RU2734061C1 - Способ измерения полного электрического сопротивления упрочненного слоя изделий из металлов с применением сигналов высокой частоты - Google Patents

Способ измерения полного электрического сопротивления упрочненного слоя изделий из металлов с применением сигналов высокой частоты Download PDF

Info

Publication number
RU2734061C1
RU2734061C1 RU2019125768A RU2019125768A RU2734061C1 RU 2734061 C1 RU2734061 C1 RU 2734061C1 RU 2019125768 A RU2019125768 A RU 2019125768A RU 2019125768 A RU2019125768 A RU 2019125768A RU 2734061 C1 RU2734061 C1 RU 2734061C1
Authority
RU
Russia
Prior art keywords
electrical resistance
measuring
resistance
hardened layer
total electrical
Prior art date
Application number
RU2019125768A
Other languages
English (en)
Inventor
Владимир Владимирович Малеронок
Александр Викторович Алифанов
Original Assignee
Владимир Владимирович Малеронок
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Владимирович Малеронок filed Critical Владимир Владимирович Малеронок
Priority to RU2019125768A priority Critical patent/RU2734061C1/ru
Application granted granted Critical
Publication of RU2734061C1 publication Critical patent/RU2734061C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Изобретение относится к области контроля качества упрочненной поверхности изделий после высокоэнергетических обработок. Техническим результатом является измерение полного электрического сопротивления упрочненного слоя изделий как показателя качества после проведения обработки. Способ заключается в измерении падения напряжения на упрочненном слое с последующим расчетом полного электрического сопротивления по заданной величине силы электрического тока и измеренного падения напряжения, при этом для создания необходимой глубины измерения используют сигнал высокой частоты, частоту которого рассчитывают исходя из толщины упрочнённого слоя. 1 ил.

