RU2720210C2 - Фундамент для ветроэнергетической установки - Google Patents

Фундамент для ветроэнергетической установки Download PDF

Info

Publication number
RU2720210C2
RU2720210C2 RU2018132243A RU2018132243A RU2720210C2 RU 2720210 C2 RU2720210 C2 RU 2720210C2 RU 2018132243 A RU2018132243 A RU 2018132243A RU 2018132243 A RU2018132243 A RU 2018132243A RU 2720210 C2 RU2720210 C2 RU 2720210C2
Authority
RU
Russia
Prior art keywords
base
elements
foundation
reinforcing
concrete elements
Prior art date
Application number
RU2018132243A
Other languages
English (en)
Other versions
RU2018132243A3 (ru
RU2018132243A (ru
Inventor
Кристиан ШУЛЬДТ
Арне ШТЕХЕР
Original Assignee
Холсим Технологи Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Холсим Технологи Лтд filed Critical Холсим Технологи Лтд
Publication of RU2018132243A3 publication Critical patent/RU2018132243A3/ru
Publication of RU2018132243A publication Critical patent/RU2018132243A/ru
Application granted granted Critical
Publication of RU2720210C2 publication Critical patent/RU2720210C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • E02D27/425Foundations for poles, masts or chimneys specially adapted for wind motors masts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/22Foundations specially adapted for wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Wind Motors (AREA)
  • Foundations (AREA)

Abstract

Изобретение относится к строительству, а именно к фундаментам для ветроэнергетических установок. Фундамент для ветроэнергетической установки содержит круглое или многоугольное основание для поддержания башни ветроэнергетической установки и несколько ребер, отходящих радиально от основания. Основание разделено на несколько периферийных секций, при этом каждые периферийная секция и ребро выполнены как единое целое в виде готового бетонного элемента, причем готовые бетонные элементы выполнены из армированного бетона, содержащего первую армирующую конструкцию, в частности арматурные стержни, встроенную в готовые бетонные элементы. Имеется вторая армирующая конструкция, которая удерживает готовые бетонные элементы вместе и которая связана с первой армирующей конструкцией, причем первая армирующая конструкция и вторая армирующая конструкция непосредственно соединены друг с другом. Технический результат состоит в обеспечении надежности работы фундамента при высоких статических и динамических нагрузках, повышении устойчивости к опрокидывающему моменту. 2 н. и 15 з.п. ф-лы, 5 ил.

