RU2732305C1 - Квадрокоптер с гидравлическим приводом несущих винтов с фиксированным шагом лопастей - Google Patents

Квадрокоптер с гидравлическим приводом несущих винтов с фиксированным шагом лопастей Download PDF

Info

Publication number
RU2732305C1
RU2732305C1 RU2020111007A RU2020111007A RU2732305C1 RU 2732305 C1 RU2732305 C1 RU 2732305C1 RU 2020111007 A RU2020111007 A RU 2020111007A RU 2020111007 A RU2020111007 A RU 2020111007A RU 2732305 C1 RU2732305 C1 RU 2732305C1
Authority
RU
Russia
Prior art keywords
hydraulic
drive
hydraulic pump
internal combustion
combustion engine
Prior art date
Application number
RU2020111007A
Other languages
English (en)
Inventor
Наталья Николаевна Мустя
Original Assignee
Общество с ограниченной ответственностью "ШАНС" (ООО "ШАНС")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ШАНС" (ООО "ШАНС") filed Critical Общество с ограниченной ответственностью "ШАНС" (ООО "ШАНС")
Priority to RU2020111007A priority Critical patent/RU2732305C1/ru
Application granted granted Critical
Publication of RU2732305C1 publication Critical patent/RU2732305C1/ru
Priority to PCT/RU2020/050366 priority patent/WO2021188011A1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D35/00Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
    • B64D35/04Transmitting power from power plants to propellers or rotors; Arrangements of transmissions characterised by the transmission driving a plurality of propellers or rotors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Motor Power Transmission Devices (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Изобретение относится к области авиации, в частности к конструкции приводов несущих винтов многовинтового летательного аппарата. Квадрокоптер с гидравлическим приводом несущих винтов с фиксированным шагом лопастей содержит маршевый двигатель внутреннего сгорания, четыре несущих винта с фиксированным шагом лопастей и гидравлический привод несущего винта, передающий энергию от двигателя к несущим винтам. Привод содержит гидравлический контур, в который входит гидронасос, подающий рабочую жидкость на вход исполнительного гидромотора, выход из которого по сливной магистрали низкого давления связан со входом гидронасоса. Гидравлический привод содержит два тандема шестеренчатых гидронасосов, имеющих прямой привод без редукции от двигателя. Каждый из тандема гидронасосов имеет по два независимых входа и выхода, питает два исполнительных гидромотора. Перед каждым входом гидронасоса в сливной магистрали низкого давления установлен регулятор расхода рабочей жидкости. Отношение производительности гидронасоса к производительности гидромотора находится в диапазоне от 1:1,5 до 1:3. Обеспечивается повышение безопасности полета, маневренности и устойчивости в полёте, повышение КПД трансмиссии. 1 ил.

