039
передают в единый центр (ЕЦ) приема и обработки радиосигналов по соответствующим n-тым линиям связи (электрическим, оптическим и др.). В нем по полученным таким образом временным задержкам однозначно с учетом скорости распространения радиосигнала определяют относительные дальности Dn до ФЦ антенны ИР от указанных ФЦ антенн станций в зоне однозначного определения относительных дальностей независимо от удаленности объекта до станций, равной 1/ΔF1, с точностью, определяемой гармоническим колебанием с частотой ΔF2. При этом должно быть выполнено условие, что расстояние между ФЦ антенн станций для любой пары из N станций, отнесенное к скорости распространения радиосигнала, не должно превышать значение периода Т, равного 1/ΔF1.
В принципе, хотя это и не обязательно, значения величин ΔFk, df, J могут быть заданы таким образом, чтобы отношение продолжительности цикла, равной J/df, к упомянутому периоду Т было целым числом. В этой ситуации определенные относительные задержки, например, для покоящегося объекта от цикла к циклу не будут изменяться во времени. Если это условие не выполняется, тогда каждая из относительных дальностей смещается на одну и ту же величину, что не влияет на точность определения координат по относительным дальностям. В принципе, можно после каждого цикла центрировать относительные дальности посредством исключения из каждой полученной в цикле относительной дальности среднего значения всех относительных дальностей, полученных в цикле, тогда относительные задержки, например, для покоящегося объекта также не будут изменяться во времени.
Представление квадратурных компонент в цифровом виде дает определенное преимущество при решении задачи за счет простоты ее программной реализации. Одновременное совместное использование радиосигнала в виде двух групп позволяет увеличить зону однозначного определения относительных дальностей и обеспечить высокую точность их определения. Важно и то, что применение одного общего для обеих групп указанного гармонического колебания позволяет использовать пять частот вместо шести. Повышение точности и увеличение зоны однозначного определения относительных дальностей позволят, в свою очередь, повысить, например, точность определения пространственных координат ФЦ антенны объекта по измеренным относительным дальностям от него за счет увеличения зоны однозначного определения относительных дальностей.
Кроме того, предложенный способ позволяет упростить решение, например, задачи определения координат объекта, в том числе, движущегося, поскольку он не требует применения каких-либо дополнительных методов, связанных со счислением относительных дальностей, вызванным тем, что использование функции a tan2(x,y) для вычисления фазы возвращает фазу в интервале угла в радианах от -π до π, а при выходе за пределы интервала при движении объекта фаза претерпевает скачок, что, в свою очередь, приводит к скачку указанного времени задержки. Предлагаемый способ позволяет однозначно определять относительные дальности независимо от удаленности движущегося объекта до станций (радиомаяков).
Для определения координат можно использовать любой из известных методов, например, из защищенных патентами RU (№№2530231, 2530239, 2530240, 2624463, 2640032) или из защищенных международными заявками в системе РСТ (WO/2015/012737, WO/2015/012733, WO/2015/012734) или из опубликованных в статьях автора (Алгоритм определения пространственных координат объекта по относительным дальностям до него // Нелинейный мир. 2015. №5. С.38-41; Итерационный алгоритм определения пространственных координат объекта // Информационно-измерительные и управляющие системы. 2016. Т.14. №7. С. 64-69).
Способ может найти применение для построения навигационно-посадочной системы. Перечислим основные достоинства способа:
- обеспечивает увеличение зоны однозначного определения относительных дальностей до объекта независимо от удаленности движущегося объекта до станций,
- повышает точность определения относительных дальностей,
- позволяет уменьшить количество используемых частот,
- между объектом и совокупностью передающих станций не требуется общая синхронизация,
- исключает влияние отраженных, например, от земли, сигналов,
- позволяет исключить случайные фазы гетеродинов передатчиков и гетеродина приемника,
- существенно упрощает прием и обработку радиосигналов,
- сигналы, заданные в аналитическом виде, проще формировать и преобразовывать, благодаря, в том числе, этому повышается точность измерений,
- обеспечивает возможность производить измерения с использованием существующей элементной базы, программируемых логических интегральных схем (ПЛИС) и микропроцессорной техники,
- позволяет осуществлять одновременные измерения на большом количестве объектов.
Результативность и эффективность использования заявляемого способа состоит в том, что он может быть применен на практике для развития и совершенствования радиотехнических систем определения относительных дальностей, а также в других приложениях. Способ позволяет однозначно определять относительные дальности от объекта с большой точностью и более просто по сравнению с известными способами.
Таким образом, заявляемый способ обеспечивает появление новых свойств, не достигаемых в аналогах. Проведенный анализ позволил установить: аналоги с совокупностью признаков, тождественных всем признакам заявленного технического решения, отсутствуют, что указывает на соответствие заявленного способа условию «новизны».
Также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения действий на достижение указанного результата. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».
Таким образом, заявленное изобретение соответствует критериям «новизна» и «изобретательский уровень», а также критерию «промышленная применимость».

