RU2735196C1 - Способ управления посадкой малого беспилотного летательного аппарата - Google Patents

Способ управления посадкой малого беспилотного летательного аппарата Download PDF

Info

Publication number
RU2735196C1
RU2735196C1 RU2019143472A RU2019143472A RU2735196C1 RU 2735196 C1 RU2735196 C1 RU 2735196C1 RU 2019143472 A RU2019143472 A RU 2019143472A RU 2019143472 A RU2019143472 A RU 2019143472A RU 2735196 C1 RU2735196 C1 RU 2735196C1
Authority
RU
Russia
Prior art keywords
unmanned aerial
aerial vehicle
landing
platform
vision system
Prior art date
Application number
RU2019143472A
Other languages
English (en)
Inventor
Дмитрий Владимирович Рыбаков
Денис Александрович Гаврилов
Иван Иванович Пасечников
Александр Владимирович Краюхин
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина"
Priority to RU2019143472A priority Critical patent/RU2735196C1/ru
Application granted granted Critical
Publication of RU2735196C1 publication Critical patent/RU2735196C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/18Visual or acoustic landing aids
    • B64F1/20Arrangement of optical beacons
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Изобретение относится к способу управления посадкой малого беспилотного летательного аппарата (МБЛА) на площадку универсальной роботизированной платформы. Для осуществления способа активируют расположенную на платформе систему бинокулярного стереоскопического зрения, фокусируют ее на МБЛА, вычисляют карты глубины стереоизображения и определяют до него расстояние в реальном времени, на основании которой передают МБЛА управляющие команды по радиоканалу для корректировки его полета. Дополнительно подают команду летательному аппарату на поиск светодиодных меток, отображаемых на светодиодной панели, для ориентации по ним при помощи расположенной на нем системы технического зрения. Обеспечивается повышение точности автоматической посадки беспилотного летательного аппарата. 3 з.п. ф-лы, 5 ил.