Description

Изобретение относится к области авиации, в частности к конструкции приводов несущих винтов многовинтового летательного аппарата.
Известен аналог – многовинтовой летательный аппарат – GB2566095B, 04.09.2017, содержащий по меньшей мере два пропеллера, которые создают аэродинамическую тягу летательному аппарату, источник механической энергии, например, двигатель внутреннего сгорания, выходной вал с приводом от источника механической энергии, по меньшей мере один регулируемый насос, механически соединенный с выходным валом, по меньшей мере два гидромотора, каждый из которых приводит в движение соответствующий пропеллер, по меньшей мере два гидромотора гидравлически соединены с одним регулируемым насосом.
Недостатком аналога является повышенная масса летательного аппарата, обусловленная применением регулируемого насоса. Регулируемый насос подразумевает применение редуктора, который имеет большой вес. Это снижает полезную массу летательного аппарата, а для некоторых летательных аппаратов делает взлет невозможным, например, для схемы квадрокоптера, так как в нём необходимо применение как минимум двух регулируемых насосов.
Известен аналог – многовинтовой летательный аппарат – WO2016068767A1, дата приоритета 30.10.2014, содержащий по меньшей мере три пропеллера с фиксированным шагом, каждый из которых имеет привод от отдельного гидромотора, имеются гидронасосы, гидравлически соединенные с гидромоторами, имеется регулятор расхода жидкости, который установлен на выходе из гидронасоса, имеется двигатель внутреннего сгорания, имеется вал с приводом от двигателя внутреннего сгорания, механически соединенный с гидронасосами, гидронасосы расположены с одной стороны относительно двигателя внутреннего сгорания.
Недостатком аналога является большая масса регулятора расхода жидкости, так как регулятор включён в магистраль высокого давления , что увеличивает массу летательного аппарата и снижает полезную массу летательного аппарата.
Известен аналог – квадрокоптер с гидравлическим приводом несущих винтов с фиксированным шагом лопастей – RU181367, дата приоритета 26.12.2017, принятый в качестве прототипа, содержащий маршевый двигатель внутреннего сгорания, четыре несущих винта с фиксированным шагом лопастей и привод, передающий энергию от двигателя к несущим винтам, отличающийся тем, что использован регулируемый гидравлический привод, состоящий из независимых гидравлических контуров, равных по количеству несущим винтам, каждый независимый гидравлический контур содержит регулируемый гидронасос, подающий рабочую жидкость высокого давления по напорной магистрали на вход исполнительного гидромотора, выход из которого по сливной магистрали низкого давления связан со входом регулируемого насоса, на сливной магистрали в области воздушного потока несущего винта расположен воздушно-масляный теплообменный аппарат, на выходных валах маршевого двигателя и исполнительных гидромоторов расположены датчики частоты вращения.
Недостатком прототипа является повышенная масса летательного аппарата, обусловленная применением регулируемого насоса. Регулируемый насос подразумевает применение редуктора, который имеет большой вес. Это снижает полезную массу летательного аппарата, снижает маневренность летательного аппарата, снижает его устойчивость полете, снижает безопасность полёта. В некоторых случаях это делает взлет невозможным. Другим недостатком является расположение насосов с одной стороны относительно двигателя внутреннего сгорания, что ухудшает балансировку летательного аппарата, негативно влияя на безопасность полёта и маневренность, а также повышает требования к распределению массы полезного груза для обеспечения устойчивости и возможности полета.
Технический результат изобретения заключается в повышении безопасности полета летательного аппарата, повышении полезной взлетной массы летательного аппарата, повышении его маневренности и устойчивости в полёте, обеспечении оптимальной балансировки, при которой снижаются требования по распределению массы полезного груза на борту летательного аппарата, повышении КПД трансмиссии.
Технический результат достигается тем, что квадрокоптер с гидравлическим приводом несущих винтов с фиксированным шагом лопастей содержит маршевый двигатель внутреннего сгорания, четыре несущих винта с фиксированным шагом лопастей и гидравлический привод несущего винта, передающий энергию от двигателя внутреннего сгорания к несущим винтам, содержащий гидравлический контур, в который входит гидронасос, подающий рабочую жидкость по напорной магистрали высокого давления на вход исполнительного гидромотора, выход из которого по сливной магистрали низкого давления связан со входом гидронасоса, гидравлический привод содержит два шестеренчатых гидронасоса, имеющих прямой привод без редукции от двигателя внутреннего сгорания, каждый из гидронасосов имеет два независимых входа и два независимых выхода, питает два исполнительных гидромотора, перед каждым входом гидронасоса в сливной магистрали низкого давления установлен регулятор расхода рабочей жидкости, насосы расположены по разные стороны относительно двигателя внутреннего сгорания, отношение производительности гидронасоса к производительности гидромотора находится в диапазоне от 1:1,5 до 1:3.
На чертеже изображена схема квадрокоптера с гидравлическим приводом несущих винтов с фиксированным шагом лопастей.
Квадрокоптер с гидравлическим приводом несущих винтов с фиксированным шагом лопастей содержит маршевый двигатель внутреннего сгорания 1, четыре несущих винта 2 с фиксированным шагом лопастей и гидравлический привод 3 несущего винта 2, передающий энергию от двигателя внутреннего сгорания 1 к несущим винтам 2, содержащий гидравлический контур 4, в который входит гидронасос 5, подающий рабочую жидкость по напорной магистрали высокого давления 6 на вход 7 исполнительного гидромотора 8, выход 9 из которого по сливной магистрали низкого давления 10 связан со входом 11 гидронасоса 5, гидравлический привод 3 содержит два шестеренчатых гидронасоса 5, имеющих прямой привод без редукции от двигателя внутреннего сгорания 1, каждый из гидронасосов 5 имеет два независимых входа 11 и два независимых выхода 12, питает два исполнительных гидромотора 8, перед каждым входом 11 гидронасоса 5 в сливной магистрали низкого давления 10 установлен регулятор расхода рабочей жидкости 13, насосы 5 расположены по разные стороны относительно двигателя внутреннего сгорания 1, отношение производительности гидронасоса 5 к производительности гидромотора 8 находится в диапазоне от 1:1,5 до 1:3.
Рассмотрим пример конкретной реализации квадрокоптера с гидравлическим приводом несущих винтов с фиксированным шагом лопастей. В примере конкретной реализации в качестве маршевого двигателя внутреннего сгорания 1 применён двухтактный двухцилиндровый Rotax 503/MZ202. В качестве гидронасосов 5 применены тандемы шестеренчатых насосов НШ 6. Применение шестерёнчатых насосов обеспечивает достижение большей мощности при малых габаритах и весе, что позволяет повысить полезную массу летательного аппарата. Простота конструкции насоса обеспечивает его надежную работу. Данный тип насоса работает в больших диапазонах частоты вращения, необходимых для данного применения. Шестеренчатые насосы позволяют изготовление тандема насосов для создания требуемых для летательного аппарата характеристик расхода. В качестве гидромоторов 8 применены аксиально-поршневые гидромоторы 310.12.01. Вал каждого гидронасоса 5 соединен с валом двигателя внутреннего сгорания 1 через муфту 14, без редуктора. Отношение производительности гидронасоса 5 к производительности гидромотора 8 находится в диапазоне от 1:1,5 до 1:3. Этим отношением достигается редукция - достигается разница между оборотами двигателя ДВС и оборотами винтов 2, при которых летательный аппарат имеет максимальную подъёмную силу и поэтому он может подняться в воздух. За счет этого соотношения обеспечивается возможность применения гидронасосов 5 с прямым приводом без редукции от двигателя внутреннего сгорания 1, что снижает массу летательного аппарата, повышает полезную взлетную массу летательного аппарата. Отсутствие редуктора увеличивает надёжность летательного аппарата. При уменьшении редукции менее значения 1:1,5 необходимо уменьшение диаметра винтов 2. При уменьшении диаметра винтов 2, уменьшается их подъёмная сила, что негативно сказывается на характеристиках летательного аппарата, вплоть до невозможности взлёта. При увеличении редукции больше значения 1:3 увеличивается диаметр винта 2 и подъёмная сила летательного аппарата, но увеличиваются габариты, что ухудшает манёвренность летательного аппарата. Расположение гидронасосов 5 по обе стороны от двигателя внутреннего сгорания 1 позволяет распределить нагрузку на вал гидронасосов 5, обеспечивает оптимальную весовую балансировку летательного аппарата. Благодаря такому расположению гидронасосов 5 уменьшается расстояние от гидронасоса 5 до гидромотора 8, что приводит к уменьшению потерь в напорной магистрали высокого давления 6 и к более высокому КПД трансмиссии. Регулятор расхода рабочей жидкости 13 представляет из себя регулируемый дистанционно клапан. Он служит для управления оборотами винта 2. Благодаря тому, что регулятор расхода рабочей жидкости 13 установлен перед входом 11 гидронасоса 5 в сливной магистрали низкого давления 10 нагрузка на него не большая, так как в сливной магистрали давление жидкости меньше, чем в напорной. Благодаря этому регулятор расхода рабочей жидкости 13 менее нагружен и выполняется более лёгким, что обеспечивает повышение полезной взлетной массы летательного аппарата.