Description

Изобретение относится к исследовательской области, преимущественно к комплексу мероприятий по исследованию структуры упрочненной поверхности изделий после проведения упрочняющих обработок. Оно предназначено для измерения полного электрического сопротивления по всей глубине упрочненного слоя изделий, которое является показателем изменения структуры (изменение дисперсности, отсутствия или уменьшения количества структурных дефектов) после проведения упрочняющей обработки.
Способ также может быть использован в области измерительной техники при создании приборов по измерению электрического сопротивления слоя материала произвольной толщины.
1. Известен мостовой способ измерения электрического сопротивления (Основы метрологии и электрические измерения: учебник для вузов / Б.Я. Авдеев [и др.]; под общ. ред. Е.М. Душина. - 6-е изд., перераб. и доп.- Ленинград: Энергоатомиздат, 1987. - 480 с.). Он основан на включении измеряемого сопротивления в мостовую схему с последующей балансировкой этой схемы и определении неизвестного сопротивления по условию баланса мостовой схемы.
Достоинство: с помощью этого способа можно достаточно точно определять величину сопротивления в широком диапазоне, кроме того, он может быть использован как на постоянном токе, так и на переменном. Недостатками этого способа является то, что при измерении очень малых сопротивлений (10-2-10-4 Ом), для обеспечения необходимой чувствительности моста, требуется через измеряемое сопротивление пропускать очень большие токи (10-102 А), а при измерении больших сопротивлений (более 1 МОм) - повышать напряжение на исследуемом изделии до величины 102-103 В, что ограничивает область его применения.
2. Известен способ измерения электрического сопротивления (Патент RU 2137144 C1, G01R 27/00, опубл. 10.09.1999), заключающийся в том, что через измеряемое сопротивление пропускают электрический ток, после чего выполняют первое измерение величины тока и падения напряжения на измеряемом сопротивлении, и по их значениям определяют первое значение сопротивления; после первого измерения изменяют величину проходящего тока через измеряемое сопротивление путем включения последовательно с измеряемым сопротивлением дополнительного сопротивления, затем выполняют второе измерение величины тока и падения напряжения на измеряемом сопротивлении и по их значениям определяют второе значение сопротивления, а измеряемое сопротивление определяют по приведенной формуле с учетом значений внутреннего сопротивления устройства измерения сопротивления без дополнительного сопротивления. Технический результат заключается в расширении функциональных возможностей известного способа.
Достоинствами данного способа являются: простота, хорошая точность измерения и малые затраты на реализацию. Недостатком этого способа является невозможность определения электрического сопротивления упрочненного поверхностного слоя материала, который является показателем качества высокоэнергетической обработки изделий из металлов.
Известен способ определения удельного электрического сопротивления поверхностного слоя материала (Патент RU 2426137 C1, G01R 27/16, опубл. 10.08.2011, Бюл. №22), включающий измерение электрического сопротивления контакта поверхностного слоя материала с металлической плитой методом амперметра-вольтметра, отличающийся тем, что дополнительно измеряют силу прижима поверхностного слоя материала к металлической плите в контакте, параметр шероховатости и твердость поверхностного слоя материала и определяют удельное сопротивление поверхностного слоя материала по выведенной формуле.
Достоинством данного способа является возможность определения качества поверхности после механической обработки с высокой точностью. Основным недостатком данного способа является то, что электрическое сопротивление зависит от состояния поверхности (шероховатость), что не позволяет говорить о качестве упрочненного слоя и величине полного электрического сопротивления по всей длине изделия.
Вышерассмотренные известные способы являются аналогами предлагаемого изобретения.
Наиболее близким способом измерения электрического сопротивления, является способ, содержащий в своей основе метод амперметра-вольтметра (Патент RU 2167392 С2, G01R 27/16, G01B 7/06, опубл. 20.05.2001) и реализующаяся с помощью корпуса, изготовленного из диэлектрического материала, в котором установлены два токопроводящих электрода и два измерительных электрода, крышки из диэлектрического материала, прикрепленной к корпусу винтами, клемм, пружин возврата и струбцин, прикрепленных к корпусу при помощи винтов. Техническим результатом изобретения является повышение точности измерения толщины поверхностного токопроводящего слоя изделия. Подключение устройства, реализованного по данному способу, осуществляется от источника постоянного тока, например, источника постоянного питания Б5-47, через реостат R, милливольтметр, в качестве которого может быть использован прибор М 1202, пакет переключателей П1, эталонный реостат Rэ к токоподводящим электродам. С измерительных электродов через пакетный переключатель П2 напряжение подается на потенциометр постоянного тока.
Достоинствами рассмотренного способа являются: 1) простота измерения толщины токопроводящего слоя; 2) высокая контактная жесткость соединения измерительных электродов с исследуемой поверхностью. Недостатками способа являются: 1) невозможность измерения электрического сопротивления упрочненного слоя произвольной толщины, так как измерение идет на постоянном токе; 2) требуется изготовление специальных установок-держателей со строгим диэлектрическим изолированием четырех контактов; 3) ограничения в определении падения напряжения на глубине до десятых долей миллиметра, хотя упрочненный слой изделий после высокоэнергетической обработки начинается с единиц микрометров.
Таким образом, принцип измерения падения напряжения на упрочненном поверхностном слое с возможностью вычисления электрического сопротивления (по известной величине тока) дает право выбрать использованную методику за прототип.
Решаемая предложенным изобретением техническая задача заключается в измерении полного электрического сопротивления по всей глубине упрочненного слоя изделий, которое является показателем изменения структуры (изменение дисперсности, отсутствия или уменьшения количества структурных дефектов) после проведения упрочняющей обработки.
Техническая задача решается путем измерения падения напряжения на упрочненном слое с последующим расчетом полного электрического сопротивления (прямопропорциональной величины) по заданной величине силы электрического тока, причем в процессе измерения применяется зондирующий сигнал переменного тока высокой частоты, а для процесса измерения используются параллельная схема подсоединения исследуемого образца в измерительную цепь.