Description

Изобретение относится к фундаменту для ветроэнергетической установки, содержащему круглое или многоугольное основание для поддержания башни ветроэнергетической установки и несколько ребер, отходящих радиально от основания, причем основание разделено на несколько периферийных секций, при этом каждые периферийная секция и ребро выполнены как единое целое в виде готового бетонного элемента, причем готовые бетонные элементы выполнены из армированного бетона, содержащего первую армирующую конструкцию, в частности арматурные стержни, встроенные в готовые бетонные элементы.
Кроме того, изобретение относится к ветроэнергетической установке, содержащей мачту и ротор, установленный на мачте, причем мачта установлена на фундаменте.
Фундамент для ветроэнергетической установки указанного вида описан в документе WO 2004/101898 A2. Как сказано в этом документе, изготовление фундамента наземных ветроэнергетических установок требует больших физических и административных усилий, а также много времени. Учитывая растущие размеры современных ветроэнергетических установок, фундамент подвергается очень высоким нагрузкам и должен иметь соответствующие размеры. На сегодняшний день ветроэнергетические установки имеют башню, высота которой достигает 150 м, и дают энергию до 6 МВт. В большинстве случаев башня или мачта ветроэнергетических установок выполнена из армированного бетона, и ее строят, используя готовые бетонные элементы.
До настоящего времени фундаменты для ветроэнергетических установок производили, по сути, путем выкапывания котлована, введения в него гранулярного подстилающего слоя, возведения компонента фундамента, возведения необходимой опалубки и армирования, и последующего заполнения котлована бетоном, причем доставку бетона осуществляли с помощью бетоновозов, которые заливали его в котлован. Компонент фундамента обычно имеет полую цилиндрическую конфигурацию, обычно отлитую заранее и транспортируемую в виде отдельного элемента на место установки.
Изготовление фундамента для ветроэнергетической установки посредством укладки бетона на месте обладает множеством недостатков. Для этого требуется сложная логистика для планирования производственной деятельности на месте, и требуются трудоемкие и дорогостоящие действия на рабочей площадке, такие как строительство опалубки и арматурной конструкции, а также транспортировка бетона и укладка бетона. Это особенно верно, если учесть, что для крупных фундаментов может потребоваться до 1000 м3 бетона.
Чтобы улучшить процесс создания фундамента, в WO 2004/101898 A2 уже было предложено строить фундамент с использованием готовых бетонных элементов. Такие бетонные элементы производят на заводе сборных железобетонных конструкций и транспортируют на строительную площадку, где их устанавливают на место с помощью крана, а затем соединяют друг с другом. Таким образом, продолжительность строительных работ на строительной площадке можно значительно уменьшить. Готовые бетонные элементы при соединении друг с другом образуют фундамент, содержащий центральное основание и несколько ребер, которые отходят радиально наружу от основания. Каждый готовый бетонный элемент образует одно из ребер и связанную с ним периферийную секцию основания. Периферийные секции основания соединены друг с другом фланцами, соединенными болтами. Как описано в WO 2004/101898 A2, готовые бетонные элементы могут быть армированы сталью. После строительства фундамента башню или мачту ветроэнергетической установки устанавливают на основание и закрепляют на основании с помощью анкерных болтов.
При использовании готовых бетонных элементов эти элементы могут быть изготовлены в контролируемой среде, так что бетон может правильно застыть, и за ним внимательно следят работники завода. Качество затвердевшего бетона может быть повышено, поскольку на заводе сборных железобетонных конструкций, в отличие от строительной площадки, имеет место более высокий контроль качества материалов и квалификации рабочих. В финансовом отношении формы, используемые на заводе сборных железобетонных конструкций, можно использовать многократно, прежде чем их нужно будет заменить, что позволяет снизить стоимость опалубки на изделие ниже, чем стоимость опалубки при производстве на месте.
Ветроэнергетические установки подвергаются нагрузкам и напряжениям определенного характера, которые должен принять на себя фундамент. С одной стороны, сам ветер воздействует непредсказуемым и изменчивым образом. С другой стороны, по мере увеличения мощностей динамические составляющие нагрузки воздействуют на конструкцию вследствие вибраций и резонансов. Кроме того, из-за высоты башни, составляющей 100 м и более, вследствие существенного опрокидывающего момента на фундамент передается основная эксцентрическая нагрузка. Если на башню воздействует изгибающий момент, то бетон фундамента должен выдерживать сжатие, которое возникает в сжатой зоне, а армирующая конструкция бетона должна выдерживать растягивающее усилие в противоположной части фундамента, поскольку бетон как таковой обладает относительно низкой прочностью на растяжение.
Фундаменты из готовых бетонных элементов обладают преимуществом, которое заключается в том, что рабочие характеристики и качество бетона выше, так что имеет место меньший риск образования трещин и более высокая способность противостоять динамическим и статическим нагрузкам. Однако недостатком является то, что в отличие от фундамента, отлитого на месте, не обеспечивается монолитная конструкция, поэтому необходимо разработать технические решения для надежного соединения готовых бетонных элементов друг с другом, чтобы имитировать монолитную конструкцию.
Поэтому настоящее изобретение нацелено на создание улучшенного фундамента для ветроэнергетической установки, который построен из готовых бетонных элементов, но который ведет себя подобно монолитному фундаменту, выдерживая высокие статические и динамические нагрузки.
Для решения этих и других задач изобретение относится к фундаменту для ветроэнергетической установки вышеуказанного вида, содержащему круглое или многоугольный основание для поддержания башни ветроэнергетической установки и несколько ребер, отходящих радиально от основания, причем основание разделено на несколько периферийных секций, при этом каждые периферийная секция и ребро выполнены как единое целое в виде готового бетонного элемента, причем готовые бетонные элементы выполнены из армированного бетона, содержащего первую армирующую конструкцию, в частности арматурные стержни, встроенные в готовые бетонные элементы, отличающемуся тем, что имеется вторая армирующая конструкция, которая удерживает готовые бетонные элементы вместе и которая связана с первой армирующей конструкцией.