Claims (1)

  1. Квадрокоптер с гидравлическим приводом несущих винтов с фиксированным шагом лопастей, содержащий маршевый двигатель внутреннего сгорания, четыре несущих винта с фиксированным шагом лопастей и гидравлический привод несущего винта, передающий энергию от двигателя внутреннего сгорания к несущим винтам, содержащий гидравлический контур, в который входит гидронасос, выполненный с возможностью подачи рабочей жидкости по напорной магистрали высокого давления на вход исполнительного гидромотора, выход из которого по сливной магистрали низкого давления связан со входом гидронасоса, отличающийся тем, что гидравлический привод содержит два тандема шестеренчатых насосов, имеющих прямой привод без редукции от двигателя внутреннего сгорания, каждый из гидронасосов имеет два независимых входа и два независимых выхода, питает два исполнительных гидромотора, перед каждым входом гидронасоса в сливной магистрали низкого давления установлен регулятор расхода рабочей жидкости, насосы расположены по разные стороны относительно двигателя внутреннего сгорания, отношение производительности гидронасоса к производительности гидромотора находится в диапазоне от 1:1,5 до 1:3.
RU2020111007A 2020-03-17 2020-03-17 Квадрокоптер с гидравлическим приводом несущих винтов с фиксированным шагом лопастей RU2732305C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2020111007A RU2732305C1 (ru) 2020-03-17 2020-03-17 Квадрокоптер с гидравлическим приводом несущих винтов с фиксированным шагом лопастей
PCT/RU2020/050366 WO2021188011A1 (ru) 2020-03-17 2020-12-04 Квадрокоптер с гидравлическим приводом несущих винтов с фиксированным шагом лопастей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020111007A RU2732305C1 (ru) 2020-03-17 2020-03-17 Квадрокоптер с гидравлическим приводом несущих винтов с фиксированным шагом лопастей

Publications (1)