Для реализации предложенного способа измерения необходимо применение генератора сигналов высокой частоты. При приложении к электропроводящему изделию высокочастотного напряжения области, расположенные внутри проводника, будут обладать большим индуктивным сопротивлением. Это явление известно как скин-эффект. В результате этого эффекта переменный ток высокой частоты при протекании по проводнику распределяется не равномерно по сечению, а преимущественно в поверхностном слое. Так как при упрочняющей обработки (магнитно-импульсная, холодная деформация, термическая обработка и др.) происходит воздействие именно на близкие к поверхности слои изделия, в которых изменяется структура металла (изменяется дисперсность, устраняются дефекты, снимаются остаточные напряжения), то изменение сопротивления поверхностного слоя изделия будет свидетельствовать об изменении структуры материала вблизи поверхности. Так с увеличением дисперсности (увеличивается количество межзеренных границ), увеличивается электрическое сопротивление, а при устранении дефектов и снятии остаточных напряжений (улучшается однородность проводника) электросопротивление уменьшается. Таким образом, можно определить корреляцию между изменением сопротивления и изменением структуры приповерхностных слоев.
Для реализации предложенного способа измерения полного электрического сопротивления упрочненного слоя изделий из металлов с применением сигналов высокой частоты предлагается использовать параллельную схему включения исследуемого изделия в измерительную цепь.
На фиг. 1 представлена параллельная схема включения изделия в измерительную цепь. Она содержит один генератор сигналов высокой частоты, два кольцевых контакта, один осциллограф с полосой пропускания, удовлетворяющей отношению 3:1 частоты зондирующего сигнала, стабилизирующий резистор (50 Ом), шунтирующий резистор (5-10 Ом).
На схеме введены следующие обозначения: 1 - Генератор высокой частоты; 2 - осциллограф; 3 - исследуемое изделие; 4 - кольцевые контакты-хомуты; 5 - стабилизирующий резистор; 6 - шунтирующий резистор.
Сигнальный выход генератора 1 соединен с первым выводом стабилизирующего резистора 5, который вторым своим выводом соединен с первым выводом шунтирующего резистора 6, первым кольцевым контактом 4 и сигнальным входом осциллографа 2, последний, в свою очередь, своим общим проводом соединен со вторым кольцевым контактом 4, вторым выводом шунтирующего резистора 6 и общим проводом генератора 1. Изделие 3 своими концами подключается между первым и вторым кольцевыми контактами 4.
Алгоритм измерения электрического сопротивления при параллельной схеме включения изделия в измерительную цепь.
Для получения полного электрического сопротивления упрочненного слоя изделия необходимо произвести измерение падения напряжения на изделии при прохождении сигнала высокой частоты. Выбранная частота должна обеспечивать глубину проникновения сигнала, соответствующую толщине упрочненного слоя:
Figure 00000001
где Δ - толщина упрочненного слоя (скин-слоя);
ρ - удельное сопротивление материала заготовки;
μr - относительная магнитная проницаемость;
ƒ - частота сигнала.
При параллельном соединении, перед проведением измерения на упрочненном изделии, необходимо получить контрольную осциллограмму напряжения сигнала высокой частоты без установки изделия в измерительную цепь и зафиксировать амплитудное значение напряжения полного сопротивления шунтирующего резистора (Uш полн). По полученному значению (Uш полн) с помощью заданной величины силы тока (Iз) зондирующего сигнала необходимо произвести расчет полного сопротивления шунтирующего резистора:
Figure 00000002
Затем необходимо установить изделие в измерительную цепь и произвести повторное измерение с фиксацией амплитудного значения падения напряжения (Uи) на параллельно соединенных шунтирующем сопротивлении и исследуемом изделии. Так как соединение параллельное, то Uи выражается формулой:
Figure 00000003
где Rполн - полное электрическое сопротивление упрочненного слоя изделия.
Затем по заданному значению тока (Iз) и выражая Rполн из (3) производят расчет полного электрического сопротивления упрочненного слоя изделия:
Или с учетом (2):
Figure 00000004
Figure 00000005
Если по данному алгоритму произвести измерение полного электрического сопротивления до проведения обработки изделия и после него, то полученная информация говорит об изменении структуры упрочненного слоя (однородность, мелкодисперсность, отсутствие искривления кристаллической решетки), которое напрямую влияет на величину полного электрического сопротивления.
Принцип измерения при параллельной схеме включения изделия в измерительную цепь.
Перед началом измерения сопротивления упрочненного слоя изделия производят контрольное снятие осциллограммы напряжения сигнала высокой частоты (без установки изделия). Зондирующий сигнал выбирают с частотой, обеспечивающей проникновение на глубину, равную толщине упрочненного слоя изделия (формула 1). Сигнальный выход генератора 1 подключают через стабилизирующий резистор 5 (50 Ом), который обеспечивает стабильность частоты генерации (при такой схеме измерительной цепи), к первому выводу шунтирующего резистора 6 (5-10 Ом), к которому подключают параллельно осциллограф 2. Производится измерение амплитудного значения падения напряжения на полном сопротивлении шунтирующего резистора (Uш полн).
Затем устанавливают обработанное изделие 3 в кольцевые контакты 4. Сигнал с генератора 1 через стабилизирующий резистор 5 подается на параллельное соединение шунтирующего резистора 6 и исследуемого изделия 3, подключенного через кольцевые контакты 4. Сигнал проходит через параллельное соединение элементов 3 и 6 на общий провод. Подключенный параллельно 3 и 6 осциллограф 2 позволяет измерить амплитудное значения падения напряжения на соединенных параллельно шунтирующем резисторе 6 и исследуемом изделии 3 (Uи). Так как сигнал является высокочастотным и частота рассчитана с учетом толщины упрочненного слоя, то сигнал протекает только по требуемой глубине (проявляется скин-эффект). Располагая заданным значением силы тока сигнала (Iз) генератора 1, производят расчет полного сопротивления по формуле 5.
Применение переменного тока высокой частоты в предложенном способе измерения полного электрического сопротивления упрочненного слоя изделий после проведения упрочняющих обработок, позволяет производить настройку соответствующих измерительных устройств под любую толщину упрочненного слоя.