Description

Изобретение относится к способам управления скоростью изменения высоты полета и может быть использовано в составе системы управления универсальной роботизированной платформы базирования беспилотных летательных аппаратов для осуществления их контролируемой автоматической посадки.
Из уровня техники известен способ точной посадки беспилотного летательного аппарата (RU 2539703 C1, МПК В64С 13/20, опубл. 27.01.2015). Способ включает в себя выполнение посадки БЛА в улавливающую сеть. При этом предварительно формируют круговую зону захода на посадку, для чего в заданной точке посадки устанавливают ненаправленный источник радиоизлучения, а на борту БЛА устанавливают радиопеленгатор, выполняют автономный ввод БЛА в зону захода на посадку, используя штатное бортовое навигационное оборудование, производят прием сигналов ненаправленного источника радиоизлучения и выполняют его угловое сопровождение в горизонтальной и вертикальной плоскостях бортовым радиопеленгатором, по данным которого с помощью бортовой системы управления формируют команды самонаведения БЛА на источник радиоизлучения.
Недостатком известного способа точной посадки является то, что он применим только к беспилотным летательным аппаратам самолетного типа и не применим для БЛА других типов. Кроме того при посадке БЛА в улавливающую сеть значительно возрастает вероятность повреждения летательного аппарата.
Наиболее близким техническим решением к заявленному изобретению и выбранным в качестве прототипа признан способ контроля автоматической посадки/взлета беспилотного летательного аппарата на круглую посадочную сетку платформы (RU 2490687 C1, МПК G05D 1/06, опубл. 20.08.2013). Способ включает в себя этапы отслеживания движений, вычисления среднего положения, вычисления предсказаний положения и вычисления минимальных значений скорости перемещения сетки, а также этап определения положения беспилотного летательного аппарата, при этом если беспилотный летательный аппарат не может следовать за перемещением сетки и если перемещение сетки является ограниченным, то есть меньше ее радиуса, применяют стратегию посадки путем отслеживания среднего положения сетки, тогда как, если перемещение сетки является значительным, то есть превышающим радиус сетки, применяют стратегию посадки путем позиционирования по минимальным значениям скорости сетки.
Недостатком известного способа является сложность его адаптации для решения задач регулярного автоматического беспилотного мониторинга объектов и территорий в удаленных и труднодоступных районах.
Технической задачей, на решение которой направлено заявленное изобретение, является обеспечение возможности автоматической точной посадки малого беспилотного летательного аппарата на универсальную роботизированную платформу базирования.
Указанная задача решена тем, что способ управления посадкой беспилотного летательного аппарата включает отслеживание системой управления универсальной роботизированной платформы базирования перемещений малого беспилотного летательного аппарата и передачу ему управляющих команд для выполнения маневра на снижение и заход на посадку по радиоканалу. Отличает способ от известных аналогов то, что предварительно активируют светодиодную панель, закрепленную на взлетно-посадочной площадке универсальной роботизированной платформы, отображающую светотехнические метки для ориентации по ним системы технического зрения малого беспилотного летательного аппарата, активируют систему бинокулярного стереоскопического зрения, установленную на универсальной роботизированной платформе базирования, фокусируют ее на летательном аппарате, вычисляя карты глубины стереоизображения и определяя расстояние от него до универсальной роботизированной платформы в реальном времени. На этапах выравнивания и выдерживания подают команду малому беспилотному летательному аппарату на поиск светотехнических меток, отображаемых светодиодной панелью, корректируя его полет на основе вычисляемого расстояния от летательного аппарата до универсальной роботизированной платформы. После нахождения малым беспилотным летательным аппаратом взлетно-посадочной площадки и зависания над ней подают летательному аппарату команду на поиск светотехнических меток, нанесенных на поверхность универсальной роботизированной платформы, а при снижении вертикальной скорости и приземлении корректируют скорость и координаты малого беспилотного летательного аппарата с помощью системы технического зрения упомянутого летательного аппарата и системы бинокулярного стереоскопического зрения платформы базирования.
Положительным техническим результатом, обеспечивающимся раскрытой выше совокупностью признаков способа, является возможность пространственной ориентации малого беспилотного летательного аппарата и его автоматической посадки на универсальную роботизированную платформу базирования малых беспилотных летательных аппаратов (МБЛА).
Изобретение поясняется чертежами, где на фиг. 1 представлен общий вид универсальной роботизированной платформы базирования МБЛА; на фиг. 2 представлена взлетно-посадочная площадка с зафиксированным на ней малым беспилотным летательным аппаратом; на фиг. 3 представлено устройство технического зрения, используемого в составе системы бинокулярного зрения и системе технического зрения беспилотного летательного аппарата; на фиг. 4 представлен малый беспилотный летательный аппарат мультироторного типа с закрепленной на ней системе технического зрения; на фиг 5 приведена геометрическая схема системы бинокулярного зрения.