Claims (22)

  1. Способ определения относительных дальностей от источника радиоизлучения, находящегося на передающем радиосигналы объекте, в том числе подвижном, при котором передаваемые им радиосигналы принимают системой, состоящей из n-х упорядоченно пронумерованных наземных станций, где индекс n изменяется от 1 до заданного N, с известными в заданной трехмерной декартовой системе координатами фазовых центров их антенн, а на объекте синхронизировано формируют и передают радиосигнал в виде двух k-х групп, каждую из которых формируют из трех компонент, являющихся гармоническими колебаниями с равными амплитудами и соответственно заданными частотами
    Figure 00000040
    где индекс k изменяется от 1 до 2, а индекс i изменяется от 1 до 3, F0k - заданные частоты, ΔFk - интервал между соседними i-ми частотами k-й группы, при этом ΔF1 и ΔF2 заданы таким образом, что ΔF1<ΔF2 и ΔF2/ΔF1 является заданным целым числом, причем одно из трех его гармонических колебаний первой группы является общим с одним из трех его гармонических колебаний второй группы, упомянутый радиосигнал синхронизировано квадратурно принимают на каждой наземной n-й станции, при этом либо осуществляют перенос его спектра посредством сдвига на частоту гетеродина, либо его не осуществляют, потактно с заданной частотой дискретизации df на каждом j-том такте, где индекс j изменяется от 0 до заданного в цикле количества тактов J, формируют соответствующие ему цифровые квадратурные компоненты
    Figure 00000041
    и
    Figure 00000042
    из сформированных таким образом цифровых квадратурных компонент выделяют и формируют для каждой k-той группы три пары цифровых квадратурных компонент
    Figure 00000043
    и
    Figure 00000044
    соответствующих i-м компонентам передаваемых радиосигналов, принимаемых на n-тых станциях, формируют путем накопления компонент
    Figure 00000045
    по j на заданном интервале от j=0 до заданного J три пары цифровых квадратурных компонент
    Figure 00000046
    для каждого принимаемого на n-й станции радиосигнала последовательно с использованием ранее сформированных цифровых квадратурных компонент формируют параметры, соответствующие k-тым группам принимаемых на n-х станциях радиосигналов
  2. Figure 00000047
  3. Figure 00000048
  4. Figure 00000049
  5. Figure 00000050
  6. формируют первую и вторую пары квадратурных компонент
  7. Figure 00000051
  8. Figure 00000052
  9. Figure 00000053
  10. Figure 00000054
  11. Figure 00000055
  12. где a tan2(x,y) равно величине угла (в радианах), образованного осью х и прямой, содержащей начало (0,0) и точку (х,у), в интервале от -π до π, исключая (-π), а π - известное число, равное отношению длины окружности к ее диаметру,
  13. Figure 00000056
  14. Figure 00000057
  15. Figure 00000058
  16. Figure 00000059
  17. Figure 00000060
  18. Figure 00000061
  19. где |А| - модуль числа А,
    Figure 00000062
    - соответственно, либо частоты, полученные из упомянутых частот
    Figure 00000063
    посредством сдвига на частоту гетеродина при указанном переносе спектра, либо частоты, равные
    Figure 00000064
    в противном случае, по сформированным таким образом параметрам в качестве квадратурных компонент
    Figure 00000065
    и
    Figure 00000066
    выбирают при условии
    Figure 00000067
    первую пару квадратурных компонент
    Figure 00000068
    в противном случае выбирают вторую пару квадратурных компонент
    Figure 00000069
    по выбранным парам квадратурных компонент для каждой k-й группы n-й станции определяют временные задержки
    Figure 00000070
    относительно k-й группы заданной станции с индексом n=n0 в соответствии с выражением
  20. Figure 00000071
    где
  21. Figure 00000072
  22. передают значения
    Figure 00000073
    в единый центр приема и обработки радиосигналов по соответствующим n-тым линиям связи, в нем по полученным таким образом временным задержкам однозначно с учетом скорости распространения радиосигнала с определяют относительные дальности до фазового центра антенны объекта от указанных фазовых центров антенн станций Dn в зоне однозначного определения относительных дальностей независимо от удаленности объекта до станций, равной с/ΔF1, с точностью, определяемой гармоническим колебанием с частотой ΔF2, при условии, что расстояние между фазовыми центрами антенн станций для любой пары из Дистанций, отнесенное к скорости распространения радиосигнала, не должно превышать значение периода Т, равного 1/ΔF1.
RU2020134735A 2020-10-22 2020-10-22 Способ определения относительных дальностей от источника радиоизлучения RU2742925C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020134735A RU2742925C1 (ru) 2020-10-22 2020-10-22 Способ определения относительных дальностей от источника радиоизлучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020134735A RU2742925C1 (ru) 2020-10-22 2020-10-22 Способ определения относительных дальностей от источника радиоизлучения