Вторая армирующая конструкция может быть конструкцией любого типа, пригодного для жесткого удерживания готовых бетонных элементов вместе для формирования монолитной конструкции. Вторая армирующая конструкция отличается от первой армирующей конструкции, и поэтому ее предпочтительно не встраивают в готовые бетонные элементы. В соответствии с признаком изобретения вторая армирующая конструкция соединена с первой армирующей конструкцией, что обеспечивает непрерывный путь нагрузки между указанными армирующими конструкциями, так что усилия, воздействующие на фундамент, эффективно распределяются. В контексте изобретения связывание первой и второй армирующих конструкций означает, что силы, действующие на первую армирующую конструкцию, передаются во вторую армирующую конструкцию, не проходя через бетон, и наоборот. Таким образом, первая и вторая армирующие конструкции могут быть соединены друг с другом непосредственно или через жесткий соединительный элемент, а не через бетон.
Первая армирующая конструкция предпочтительно содержит арматурные стержни из стали или аналогичного жесткого материала. Предпочтительно арматурные стержни проходят в продольном направлении ребер. Дополнительные арматурные стержни могут проходить перпендикулярно или под углом к арматурным стержням, проходящим в продольном направлении ребер. Дополнительные арматурные стержни также могут быть расположены в основании и могут выступать в осевом направлении. Продольные арматурные стержни могут предпочтительно проходить в радиальном направлении к центру фундамента, причем продольные арматурные стержни либо могут быть расположены в горизонтальной плоскости, либо могут проходить под углом к горизонтальной плоскости, в частности, поднимаясь к основанию. В последнем случае арматурные стержни по существу совмещены с путем передачи нагрузки от воздействия сил, отведенных от основания радиально наружу.
Вторая армирующая конструкция предпочтительно содержит множество жестких продольных армирующих элементов, в частности стальных балок или стержней, каждый из которых соединяет готовые бетонные элементы одной пары расположенных друг напротив друга готовых бетонных элементов друг с другом, проходя через полость, окруженную основанием. Продольные армирующие элементы второй армирующей конструкции соединены с первой армирующей конструкцией, в частности с арматурными стержнями, предпочтительно с арматурными стержнями, проходящими в продольном направлении ребер. Таким образом, арматурные стержни, встроенные в расположенные друг напротив друга готовые бетонные элементы, соединены друг с другом с помощью продольных армирующих элементов второй армирующей конструкции, в которой путь передачи нагрузки образован между первой армирующей конструкцией упомянутых расположенных друг напротив друга готовых бетонных элементов. Это приводит к тому, что нагрузка на растяжение, которая воздействует на фундамент из-за изгибающего момента башни, будет не только поглощена первой армирующей конструкцией, расположенной на одной стороне фундамента, но упомянутая нагрузка на растяжение также передается на первую армирующую конструкцию, расположенную на противоположной стороне фундамента.
В соответствии с предпочтительным вариантом осуществления изобретения каждая пара расположенных друг напротив друга готовых бетонных элементов соединена одним из указанных жестких продольных армирующих элементов. Таким образом, множество продольных армирующих элементов, в частности стальных стержней или балок, пересекает полость, окруженную основанием. Так как эти поперечные продольные армирующие элементы расположены диаметрально, они встречаются в центре основания, так что получается симметричное расположение, обеспечивающее оптимальное распределение сил внутри всего фундамента.
Продольные армирующие элементы могут пересекать основание в горизонтальной плоскости. Однако предпочтительно, чтобы жесткие продольные армирующие элементы были прикреплены к одному элементу из упомянутой пары расположенных друг напротив друга готовых бетонных элементов в его верхней области, а к другому элементу из пары расположенных друг напротив друга готовых бетонных элементов - в его нижней области, чтобы они проходили под углом относительно горизонтальной плоскости. Поэтому арматурные стержни расположенных друг напротив друга готовых бетонных элементов соединены друг с другом по меньшей мере в двух разных плоскостях, таких как верхняя и нижняя плоскости.
В этой связи предпочтительно, чтобы жесткие продольные армирующие элементы были соединены друг с другом на их пересечении, которое расположено на центральной оси основания. Таким образом, обеспечивается центральная точка оси симметрии фундамента, которая позволяет распределять нагрузку в разных направлениях.
Что касается соединения между первой армирующей конструкцией и второй армирующей конструкцией, в предпочтительном варианте осуществления предусматривают, чтобы жесткие продольные армирующие элементы второй армирующей конструкции и первой армирующей конструкции, в частности арматурные стержни, были соединены друг с другом посредством оболочки, расположенной на внутренней поверхности основания. Упомянутая оболочка может быть выполнена из листовой стали, прикрепленной к внутренней поверхности основания. В случае основания, выполненного в виде полого цилиндра, оболочка может быть выполнена в виде цилиндрической оболочки, расположенной на внутренней цилиндрической поверхности основания. Оболочка служит для направления пути передачи нагрузки от первой армирующей конструкции ко второй армирующей конструкции и наоборот. Это достигается за счет жесткого соединения с оболочкой как арматурных стержней первой армирующей конструкции, так и армирующих элементов второй армирующей конструкции.
В этой связи в предпочтительном варианте осуществления изобретения предусматривают, что арматурные стержни первой армирующей конструкции прикреплены к оболочке сваркой. Предпочтительно это может быть достигнуто путем размещения арматурных стержней упомянутой первой армирующей конструкции так, чтобы они выступали внутрь из готовых бетонных элементов и предпочтительно проникали в отверстия, выполненные в оболочке. В этом случае сварной шов может быть выполнен на внутренней стороне оболочки. Как вариант, сварной шов может быть выполнен на внешней стороне оболочки.
Кроме того, вторая армирующая конструкция может быть прикреплена к оболочке сваркой или посредством резьбового соединения.