Способ управления посадкой беспилотного летательного аппарата осуществляется с помощью технических средств, состав и структура которых описаны ниже.
Универсальная роботизированная платформа базирования 1 беспилотных летательных аппаратов закреплена на крыше наземного транспортного средства 2 высокой проходимости. Платформа включает в себя роботизированный док 3, содержащий взлетно-посадочную площадку 4, выполненную с возможностью посадки на нее беспилотных летательных аппаратов 5 вертикального взлета и их фиксации, снабженную узлом бесконтактной зарядки аккумуляторных батарей упомянутых аппаратов.
Система бинокулярного стереоскопического зрения выполнена на основе двух устройств технического зрения, включающих в себя камеры, размещенные в одной плоскости таким образом, что главные оптические оси камер являются взаимно параллельными друг другу и перпендикулярными плоскости камер. Камеры работают синхронно и передают видеопоток по беспроводному каналу связи на сервер системы управления универсальной роботизированной платформы, снабженный Ethernet-контроллером и WiFi-модулем, выполняющий вычисление карты глубины изображения и распознавание трехмерных объектов в реальном времени. Система управления платформой дополнительно снабжена радиостанцией.
Каждое из устройств технического зрения имеет следующую конструкцию.
Основой устройства является корпус 6, с закрепленной на его внешней поверхности видеокамерой 7 с USB-выходом, совмещенной с дальномером (на фигурах условно не показан), подключенной с помощью USB-кабеля к видеовходу 8 блока управления, размещенному внутри корпуса 6, выполненного на основе микроконтроллера 9, содержащего микропроцессорное ядро 10, соединенное с помощью системной шины с FLASH-памятью программ 11, SRAM-памятью данных 12, USB-контроллером 13, Ethernet-контроллером 14, модулем LCD-интерфейса 15, интерфейсом ввода-вывода общего назначения, сгруппированного в восьмиразрядный GPI/O-порт ввода-вывода 16, и модулем подключения SD-карты 17. Видеокамера 7 выполнена с возможностью получения видеопотока сверхвысокой четкости, к USB-контроллеру 13 подключен видеовход 8 блока управления, Ethernet-контроллер 14 подключен к WiFi-модулю 18, к модулю LCD-интерфейса 15 электрически подключен TFT-дисплей 19, к восьмиразрядному GPI/O-порту ввода-вывода 16 подключена кнопочная клавиатура 20, а в слот модуля подключения SD-карты 17 вставлена и электрически соединена с модулем SD-карта 21.
В качестве видеокамеры, выполненной с возможностью получения видеопотока сверхвысокой четкости, может быть применена «экшн камера» модели YI 4K+1 (1 Экшн камера YI 4К+ // YI. URL: http://www.yitechnology.ru/yi-4k-plus-action-camera-specs (дата обращения: 12.12.2019)); в качестве дальномера может быть использован лазерный датчик расстояния VL53L0X2 (2 Датчик расстояния лазерный VL53L0X // MCU Store. URL: https://mcustore.ru/store/datchiki-i-sensory / datchik-rasstoyaniya-lazernyj-v15310x-gy-530/?gclid=Cj0KCQiA89zvBRDoARIsAOIePbAKYLBUlgBsySS-4FmwgHK5KG8k2w9CO0-86m76K2SSK7HJMBKzRFgaAoVHEALwwcB (дата обращения: 12.12.2019)), подключенный к микроконтроллеру посредством интерфейса I2C; в качестве микроконтроллера может быть использована любая известная микросхема на микропроцессорном ядре Cortex-M4F/R, ориентированном на создание высокопроизводительных систем реального времени для авиации и других ответственных применений. В качестве такой микросхемы может быть применен отечественный микроконтроллер К1921ВК01Т3 (3 Практический курс микропроцессорной техники на базе процессорных ядер ARM-Cortex-M3/M4/M4F [электронный ресурс]: учебное пособие - электрон, текстовые дан. (12 Мб) / В.Ф. Козаченко, А.С. Анучин, Д.И. Алямкин и др.; под общ. ред. В.Ф. Козаченко. - М.: Издательство МЭИ, 2019. - 543 с. Режим доступа: http://motorcontrol.ru/wp-content/uploads/2019/04/Практический курс микропроцессор.pdf); в качестве WiFi-модуля может быть использована сборка ESP8266-014 (4 Модуль ESP8266-01 WiFi // MCU Store. URL: https://mcustore.ru/store/moduli-svazi/modul-wifi-esp8266/?gclid=CjwKCAiA58fvBRAzEiwAQW-hzezFoQo60DEhZStdn7fMT-5DeNRZ2oIBfBdkNm5re0i2KG bfe3YFBoCu08QAvD BwE. (дата обращения: 12.12.2019)), а в качестве TFT-дисплея модель RPI LCD5 (5 3.2 inch RPi LCD // ChipDip.ru URL: https://www.chipdip.ru/product/3.2inch-rpi-lcd-b (дата обращения: 12.12.2019)) с резистивным сенсорным экраном и диагональю 8,1 см.
Для осуществления способа посадки малый беспилотный летательный аппарат снабжают системой технического зрения, состоящей из одного устройства, конструкция которого описана выше. Корпус устройства закрепляют на кронштейне 22 малого беспилотного летательного аппарата 5. После активации блока управления с помощью кнопочной клавиатуры 20 и TFT-дисплея 19 производят калибровку устройства, заключающуюся в настройке режимов видеосъемки видеокамеры 7, конфигурировании параметров Ethernet-контроллера 14 и WiFi-модуля 18, для осуществления обмена данными между микроконтроллером 9 системой управления МБЛА и системой управления универсальной роботизированной платформы базирования беспилотных летательных аппаратов. Конфигурирование параметров Ethernet-контроллера 14 и WiFi-модуля 18 включает в себя выбор способа шифрования данных (предпочтительным является шифрование WPA2] и ввод ключа безопасности сети. В SD-карту 21 записывают изображения-эталоны светотехнических меток, нанесенных на поверхность универсальной роботизированной платформы базирования МБЛА, после чего SD-карту 21 устанавливают в гнездо модуля интерфейса подключения SD-карты 17.