Publication Number Publication Date
RU2732305C1 true RU2732305C1 (ru) 2020-09-15

Family

ID=72516527

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020111007A RU2732305C1 (ru) 2020-03-17 2020-03-17 Квадрокоптер с гидравлическим приводом несущих винтов с фиксированным шагом лопастей

Country Status (2)

Country Link
RU (1) RU2732305C1 (ru)
WO (1) WO2021188011A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2762119C1 (ru) * 2021-05-21 2021-12-15 Акционерное общество "Национальный центр вертолетостроения им. М.Л. Миля и Н.И. Камова" (АО "НЦВ Миль и Камов") Гидравлическая трансмиссия несущего и рулевого винтов вертолёта
RU2799957C1 (ru) * 2022-09-06 2023-07-14 АКЦИОНЕРНОЕ ОБЩЕСТВО "Центральный научно-исследовательский институт автоматики и гидравлики" (АО "ЦНИИАГ") Мультироторная летающая платформа с гидроприводом вращения несущих винтов

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1153821A3 (ru) * 1978-11-24 1985-04-30 Карл Айкмаи (Япони ) Летательный аппарат
RU181367U1 (ru) * 2017-12-26 2018-07-11 Борис Михайлович Фролов Многовинтовой летательный аппарат с гидравлическим приводом несущих винтов с фиксированным шагом лопастей
EP3450312A1 (en) * 2017-09-04 2019-03-06 Artemis Intelligent Power Limited Hydraulic multi-rotor aerial vehicle
RU2693616C2 (ru) * 2014-10-30 2019-07-03 Акк Инновейшн Аб Многовинтовой летательный аппарат

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1153821A3 (ru) * 1978-11-24 1985-04-30 Карл Айкмаи (Япони ) Летательный аппарат
RU2693616C2 (ru) * 2014-10-30 2019-07-03 Акк Инновейшн Аб Многовинтовой летательный аппарат
EP3450312A1 (en) * 2017-09-04 2019-03-06 Artemis Intelligent Power Limited Hydraulic multi-rotor aerial vehicle
RU181367U1 (ru) * 2017-12-26 2018-07-11 Борис Михайлович Фролов Многовинтовой летательный аппарат с гидравлическим приводом несущих винтов с фиксированным шагом лопастей

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2762119C1 (ru) * 2021-05-21 2021-12-15 Акционерное общество "Национальный центр вертолетостроения им. М.Л. Миля и Н.И. Камова" (АО "НЦВ Миль и Камов") Гидравлическая трансмиссия несущего и рулевого винтов вертолёта
RU2799957C1 (ru) * 2022-09-06 2023-07-14 АКЦИОНЕРНОЕ ОБЩЕСТВО "Центральный научно-исследовательский институт автоматики и гидравлики" (АО "ЦНИИАГ") Мультироторная летающая платформа с гидроприводом вращения несущих винтов

Also Published As

Publication number Publication date
WO2021188011A1 (ru) 2021-09-23

Similar Documents

Publication Publication Date Title
RU2458826C2 (ru) Усовершенствование винтокрылого летательного аппарата, оснащенного газотурбинными двигателями
US9611788B2 (en) Multi-shaft gas turbine engine
RU2566831C2 (ru) Тяговая и передающая движение установка, в частности, для винтокрылого летательного аппарата
RU2766641C2 (ru) Вертолет с системой противовращения
US9815553B2 (en) Independent hydraulic control system for rotorcraft secondary rotor
EP2189646B1 (en) Variable pitch rotor arrangement in a gas turbine engine
US9663218B2 (en) Hydraulic system for controlling the orientation of fan blades
EP3208195B1 (en) Cabin blower system
KR20090003167A (ko) 유체 정역학적으로 구동되는 변속 헬리콥터 테일 로터
US20210188452A1 (en) Displacement control hydrostatic propulsion system for multirotor vertical take off and landing aircraft
US8297039B2 (en) Propulsion engine
RU2732305C1 (ru) Квадрокоптер с гидравлическим приводом несущих винтов с фиксированным шагом лопастей
US9982758B2 (en) Transmission assembly for an aircraft and a helicopter
US11022213B2 (en) Variable-speed gear box with hydraulic system for tiltrotor aircraft
DE102015014868A1 (de) Mantelluftstromtriebwerk mit Dreistufiger Drehkolbenkraftmaschine mit kontinuierlichem Brennprozess.
EP3705753B1 (en) Continuously variable transmission for ram air turbines
EP2604791A2 (en) A propulsion engine
US20240124126A1 (en) System and method for controlling the modification of the pitch of the blades of a turbine engine
US11623756B2 (en) Gas turbine engine with variable speed output
JP2809362B2 (ja) 複合ヘリコプタ用動力装置
CN116986002A (zh) 用于直升机的变转速传动***和具有其的直升机

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20201118