Полое пространство внутри основания может быть использовано для различных целей, например в качестве места для хранения или для проведения ремонтных работ, и, следовательно, оно может быть оборудовано лестницами, платформами и т.д. Кроме того, пустое пространство также может быть использовано для установки, доступа и обслуживания натяжных тросов, которые предназначены для стабилизации башни или мачты ветроэнергетической установки.
В соответствии с предпочтительным вариантом осуществления изобретения готовые бетонные элементы содержат опорную плиту для поддерживания ребра и выполнены с ней за одно целое. Таким образом, готовый бетонный элемент может иметь поперечное сечение в форме перевернутой буквы "Т", причем горизонтальный участок Т-образного сечения образован опорной плитой, а вертикальный участок T-образного сечения образован ребром. Однако ребро не обязательно должно быть выполнено строго в виде вертикальной балки. Ребро может также иметь поперечное сечение, сужающееся кверху. Кроме того, высота ребра предпочтительно может непрерывно увеличиваться в направлении основания. Постоянно увеличивающаяся высота ребра позволяет приспособить площадь поперечного сечения ребра к распространению усилия и, например, может быть реализована так, чтобы верхняя поверхность или верхний край ребра были выполнены в виде наклонной плоскости, поднимающейся в направлении основания. В качестве альтернативы, ребро может иметь изогнутую, а именно вогнутую конфигурацию верхней поверхности или верхнего края. В любом случае высота ребра может увеличиваться в направлении основания, чтобы достичь высоты основания в точке, где ребро переходит в основание.
Арматурные стержни, встроенные в ребро, предпочтительно могут проходить по существу параллельно верхнему краю ребра, в частности параллельно восходящей наклонной плоскости.
Опорные плиты готовых бетонных элементов могут иметь прямоугольную форму. Как вариант, плиты могут расширяться в горизонтальном направлении с увеличением расстояния от центра фундамента.
Чтобы закрыть пустое пространство внутри основания со стороны его дна, в предпочтительном варианте осуществления изобретения предусматривают, чтобы упомянутая опорная плита содержала краевую секцию, выступающую внутрь в полость, окруженную основанием. В частности, краевые секции всех готовых бетонных элементов вместе образуют окружной, в частности круговой край, который в окружном направлении поддерживает центральную нижнюю плиту, расположенную на дне основания.
В соответствии с еще одним предпочтительным вариантом осуществления изобретения готовые бетонные элементы скреплены друг с другом посредством по меньшей мере одного натяжного троса, который расположен в окружном, в частности круговом проходе, выполненном в основании. Такие тросы имеют функцию дополнительной армирующей конструкции, но в отличие от предложенной в изобретении второй армирующей конструкции тросы не соединены с первой армирующей конструкцией, встроенной в готовые бетонные элементы.
При скреплении готовых бетонных элементов друг с другом боковые поверхности соседних секций основания прижимают друг к другу. Чтобы точно выровнять соседние секции друг с другом, упомянутые боковые поверхности могут содержать соединительные элементы, такие как выступ и канавка, взаимодействующие друг с другом для обеспечения взаимного расположения сегментов.
Установка готовых бетонных элементов на строительной площадке становится существенно проще, если в соответствии с предпочтительным вариантом осуществления изобретения соседние готовые бетонные элементы, на своих участках, отходящих радиально от основания, находятся на расстоянии друг от друга в окружном направлении. В частности, опорные плиты имеют такую ширину, что опорные плиты соседних готовых бетонных элементов не касаются друг друга. Таким образом, можно обеспечить производственные допуски при изготовлении готовых бетонных элементов.
Значительный вклад в стабильность фундамента достигается за счет засыпки котлована грунтом или другим материалом обратной засыпки поверх готовых бетонных элементов фундамента. Таким образом, вес материала засыпки может быть использован для создания вертикальной нагрузки на готовые бетонные элементы, которая противодействует возможному опрокидывающему моменту. Нагрузка наиболее эффективно действует на вертикальные поверхности фундамента, такие как опорные плиты готовых бетонных элементов. Однако чтобы снизить производственные и транспортные издержки, опорные плиты могут иметь ограниченную ширину, чтобы между соседними опорными плитами оставался зазор. В области упомянутого зазора материал засыпки не может оказывать вертикальную нагрузку на фундамент, которая будет противодействовать опрокидывающему моменту ветроэнергетической установки.
В общем, чем больше диаметр фундамента, тем лучше фундамент может противостоять опрокидывающему моменту ветроэнергетической установки. Однако транспортные средства, доступные для транспортировки готовых бетонных элементов от завода сборных железобетонных конструкций до строительной площадки, ограничивают его возможную длину.
В свете вышеизложенного было бы желательно увеличить устойчивость фундамента ветроэнергетической установки, в частности его устойчивость к опрокидывающему моменту, без увеличения длины и/или ширины готовых бетонных элементов, которые образуют основание и ребра фундамента. Для этого в предпочтительном варианте осуществления изобретения предусматривают, чтобы через каждый зазор между двумя соседними готовыми бетонными элементами проходила соединительная плита, причем упомянутая соединительная плита предпочтительно имеет такую протяженность в радиальном направлении, что она выступает от готовых бетонных элементов в радиальном направлении. Соединительные плиты предпочтительно выполняют в виде готовых бетонных плит. Поскольку соединительные плиты представляют собой элементы, которые отделены от готовых бетонных элементов, образующих основание и ребра фундамента, то с ними можно обращаться и транспортировать их отдельно. Соединительные плиты расширяют площадь горизонтальной поверхности, на которую материал засыпки оказывает вертикальное усилие, противодействующее опрокидывающему моменту ветроэнергетической установки. В частности, площадь поверхности расширяется по меньшей мере до части зазора между соседними опорными плитами и, как вариант, до области, которая находится в радиальном направлении за пределами диаметра фундамента, заданного готовыми бетонными элементами, которые образуют основание и ребра. Соединительные плиты, по меньшей мере вдоль части своего края, поддерживаются опорными плитами, так что вертикальная нагрузка, оказываемая материалом засыпки на соединительные плиты, может быть передана на фундамент, включая готовые бетонные элементы.