Способ управления посадкой беспилотного летательного аппарата осуществляют следующим образом.
При выполнении всех этапов полета система управления универсальной роботизированной платформы базирования осуществляет отслеживание перемещений малого беспилотного летательного аппарата (МБЛА) мультироторного типа по радиоканалу.
Последний этап полета связан с выполнением посадки МБЛА «по-вертолетному», при этом посадочной траектории такого способа присущи следующие элементы: выравнивание, выдерживание и висение.
Перед началом передачи управляющих команд для выполнения маневра на снижение и заход на посадку система управления роботизированной платформы на основе управляющей программы раскрывает створки ангара платформы и с помощью рычажного механизма 23 выдвигает из роботизированного дока 3 взлетно-посадочную площадку 4, а затем активирует светодиодную панель 24, закрепленную на взлетно-посадочной площадке и формирующую сложные динамически изменяемые светотехнические метки, различимые системой технического зрения беспилотного летательного аппарата на большой высоте, обеспечивающие пространственную ориентацию по ним МБЛА. Далее система управления активирует систему бинокулярного стереоскопического зрения, установленную на универсальной роботизированной платформе базирования и фокусирует ее на летательном аппарате.
После подачи команды МБЛА на выполнение маневра на снижение и захода на посадку система управления платформы начинает в реальном времени осуществлять его съемку с помощью системы бинокулярного стереоскопического зрения, вычисляя карты глубины стереоизображения и определяя расстояние от МБЛА до универсальной роботизированной платформы.
Вычисление карт глубины стереоизображения включает в себя предобработку входных данных, вычисление диспаритета пикселей и конечную постобработку выходных данных медианным фильтром. Под диспаритетом понимается расстояние между пикселями одного и того же объекта на левом и правом изображении. Существующие локальные методы по вычислению карты диспаритета основаны на принципе «скользящего окна». Они характеризуются определенной сбалансированностью скорости-качества, хорошо масштабируются и реализуются на таких параллельных архитектурах, как видеокарты6 (6 Kanade Т., Okutomi М.А. Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment // Proceedings of the 1991 IEEE International Conference on Robotics and Automation (ICRA'91). 1991. P. 1088-1095.).
Расстояние от платформы до МБЛА может быть определено следующим образом. Учитывая, что оптические оси видеокамер 7 параллельны, а сами камеры находятся друг от друга на некотором расстоянии d, известно фокусное расстояние камер ƒ и начало координат О (фиг. 5), для вычисления трехмерной координаты точки положения МБЛА М (х, у, z) в мировых координатах трехмерного пространства можно использовать следующие зависимости:
Figure 00000001
где L(x1, у1) - левая проекция точки М; R(x2, у2) - правая проекция точки М; d - расстояние между камерами; ƒ - фокусное расстояние.
Полученные данные передаются по радиоканалу малому беспилотному летательному аппарату и используются системой его управления для корректировки траектории полета летательного аппарата.
На этапах выравнивания и выдерживания система управления платформы подает беспилотному летательному аппарату команду на поиск светотехнических меток, отображаемых светодиодной панелью. Для этого система технического зрения МБЛА с помощью видеокамеры 7 выполняет непрерывную съемку взлетно-посадочной площадки с заданной частотой кадров и разрешением, передавая видеопоток через видеовход 8 и USB-контроллер 13 микроконтроллеру 9 для обработки изображений и распознавания светотехнических меток на основе управляющей программы, хранящейся во FLASH-памяти программ 11. Процедура распознавания меток выполняется в несколько этапов. На первом этапе выполняется бинарное квантование изображения, на втором этапе выполняется логическая обработка изображения, заключающаяся в определении координат и площади найденных меток, на последнем этапе осуществляется идентификация объектов путем сравнения их выборочных характеристик с параметрами объектов-эталонов изображений светотехнических меток, хранящихся в памяти SD-карты 21.
После нахождения беспилотным летательным аппаратом взлетно-посадочной площадки и зависания над ней система управления платформой подает команду беспилотному летательному аппарату на поиск светотехнических меток, нанесенных на поверхность универсальной роботизированной платформы.
При снижении вертикальной скорости и приземлении скорость и координаты малого беспилотного летательного аппарата корректируются с помощью системы технического зрения упомянутого МБЛА и системой управления платформой на основе видеопотока, получаемого от бинокулярной системы стереоскопического зрения способами, описанными выше.
Таким образом, рассмотренный в настоящей заявке способ, обеспечивает посадку малого беспилотного летательного аппарата на взлетно-посадочную площадку универсальной роботизированной платформы в автоматическом режиме с высокой точностью, за счет применения двух систем коррекции положения - системы бинокулярного стереоскопического зрения платформы и системы технического зрения МБЛА.