Claims (5)

  1. Способ измерения полного электрического сопротивления упрочненного слоя изделий из токопроводящих материалов как показателя изменения структуры материала после проведения упрочняющих обработок, заключающийся в измерении падения напряжения на упрочненном слое с последующим расчетом полного электрического сопротивления по заданной величине силы электрического тока и измеренного падения напряжения, отличающийся тем, что для создания необходимой глубины измерения используют сигнал высокой частоты, частоту которого
    Figure 00000006
    определяют из выражения:
  2. Figure 00000007
  3. где ρ - удельное электрическое сопротивление;
  4. Δ - толщина упрочненного слоя;
  5. μr - относительная магнитная проницаемость.
RU2019125768A 2019-08-13 2019-08-13 Способ измерения полного электрического сопротивления упрочненного слоя изделий из металлов с применением сигналов высокой частоты RU2734061C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019125768A RU2734061C1 (ru) 2019-08-13 2019-08-13 Способ измерения полного электрического сопротивления упрочненного слоя изделий из металлов с применением сигналов высокой частоты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019125768A RU2734061C1 (ru) 2019-08-13 2019-08-13 Способ измерения полного электрического сопротивления упрочненного слоя изделий из металлов с применением сигналов высокой частоты

Publications (1)

Publication Number Publication Date
RU2734061C1 true RU2734061C1 (ru) 2020-10-12

Family

ID=72940254

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019125768A RU2734061C1 (ru) 2019-08-13 2019-08-13 Способ измерения полного электрического сопротивления упрочненного слоя изделий из металлов с применением сигналов высокой частоты

Country Status (1)