Publications (1)

Publication Number Publication Date
RU2742925C1 true RU2742925C1 (ru) 2021-02-11

Family

ID=74666087

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020134735A RU2742925C1 (ru) 2020-10-22 2020-10-22 Способ определения относительных дальностей от источника радиоизлучения

Country Status (1)

Country Link
RU (1) RU2742925C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769565C1 (ru) * 2021-05-08 2022-04-04 Общество с ограниченной ответственностью "Генезис-Таврида" Способ определения расстояний от измерительной станции до нескольких транспондеров

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725932A (en) * 1969-11-10 1973-04-03 Decca Ltd Receivers for phase comparison radio navigation systems
US5815117A (en) * 1997-01-02 1998-09-29 Raytheon Company Digital direction finding receiver
JP2009229393A (ja) * 2008-03-25 2009-10-08 Fujitsu Ltd 無線測位システム及び無線測位方法
JP2010117313A (ja) * 2008-11-14 2010-05-27 Toyota Motor Corp レーダ装置
RU2465614C1 (ru) * 2011-06-15 2012-10-27 Михаил Иванович Иващенко Способ приема радиосигналов от источников радиоизлучений
RU2594759C1 (ru) * 2015-10-28 2016-08-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ и устройство определения координат источника радиоизлучения
RU2632922C2 (ru) * 2015-07-17 2017-10-11 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Многопозиционный пассивный радиолокационный комплекс, реализующий комбинированный одноэтапный способ определения местоположения летательного аппарата на этапе захода на посадку
RU2649411C1 (ru) * 2016-12-21 2018-04-03 Федеральное Государственное Унитарное Предприятие Ордена Трудового Красного Знамени Научно-Исследовательский Институт Радио (Фгуп Ниир) Способ измерения параметров движения летательного аппарата в фазовых угломерно-дальномерных системах и устройство его реализующее
RU2718593C1 (ru) * 2019-11-25 2020-04-08 Акционерное общество "Национальное РадиоТехническое Бюро" (АО "НРТБ") Способ определения по измеренным относительным дальностям координат объекта
RU2723986C1 (ru) * 2019-12-26 2020-06-18 Акционерное общество "Национальное РадиоТехническое Бюро" (АО "НРТБ") Способ определения по измеренным относительным дальностям координат объекта