Claims (4)

1. Способ управления посадкой беспилотного летательного аппарата, включающий отслеживание системой управления универсальной роботизированной платформы базирования перемещений малого беспилотного летательного аппарата и передачу ему управляющих команд для выполнения маневра на снижение и заход на посадку по радиоканалу, отличающийся тем, что предварительно активируют светодиодную панель, закрепленную на взлетно-посадочной площадке универсальной роботизированной платформы, отображающую светотехнические метки для ориентации по ним системы технического зрения малого беспилотного летательного аппарата, активируют систему бинокулярного стереоскопического зрения, установленную на универсальной роботизированной платформе базирования, фокусируют ее на летательном аппарате, вычисляя карты глубины стереоизображения и определяя расстояние от него до универсальной роботизированной платформы в реальном времени; на этапах выравнивания и выдерживания подают команду малому беспилотному летательному аппарату на поиск светотехнических меток, отображаемых светодиодной панелью, корректируя его полет на основе вычисляемого расстояния от летательного аппарата до универсальной роботизированной платформы; после нахождения малым беспилотным летательным аппаратом взлетно-посадочной площадки и зависания над ней подают летательному аппарату команду на поиск светотехнических меток, нанесенных на поверхность универсальной роботизированной платформы, а при снижении вертикальной скорости и приземлении корректируют скорость и координаты малого беспилотного летательного аппарата с помощью системы технического зрения упомянутого летательного аппарата и системы бинокулярного стереоскопического зрения платформы базирования.
2. Способ по п. 1, отличающийся тем, что карты глубины стереоизображения формируют, выполняя предобработку входных данных, вычисление диспаритета пикселей и осуществляя конечную постобработку выходных данных медианным фильтром.
3. Способ по п. 1, отличающийся тем, что для поиска светотехнических меток, отображаемых светодиодной панелью, системой технического зрения МБЛА с помощью видеокамеры выполняют непрерывную съемку взлетно-посадочной площадки с заданной частотой кадров и разрешением, передавая видеопоток через видеовход и USB-контроллер микроконтроллеру системы технического зрения для обработки изображений и распознавания светотехнических меток на основе управляющей программы, хранящейся во FLASH-памяти программ.
4. Способ по п. 3, отличающийся тем, что для распознавания меток выполняют бинарное квантование изображения, далее выполняют логическую обработку изображения, заключающуюся в определении координат и площади найденных меток, затем осуществляют идентификацию объектов путем сравнения их выборочных характеристик с параметрами объектов-эталонов изображений светотехнических меток, хранящихся в памяти SD-карты.
RU2019143472A 2019-12-24 2019-12-24 Способ управления посадкой малого беспилотного летательного аппарата RU2735196C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019143472A RU2735196C1 (ru) 2019-12-24 2019-12-24 Способ управления посадкой малого беспилотного летательного аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019143472A RU2735196C1 (ru) 2019-12-24 2019-12-24 Способ управления посадкой малого беспилотного летательного аппарата

Publications (1)

Publication Number Publication Date
RU2735196C1 true RU2735196C1 (ru) 2020-10-28

Family

ID=73398360

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019143472A RU2735196C1 (ru) 2019-12-24 2019-12-24 Способ управления посадкой малого беспилотного летательного аппарата