В качестве альтернативы или в дополнение, плоский гибкий материал, такой как текстильный листовой материал, мат или геомембрана, может быть уложен так, чтобы покрывать опорные плиты, ребра и/или соединительные плиты. Плоский материал может выполнять ту же функцию, что и соединительные плиты, которые должны расширять поверхность, на которой лежит материал засыпки. Плоский гибкий материал может быть прикреплен к основанию, и/или ребрам, и/или соединительным плитам с помощью соответствующих соединительных элементов, таких как, например, крючки, проушины или резьбовые соединительные элементы.
Бетон, используемый для изготовления готовых бетонных элементов, может представлять собой бетон любого типа, который также обычно используют для укладки бетона на месте. В дополнение к заполнителям и воде бетон содержит портландцемент в качестве гидравлического связующего, который создает формообразующие фазы путем взаимодействия и затвердевания при контакте с водой.
Для изготовления готовых бетонных элементов также можно использовать фибробетон. Волокна могут быть изготовлены из любого волокнистого материала, который способствует повышению структурной целостности, в частности прочности, ударостойкости и/или долговечности полученной бетонной конструкции. Фибробетон содержит короткие отдельные армирующие волокна, которые равномерно распределены и сориентированы в случайном порядке.
Предпочтительно, армирующие волокна представляют собой углеродные волокна, синтетические волокна, в частности полипропиленовые волокна. В качестве альтернативы, армирующие волокна могут представлять собой стальные волокна, стекловолокно или природное волокно.
В процессе эксплуатации фундамент несет на себе наземную ветроэнергетическую установку, содержащую мачту и ротор, установленный на мачте, причем мачта установлена на основании предложенного в изобретении фундамента с помощью обычных средств, например с помощью анкерных болтов. Ротор имеет горизонтальную ось вращения.
Далее изобретение будет описано более подробно со ссылкой на пример осуществления, показанный на чертежах.
На фиг. 1 показан фундамент ветроэнергетической установки, состоящий из готовых бетонных элементов;
на фиг. 2 - готовый бетонный элемент, применяемый в фундаменте, изображенном на фиг. 1;
на фиг. 3 - поперечный разрез фундамента в соответствии с изобретением;
на фиг. 4 - вид сверху фундамента, изображенного на фиг. 3; и
на фиг. 5 - частичный вид сверху модифицированного варианта выполнения фундамента.
На фиг. 1 показан фундамент 1, который содержит несколько готовых бетонных элементов 3. Фундамент 1 содержит круглое основание 2 в виде полого цилиндра, предназначенное для поддерживания башни ветроэнергетической установки. Фундамент 1 также содержит несколько ребер 5, отходящих радиально наружу от основания 2. Основание 2 разделено на несколько периферийных секций 4 (фиг. 2), причем периферийные секции 4 и ребра 5 выполнены за одно целое друг с другом в виде готового бетонного элемента 3, как показано на фиг. 2. Готовый бетонный элемент 3 также содержит опорную плиту 6, которая также выполнена за одно целое с ребром 5. Готовые бетонные элементы 3 выполнены из армированного бетона, содержащего арматурные стержни, встроенные в готовые бетонные элементы 3.
Хотя ребра показаны на фиг. 2 в виде цельного готового бетонного элемента, ребра также могут быть собраны из двух или нескольких секций. Это особенно предпочтительно, если необходимо сделать ребро, длина которого в радиальном направлении превосходит допустимую длину обычного транспортного средства. В частности, две или несколько секций ребра могут быть изготовлены в виде отдельных готовых бетонных элементов, перевезены на строительную площадку по отдельности и жестко установлены вместе на строительной площадке.
Чтобы точно выровнять соседние периферийные секции 4 друг с другом, упомянутые боковые поверхности могут содержать соединительные элементы 16, такие как трапециевидный выступ и канавка, взаимодействующие друг с другом для обеспечения взаимного расположения элементов 3. Кроме того, готовые бетонные элементы 3 могут быть соединены друг с другом посредством по меньшей мере одного натяжного троса, который может быть расположен в окружном, в частности круговом, проходе, выполненном в основании 2, причем отверстие прохода обозначено позицией 17. Конечно, может быть выполнено несколько проходов.
Арматурные стержни, встроенные в готовые бетонные элементы 3, показаны на фиг. 3 и обозначены ссылочной позицией 7. Кроме того, показаны анкерные болты 8, которые внедрены в периферийные секции 4 основания 2 и служат для крепления башни ветроэнергетической установки к их свободным концам, выступающим из основания 2.
Оболочка 9 расположена на внутренней цилиндрической поверхности основания 2. Арматурные стержни 7 расположены так, чтобы выступать внутрь из готовых бетонных элементов 3 и проникать в отверстия, выполненные в оболочке 9, так что стержни 7 могут быть соединены с оболочкой 9 с ее внутренней стороны посредством сварки (соединение сваркой обозначено ссылочной позицией 15 в качестве примера только на одном стержне 7). Кроме того, каждая стальная балка 10 соединена с оболочкой 9, например, посредством резьбового соединения. Стальные балки 10 соединяют друг с другом расположенные друг напротив друга готовые бетонные элементы 3, пересекая полость 12, окруженную основанием 2. По меньшей мере часть стальных балок 10 проходят под углом, образуя "Х"-образную конфигурацию, причем каждая балка 10 прикреплена к одному из расположенных друг напротив друга готовых элементов 3 в его верхней области, а к другому из расположенных друг напротив друга готовых элементов 3 - в его нижней области.
Как можно увидеть на фиг. 3, опорная плита 6 каждого готового бетонного элемента 3 содержит краевую секцию, выступающую внутрь в полость 12, причем краевые секции всех готовых бетонных элементов образуют окружной край 13, который поддерживает в окружном направлении центральную нижнюю плиту 11, расположенную на дне основания 2.
На фиг. 4 на виде сверху фундамента, показанного на фиг. 3, показано, что каждая пара расположенных друг напротив друга готовых бетонных элементов 3 соединена друг с другом посредством стальных балок 10.
На фиг. 5 показан вариант осуществления изобретения, в котором через каждый зазор между двумя соседними готовыми бетонными элементами 3 проходит соединительная плита, которая имеет в радиальном направлении такую протяженность, чтобы выступать от готовых бетонных элементов 3 в радиальном направлении. Соединительная плита 14 может быть прикреплена к опорным плитам 6 готовых бетонных элементов 3 посредством болтов.