Country Link
RU (1) RU2734061C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331286A (en) * 1989-08-01 1994-07-19 Eniricerche S.P.A. Method for continuously monitoring the soundness of the protective covering on underground metal structures, and devices for its implementation
US5418467A (en) * 1992-06-30 1995-05-23 Alcatel Fibres Optiques Apparatus and method of checking the thickness and uniformity of a coating deposited on an elongated insulating body using a condenser sensor as part of a resonant electrical circuit
RU2109276C1 (ru) * 1996-03-25 1998-04-20 Ярославский государственный университет Способ неразрушающего контроля поверхностного слоя металла
RU2115934C1 (ru) * 1996-12-20 1998-07-20 Уханов Сергей Иванович Способ контроля чистоты материала электропроводного изделия (варианты)
RU166138U1 (ru) * 2016-03-21 2016-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный университет им. Ф.М. Достоевского" Устройство для контроля поверхностного сопротивления металлических пленок

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331286A (en) * 1989-08-01 1994-07-19 Eniricerche S.P.A. Method for continuously monitoring the soundness of the protective covering on underground metal structures, and devices for its implementation
US5418467A (en) * 1992-06-30 1995-05-23 Alcatel Fibres Optiques Apparatus and method of checking the thickness and uniformity of a coating deposited on an elongated insulating body using a condenser sensor as part of a resonant electrical circuit
RU2109276C1 (ru) * 1996-03-25 1998-04-20 Ярославский государственный университет Способ неразрушающего контроля поверхностного слоя металла
RU2115934C1 (ru) * 1996-12-20 1998-07-20 Уханов Сергей Иванович Способ контроля чистоты материала электропроводного изделия (варианты)
RU166138U1 (ru) * 2016-03-21 2016-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный университет им. Ф.М. Достоевского" Устройство для контроля поверхностного сопротивления металлических пленок

Similar Documents

Publication Publication Date Title
Bowler et al. Electrical conductivity measurement of metal plates using broadband eddy-current and four-point methods
US7443177B1 (en) Characterization of conductor by alternating current potential-drop method with a four-point probe
US4528856A (en) Eddy current stress-strain gauge
US4893079A (en) Method and apparatus for correcting eddy current signal voltage for temperature effects
RU2734061C1 (ru) Способ измерения полного электрического сопротивления упрочненного слоя изделий из металлов с применением сигналов высокой частоты
US3555412A (en) Probe for detection of surface cracks in metals utilizing a hall probe
RU2584726C1 (ru) Способ измерения параметров трещин в немагнитных электропроводящих объектах
US3866117A (en) Method and means for measuring the phase angle between current and voltage
US3287637A (en) High frequency current means including capacitive probe members for determining the electrical resistance of a semiconductor layer
CN104749439A (zh) 一种粉末冶金烧结合金样品电导率测量***及方法
US3283242A (en) Impedance meter having signal leveling apparatus
Belloni et al. On the experimental calibration of a potential drop system for crack length measurements in a compact tension specimen
JP4551035B2 (ja) 導電体の厚み測定装置
RU2420749C1 (ru) Устройство для бесконтактного измерения удельного сопротивления полупроводниковых материалов
JP2000009414A (ja) 表層厚さ測定方法
RU2109276C1 (ru) Способ неразрушающего контроля поверхностного слоя металла
RU2194976C1 (ru) Устройство для измерения удельной электрической проводимости
CN117269613B (zh) 一种基于多频测量网格的双模式检测多参数反演方法
RU2746668C1 (ru) Способ измерения электропотенциальным методом глубины поверхностной трещины
SU746278A1 (ru) Способ неразрушающего контрол и устройство дл его реализации
RU2532858C2 (ru) Способ измерения толщины неферромагнитного электропроводящего покрытия стали
SU1670371A1 (ru) Вихретоковый способ двухпараметрового контрол качества изделий с электропровод щим покрытием и устройство дл его осуществлени
Sierra Varela Contactless measurements of electrical conductivity via the eddy current method
SU1372252A1 (ru) Устройство дл определени удельного объемного электрического сопротивлени полимерных материалов
Zurek et al. A novel capacitive flux density sensor