Country Status (1)

Country Link
RU (1) RU2735196C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769016C1 (ru) * 2021-08-11 2022-03-28 Федеральное государственное автономное образовательное учреждение высшего образования «Южно-Уральский государственный университет (национальный исследовательский университет)» ФГАОУ ВО «ЮУрГУ (НИУ)» Система управления посадкой многоразовой ракеты с искусственным интеллектом

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007124014A2 (en) * 2006-04-19 2007-11-01 Swope John M System for position and velocity sense and control of an aircraft
US20170314924A1 (en) * 2016-04-28 2017-11-02 Rogerson Aircraft Corporation System and method for determining a synthesized position of a vehicle
RU2666479C1 (ru) * 2015-07-16 2018-09-07 Сафран Электроникс Энд Дифенс Способ обеспечения автоматической посадки летательного аппарата
RU2666975C1 (ru) * 2017-11-22 2018-09-13 Общество с ограниченной ответственностью "СЪЕМКА С ВОЗДУХА" Система посадки беспилотного летательного аппарата вертикального взлета и посадки
WO2019055340A2 (en) * 2017-09-13 2019-03-21 X Development Llc SAFEGUARDING NAVIGATION SYSTEM FOR AERIAL VEHICLES WITHOUT PILOT

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007124014A2 (en) * 2006-04-19 2007-11-01 Swope John M System for position and velocity sense and control of an aircraft
RU2666479C1 (ru) * 2015-07-16 2018-09-07 Сафран Электроникс Энд Дифенс Способ обеспечения автоматической посадки летательного аппарата
US20170314924A1 (en) * 2016-04-28 2017-11-02 Rogerson Aircraft Corporation System and method for determining a synthesized position of a vehicle
WO2019055340A2 (en) * 2017-09-13 2019-03-21 X Development Llc SAFEGUARDING NAVIGATION SYSTEM FOR AERIAL VEHICLES WITHOUT PILOT
RU2666975C1 (ru) * 2017-11-22 2018-09-13 Общество с ограниченной ответственностью "СЪЕМКА С ВОЗДУХА" Система посадки беспилотного летательного аппарата вертикального взлета и посадки

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769016C1 (ru) * 2021-08-11 2022-03-28 Федеральное государственное автономное образовательное учреждение высшего образования «Южно-Уральский государственный университет (национальный исследовательский университет)» ФГАОУ ВО «ЮУрГУ (НИУ)» Система управления посадкой многоразовой ракеты с искусственным интеллектом

Similar Documents

Publication Publication Date Title
US11604479B2 (en) Methods and system for vision-based landing
US20210065400A1 (en) Selective processing of sensor data
CN110494360B (zh) 用于提供自主摄影及摄像的***和方法
US20230360230A1 (en) Methods and system for multi-traget tracking
US11263761B2 (en) Systems and methods for visual target tracking
US20220206515A1 (en) Uav hardware architecture
EP3347789B1 (en) Systems and methods for detecting and tracking movable objects
US9778662B2 (en) Camera configuration on movable objects
US10963749B2 (en) Systems and methods for automatic vehicle imaging
WO2018210078A1 (zh) 无人机的距离测量方法以及无人机
WO2017206179A1 (en) Simple multi-sensor calibration
US10409293B1 (en) Gimbal stabilized components for remotely operated aerial vehicles
JP2018504652A (ja) 顕著特徴ベースの移動体測位
WO2021098453A1 (zh) 目标跟踪方法及无人飞行器
RU2735196C1 (ru) Способ управления посадкой малого беспилотного летательного аппарата
US20230142394A1 (en) Contour scanning with an unmanned aerial vehicle
CN113168532A (zh) 目标检测方法、装置、无人机及计算机可读存储介质
Schneider et al. Real-time Bundle Adjustment with an Omnidirectional Multi-Camera System and GPS
Lee et al. Wireless stereo vision system development for rotary-wing UAV guidance and control
WO2023086078A1 (en) Contour scanning with an unmanned aerial vehicle
Hubbard Vision-based Control and Flight optimization of a Rotorcraft UAV

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20201221

Effective date: 20201221