Claims (17)

1. Фундамент для ветроэнергетической установки, содержащий круглое или многоугольное основание для поддержания башни ветроэнергетической установки и несколько ребер, отходящих радиально от основания, причем основание разделено на несколько периферийных секций, при этом каждые периферийная секция и ребро выполнены как единое целое в виде готового бетонного элемента, причем готовые бетонные элементы выполнены из армированного бетона, содержащего первую армирующую конструкцию, в частности арматурные стержни, встроенную в готовые бетонные элементы, отличающийся тем, что имеется вторая армирующая конструкция, которая удерживает готовые бетонные элементы вместе и которая связана с первой армирующей конструкцией, причем первая армирующая конструкция и вторая армирующая конструкция непосредственно соединены друг с другом.
2. Фундамент по п. 1, в котором вторая армирующая конструкция содержит множество жестких продольных армирующих элементов, в частности стальных балок или стержней, каждый из которых соединяет готовые бетонные элементы пары расположенных друг напротив друга готовых бетонных элементов друг с другом, проходя через полость, окруженную основанием.
3. Фундамент по п. 2, в котором каждая пара расположенных друг напротив друга готовых бетонных элементов соединена одним из указанных жестких продольных армирующих элементов.
4. Фундамент по п. 2 или 3, в котором каждый жесткий продольный армирующий элемент прикреплен к одному элементу из упомянутой пары расположенных друг напротив друга готовых бетонных элементов в его верхней области, а к другому элементу из упомянутой пары расположенных друг напротив друга готовых бетонных элементов - в его нижней области.
5. Фундамент по любому из пп. 2-4, в котором жесткие продольные армирующие элементы соединены друг с другом на их пересечении, расположенном на оси основания.
6. Фундамент по любому из пп. 2-5, в котором жесткие продольные армирующие элементы и первая армирующая конструкция, в частности арматурные стержни, соединены друг с другом посредством оболочки, расположенной на внутренней поверхности основания.
7. Фундамент по п. 6, в котором арматурные стержни первой армирующей конструкции прикреплены к оболочке сваркой.
8. Фундамент по п. 6 или 7, в котором арматурные стержни упомянутой первой армирующей конструкции расположены так, чтобы они выступали внутрь из готовых бетонных элементов и предпочтительно проникали в отверстия, выполненные в оболочке.
9. Фундамент по п. 6, 7 или 8, в котором вторая армирующая конструкция прикреплена к оболочке посредством сварки или посредством резьбового соединения.
10. Фундамент по любому из пп. 1-9, в котором готовые бетонные элементы содержат опорную плиту, предназначенную для поддерживания ребра и выполненную с ним за одно целое, причем упомянутая опорная плита предпочтительно содержит краевую секцию, выступающую внутрь в полость, окруженную основанием.
11. Фундамент по п. 10, в котором краевые секции всех готовых бетонных элементов вместе образуют окружной, в частности круговой, край, который в окружном направлении поддерживает центральную нижнюю плиту, расположенную на дне основания.
12. Фундамент по любому из пп. 1-11, в котором высота ребра непрерывно увеличивается в направлении основания.
13. Фундамент по любому из пп. 1-12, в котором готовые бетонные элементы скреплены друг с другом посредством по меньшей мере одного натяжного троса, который расположен в окружном, в частности круговом, проходе, выполненном в основании.
14. Фундамент по любому из пп. 1-13, в котором соседние готовые бетонные элементы, на своих участках, отходящих радиально от основания, находятся на расстоянии друг от друга в окружном направлении.
15. Фундамент по любому из пп. 1-14, в котором каждый зазор между двумя соседними готовыми бетонными элементами перекрыт соединительной плитой, причем упомянутая соединительная плита предпочтительно имеет такую протяженность в радиальном направлении, что выступает в радиальном направлении от готовых бетонных элементов.
16. Фундамент по п. 15, в котором соединительные плиты выполнены в виде готовых бетонных плит.
17. Ветроэнергетическая установка, содержащая мачту и ротор, установленный на мачте, причем мачта установлена на фундаменте по любому из пп. 1-16.
RU2018132243A 2016-02-18 2017-02-01 Фундамент для ветроэнергетической установки RU2720210C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ATA88/2016 2016-02-18
ATA88/2016A AT517959B1 (de) 2016-02-18 2016-02-18 Fundament für ein Windrad
PCT/IB2017/000064 WO2017141095A1 (en) 2016-02-18 2017-02-01 Foundation for a wind mill