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725932A (en) * 1969-11-10 1973-04-03 Decca Ltd Receivers for phase comparison radio navigation systems
US5815117A (en) * 1997-01-02 1998-09-29 Raytheon Company Digital direction finding receiver
JP2009229393A (ja) * 2008-03-25 2009-10-08 Fujitsu Ltd 無線測位システム及び無線測位方法
JP2010117313A (ja) * 2008-11-14 2010-05-27 Toyota Motor Corp レーダ装置
RU2465614C1 (ru) * 2011-06-15 2012-10-27 Михаил Иванович Иващенко Способ приема радиосигналов от источников радиоизлучений
RU2632922C2 (ru) * 2015-07-17 2017-10-11 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Многопозиционный пассивный радиолокационный комплекс, реализующий комбинированный одноэтапный способ определения местоположения летательного аппарата на этапе захода на посадку
RU2594759C1 (ru) * 2015-10-28 2016-08-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "ВОЕННАЯ АКАДЕМИЯ СВЯЗИ имени Маршала Советского Союза С.М. Буденного" Министерства обороны Российской Федерации Способ и устройство определения координат источника радиоизлучения
RU2649411C1 (ru) * 2016-12-21 2018-04-03 Федеральное Государственное Унитарное Предприятие Ордена Трудового Красного Знамени Научно-Исследовательский Институт Радио (Фгуп Ниир) Способ измерения параметров движения летательного аппарата в фазовых угломерно-дальномерных системах и устройство его реализующее
RU2718593C1 (ru) * 2019-11-25 2020-04-08 Акционерное общество "Национальное РадиоТехническое Бюро" (АО "НРТБ") Способ определения по измеренным относительным дальностям координат объекта
RU2723986C1 (ru) * 2019-12-26 2020-06-18 Акционерное общество "Национальное РадиоТехническое Бюро" (АО "НРТБ") Способ определения по измеренным относительным дальностям координат объекта

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769565C1 (ru) * 2021-05-08 2022-04-04 Общество с ограниченной ответственностью "Генезис-Таврида" Способ определения расстояний от измерительной станции до нескольких транспондеров

Similar Documents

Publication Publication Date Title
Zand et al. A high-accuracy phase-based ranging solution with Bluetooth Low Energy (BLE)
RU2624461C1 (ru) Способ определения координат объекта
RU2718593C1 (ru) Способ определения по измеренным относительным дальностям координат объекта
RU2723986C1 (ru) Способ определения по измеренным относительным дальностям координат объекта
RU2624457C1 (ru) Способ определения координат объекта
US20160077204A1 (en) Measurement accuracy classifier for high-resolution ranging
RU2687057C1 (ru) Способ определения координат движущегося объекта
JP7499773B2 (ja) 測距装置、測距方法
RU2647496C1 (ru) Способ определения координат объекта
US20210389411A1 (en) Locating method for localizing at least one object using wave-based signals and locating system
Nikonowicz et al. Indoor positioning trends in 5G-advanced: Challenges and solution towards centimeter-level accuracy
RU2742925C1 (ru) Способ определения относительных дальностей от источника радиоизлучения
RU2646595C1 (ru) Способ определения координат источника радиоизлучения
CN105578588A (zh) 一种基站同步、定位方法和设备
CN102221695B (zh) 无线电干涉定位中基于双伪随机码的测量频率选择方法
RU2578750C1 (ru) Способ передачи радиосигналов
RU2617448C1 (ru) Способ определения координат объекта
RU2746264C1 (ru) Способ определения относительных дальностей до объекта
US11079463B2 (en) Method and device for position determination
RU2617711C1 (ru) Способ определения координат источника радиоизлучения
RU2743665C1 (ru) Способ определения относительных дальностей от источника радиоизлучения
RU2743573C1 (ru) Способ определения относительных дальностей до объекта
RU2722617C1 (ru) Способ определения по измеренным относительным дальностям координат источника радиоизлучения
RU2640032C1 (ru) Способ определения координат источника радиоизлучения
RU2638572C1 (ru) Способ определения координат объекта