Publications (3)

Publication Number Publication Date
RU2018132243A3 RU2018132243A3 (ru) 2020-03-18
RU2018132243A RU2018132243A (ru) 2020-03-18
RU2720210C2 true RU2720210C2 (ru) 2020-04-28

Family

ID=58057183

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018132243A RU2720210C2 (ru) 2016-02-18 2017-02-01 Фундамент для ветроэнергетической установки

Country Status (12)

Country Link
US (2) US10968592B2 (ru)
EP (1) EP3417114B1 (ru)
CN (1) CN108699797B (ru)
AR (1) AR107619A1 (ru)
AT (1) AT517959B1 (ru)
AU (1) AU2017219230B2 (ru)
BR (1) BR112018015974B1 (ru)
CA (1) CA3013852C (ru)
ES (1) ES2784000T3 (ru)
MX (2) MX2018009095A (ru)
RU (1) RU2720210C2 (ru)
WO (1) WO2017141095A1 (ru)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT517959B1 (de) 2016-02-18 2017-06-15 Holcim Technology Ltd Fundament für ein Windrad
DE102018112857A1 (de) 2017-12-13 2019-06-13 Universelle-Fertigteil-Fundamente GmbH Fundament für eine Windkraftanlage
WO2019201714A2 (de) 2018-04-16 2019-10-24 Universelle-Fertigteil-Fundamente GmbH Fundament für eine windkraftanlage
AT521432B1 (de) * 2018-07-13 2020-07-15 Holcim Technology Ltd Fundament für ein Windkraftwerk
AT521433B1 (de) * 2018-07-13 2021-12-15 Holcim Technology Ltd Fundament für ein Windkraftwerk
AT522250A1 (de) * 2019-02-28 2020-09-15 Holcim Technology Ltd Fundament für eine Windkraftanlage
DE102019126558A1 (de) * 2019-10-02 2021-04-08 Anker Foundations GmbH Fundament für eine Windkraftanlage
DE102020125441A1 (de) 2020-09-29 2022-03-31 Anker Foundations GmbH Fundament für eine Windkraftanlage
DE102020125918A1 (de) 2020-10-04 2022-04-07 Anker Foundations GmbH Fundament für eine Windkraftanlage
DE202020106971U1 (de) 2020-10-04 2022-01-07 Anker Foundations GmbH Fundament für eine Windkraftanlage
EP4222320A1 (de) 2020-09-29 2023-08-09 Smart & Green Mukran Concrete GmbH Fundament für eine windkraftanlage
DE102021125328A1 (de) 2020-09-29 2022-03-31 Anker Foundations GmbH Ankerkorb für ein Fundament für eine Windkraftanlage
DE202020105643U1 (de) 2020-09-29 2022-01-04 Anker Foundations GmbH Fundament für eine Windkraftanlage
EP4263952A1 (en) * 2020-12-17 2023-10-25 Nordex Energy Spain, S.A.U. System, manufacturing method and precast foundation structure for a wind turbine
WO2022252754A1 (zh) * 2021-06-03 2022-12-08 中国华能集团清洁能源技术研究院有限公司 一种预制装配与现浇砼组合式风机基础
DE102021122183A1 (de) 2021-08-26 2023-03-02 Smart & Green Mukran Concrete Gmbh Fundament für einen Turm für eine Windkraftanlage
CN114576098A (zh) * 2022-03-23 2022-06-03 中国华能集团清洁能源技术研究院有限公司 基础预制件、风力发电机组基础和风力发电机组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK200000612A (da) * 2000-04-12 2001-09-10 Spaencom As Fundament til vindmølle samt fremgangsmåde til montering heraf
WO2004101898A2 (de) * 2003-05-13 2004-11-25 Aloys Wobben Fundament für eine windenergieanlage
WO2010138978A2 (en) * 2009-05-05 2010-12-02 Ahmed Phuly Engineering & Consulting, Inc. Fatigue resistant foundation
US20110061321A1 (en) * 2006-09-21 2011-03-17 Ahmed Phuly Fatigue reistant foundation system
EA201170398A1 (ru) * 2008-09-05 2011-08-30 Макс Богл Бауунтернемунг Гмбх & Ко. Кг Оффшорная установка, фундамент оффшорной установки и способ возведения оффшорной установки
RU2014125424A (ru) * 2011-11-24 2015-12-27 Воббен Пропертиз Гмбх Устройство и способ для анкерного крепления ветроэнергетической установки

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2287378A1 (fr) * 1974-10-07 1976-05-07 Seven Seas Engin Ltd Perfectionnements aux structures cellulaires en beton
US4045929A (en) * 1975-12-01 1977-09-06 Gianfranco Velo Dalbrenta Liquidtight tank made of prestressed reinforced concrete, particularly for purification plants
US4228627A (en) * 1979-04-16 1980-10-21 Neill Joseph C O Reinforced foundation structure
JPH0650014B2 (ja) * 1988-06-08 1994-06-29 佐藤工業株式会社 鉄筋コンクリート円柱の配筋構造
FR2659368B1 (fr) * 1990-03-12 1992-07-10 Bouygues Offshore Structure tubulaire en beton, notamment pour structure en mer.
US5590497A (en) * 1992-07-31 1997-01-07 Moore; Richard G. Circular or generally circular prestressed concrete tank and method of constructing same
US5586417A (en) * 1994-11-23 1996-12-24 Henderson; Allan P. Tensionless pier foundation
US6244785B1 (en) * 1996-11-12 2001-06-12 H. B. Zachry Company Precast, modular spar system
WO2002027105A1 (en) * 2000-09-27 2002-04-04 Allan P Henderson Perimeter weighted foundation for wind turbines and the like
AU2003227292A1 (en) * 2003-07-29 2005-02-17 Chisholm, David Cameron Reinforced concrete foundations
US7618217B2 (en) * 2003-12-15 2009-11-17 Henderson Allan P Post-tension pile anchor foundation and method therefor
US9347197B2 (en) * 2006-09-21 2016-05-24 Ahmed Phuly Foundation with slab, pedestal and ribs for columns and towers
US9096985B1 (en) * 2006-09-21 2015-08-04 Ahmed Phuly Foundation with slab, pedestal and ribs for columns and towers
US20080072511A1 (en) * 2006-09-21 2008-03-27 Ahmed Phuly Partially prefabricated modular foundation system
US8499513B2 (en) * 2007-12-21 2013-08-06 Tony Jolly Tower foundation
US8607517B2 (en) * 2007-12-21 2013-12-17 Tony Jolly Tower foundation
US20100024311A1 (en) * 2008-07-30 2010-02-04 Dustin Jon Wambeke Wind turbine assembly with tower mount
DK2256338T3 (en) * 2008-11-03 2014-02-17 Siemens Ag Foundation, especially for a wind turbine and wind turbine
CN201428138Y (zh) * 2009-03-02 2010-03-24 赵正义 大型塔桅式机械设备组合基础
FI20095942A (fi) * 2009-09-11 2011-03-12 Peikko Group Oy Liitoselin tornirakenteen säteittäistä raudoitusrakennetta varten ja säteittäinen raudoitusrakenne tornirakennetta varten
IT1400073B1 (it) * 2009-09-11 2013-05-17 Stefano Knisel Fondazione migliorata per torre eolica
WO2011077546A1 (ja) * 2009-12-25 2011-06-30 三菱重工業株式会社 モノポール式タワー及びモノポール式タワーを備える風力発電装置
KR101683134B1 (ko) * 2010-04-15 2016-12-06 엘에스전선 주식회사 풍력타워용 면진장치
US20120085050A1 (en) * 2010-10-07 2012-04-12 Robert Greenwood Modular consumer assembled stamped metal post base that allows framing before concrete is poured
DE102010047773B4 (de) * 2010-10-08 2012-08-09 Timber Tower Gmbh Fundament für eine Windkraftanlage
US20120228442A1 (en) * 2011-02-25 2012-09-13 American Resource & Energy, Inc. Portable modular monopole tower foundation
EP2525021B8 (en) * 2011-05-16 2018-11-28 GE Renewable Technologies Wind B.V. Wind turbine tower supporting structure
ES2415058B2 (es) * 2011-10-18 2015-10-06 Esteyco Energía S.L. Mejoras en el procedimiento de instalación de torre para uso aguas adentro.
JP5883617B2 (ja) 2011-11-09 2016-03-15 日東電工株式会社 セパレータ付き粘着シート
WO2014160951A1 (en) * 2013-03-29 2014-10-02 Tindall Corporation Core component and tower assembly for a tower structure
CN205688927U (zh) * 2013-05-10 2016-11-16 艾瑞电信公司 用于单极子的底座和单极子结构
US9617704B2 (en) * 2014-05-27 2017-04-11 One Energy Enterprises Llc Reinforcement assemblies, fixtures, and methods
ES2524840B1 (es) * 2014-06-06 2015-09-08 Esteyco S.A.P. Sistema de cimentación para torres y procedimiento de instalación del sistema de cimentación para torres
EP3176329B1 (en) * 2014-07-30 2020-09-02 Dragados, S.A. Gravity-based foundation for offshore wind turbines
WO2016187720A1 (en) * 2015-05-26 2016-12-01 Anchor Concrete Products Ltd. Modular assembly for on-site fabrication of a structure
US9803330B2 (en) * 2015-10-07 2017-10-31 Timothy Seay Post support and post support system
CA2916228C (en) * 2015-12-23 2019-02-26 649119 N.B. Inc. Pre-cast concrete foundation of modular construction for telecommunication or wind turbine tower
AT517959B1 (de) * 2016-02-18 2017-06-15 Holcim Technology Ltd Fundament für ein Windrad
AT517958B1 (de) * 2016-02-18 2017-06-15 Holcim Technology Ltd Fundament für ein Windrad
AT519190A1 (de) * 2016-09-26 2018-04-15 Holcim Technology Ltd Fundament für eine Windmühle
AT519189B1 (de) * 2016-09-26 2020-04-15 Holcim Technology Ltd Fundament für eine Windmühle
WO2019201714A2 (de) * 2018-04-16 2019-10-24 Universelle-Fertigteil-Fundamente GmbH Fundament für eine windkraftanlage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK200000612A (da) * 2000-04-12 2001-09-10 Spaencom As Fundament til vindmølle samt fremgangsmåde til montering heraf
WO2004101898A2 (de) * 2003-05-13 2004-11-25 Aloys Wobben Fundament für eine windenergieanlage
US20110061321A1 (en) * 2006-09-21 2011-03-17 Ahmed Phuly Fatigue reistant foundation system
EA201170398A1 (ru) * 2008-09-05 2011-08-30 Макс Богл Бауунтернемунг Гмбх & Ко. Кг Оффшорная установка, фундамент оффшорной установки и способ возведения оффшорной установки
WO2010138978A2 (en) * 2009-05-05 2010-12-02 Ahmed Phuly Engineering & Consulting, Inc. Fatigue resistant foundation
RU2014125424A (ru) * 2011-11-24 2015-12-27 Воббен Пропертиз Гмбх Устройство и способ для анкерного крепления ветроэнергетической установки

Also Published As

Publication number Publication date
RU2018132243A3 (ru) 2020-03-18
WO2017141095A1 (en) 2017-08-24
US11795653B2 (en) 2023-10-24
AT517959A4 (de) 2017-06-15
AT517959B1 (de) 2017-06-15
BR112018015974B1 (pt) 2023-10-31
AU2017219230A1 (en) 2018-07-19
BR112018015974A8 (pt) 2022-10-18
MX2021014730A (es) 2022-01-18
US10968592B2 (en) 2021-04-06
CA3013852C (en) 2023-10-31
ES2784000T3 (es) 2020-09-21
EP3417114A1 (en) 2018-12-26
AU2017219230B2 (en) 2021-12-23
BR112018015974A2 (pt) 2018-12-18
EP3417114B1 (en) 2020-01-08
AR107619A1 (es) 2018-05-16
US20190063029A1 (en) 2019-02-28
CN108699797B (zh) 2021-04-30
CA3013852A1 (en) 2017-08-24
MX2018009095A (es) 2018-11-09
CN108699797A (zh) 2018-10-23
RU2018132243A (ru) 2020-03-18
US20210180282A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
RU2720210C2 (ru) Фундамент для ветроэнергетической установки
RU2714745C1 (ru) Фундамент для ветроэнергетической установки
US10513833B2 (en) Foundation with pedestal and ribs for towers
US20240018736A1 (en) Foundation with pedestal and ribs for towers
US9938685B2 (en) Beam and pile anchor foundation for towers
US10876269B2 (en) Foundation for a windmill
DK1474579T4 (en) Wind Turbine
EP3516134B1 (en) Foundation for a windmill
EP2427603B1 (en) Fatigue resistant foundation
US20110061321A1 (en) Fatigue reistant foundation system
RU2794278C2 (ru) Фундамент для башен ветряных турбин
RU2782228C2 (ru) Фундамент для ветроэнергетической установки