RU2717777C1 - Способ извлечения тяжелых металлов из водных растворов - Google Patents

Способ извлечения тяжелых металлов из водных растворов Download PDF

Info

Publication number
RU2717777C1
RU2717777C1 RU2019116707A RU2019116707A RU2717777C1 RU 2717777 C1 RU2717777 C1 RU 2717777C1 RU 2019116707 A RU2019116707 A RU 2019116707A RU 2019116707 A RU2019116707 A RU 2019116707A RU 2717777 C1 RU2717777 C1 RU 2717777C1
Authority
RU
Russia
Prior art keywords
water
sorbent
solution
minutes
sodium
Prior art date
Application number
RU2019116707A
Other languages
English (en)
Inventor
Николай Александрович Пестов
Виктор Васильевич Ревин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва"
Priority to RU2019116707A priority Critical patent/RU2717777C1/ru
Application granted granted Critical
Publication of RU2717777C1 publication Critical patent/RU2717777C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Biochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

Изобретение может быть использовано в очистке воды. Очистку сточных вод от ионов тяжелых металлов осуществляют методом сорбции. В очищаемую воду добавляют сорбент на основе модифицированной гель-пленки бактериальной целлюлозы и выдерживают в течение 60 мин при комнатной температуре. Сорбент получают биологическим синтезом в статических условиях культивирования в течение 5 сут. Очистку полученного сорбента осуществляют 0,5%-ным раствором гидроксида натрия в течение 120 мин, промывают водой до значения pH 7,0, окисляют в 0,3 мМ растворе (2,2,6,6-тетраметилпиперидин-1-ил)оксила, 28 мМ бромида натрия и 5 мМ гипохлорита натрия в течение 60 мин при температуре 25°С при модуле сорбент:раствор, равном 1:500, при pH 10,0 с последующей промывкой водой после окончания реакции окисления до значения рН 5,5. Предложенный сорбент повышает степень извлечения ионов тяжелых металлов из сточных вод. 2 пр.

Description

Изобретение относится к технологии очистки воды, в частности к очистке сточных вод от ионов тяжелых металлов методом сорбции с использованием сорбента на основе природного полимера - целлюлозы бактериального происхождения, и может быть использовано для очистки сточных вод от тяжелых металлов, образующихся в ходе технологических процессов, а также для разработки технологий очистки воды и водоподготовки.
Известен способ извлечения ионов тяжелых металлов из водных растворов, заключающийся в пропускании раствора через неподвижный слой набухшего гранулированного адсорбента, полученного из целлюлозосодержащего материала (ЦСМ), выбранного из древесных опилок или короткого льняного волокна фракции 0,5-1 мм. ЦСМ подвергают высушиванию до постоянной массы, обработке 2-3%-ным раствором соляной кислоты, отмывке от раствора кислоты дистиллированной водой до рН 5, отжиму до влажности 50%. Далее проводят последовательную обработку полученной массы раствором хитозана в уксусной кислоте, раствором глутарового альдегида и раствором аминоуксусной кислоты, осуществляемой при мольном соотношении ЦСМ : хитозан : глутаровый альдегид : аминоуксусная кислота, равном 1 : (0,3-0,4) : (0,2-0,3) : (0,05-0,1). Полученную смесь гранулируют (RU 2657506, МПК C02F 1/28, B01J 20/24, B01J 20/22, опубл. 14.06.2018).
Недостатком известного способа является длительность пропитки, большой расход реагентов и промывных вод.
Известен сорбент на основе клетчатки бурых водорослей. Сорбент, обладающий сорбционной активностью по отношению к солям тяжелых металлов и средне молекулярным токсикантам жидких сред, представляет собой очищенную от водорастворимых компонентов водорослевую клетчатку с размером частиц 0,05-0,2 мм, с мезопористой структурой, основными компонентами которой являются водорослевая целлюлоза и трудно гидролизуемые белки, которая получена путем сверхкритической флюидной экстракции воздушно-сухих бурых водорослей, при определенных условиях. Сорбент получают путем много стадийной очистки при температурах 50-60°С. На первой стадии водоросли подвергают сверхкритической флюидной экстракции бинарным растворителем: сверхкритический диоксид углерода - этанол (10:1). На данной стадии происходит выделение липидно-пигментного комплекса, содержащего жирные кислоты, хлорофилл и каротиноиды. Параметры экстракции: размер фракции 0,2-0,03 мм, влажность сырья 9% масс., температура 60°С, давление 300 атм, время экстракции 60 мин, расход углекислого газа 5,4 мл/мин, расход этанола 0,6 мл/мин. На второй стадии экстракции извлекается комплекс водорастворимых веществ (маннит, ламинаран, фукоидан, полифенолы, белки и аминокислоты). Проводят обработка биомассы 0,1 н. HCl при 60°С в три стадии по 60 минут, гидромодуль 1:20. На третьей стадии из остатка после кислотной экстракции проводят выделение альгиновых кислот обработкой его щелочью (1,5% NaHCO3) при 50°С в 2 стадии, каждая стадия по 60 мин, гидромодуль 1:20 (RU 2637436, МПК А61К 36/03, B01D 11/02, A61P 43/00, опубл. 04.12.2017).
Недостатком известного решения является длительность процедуры, большой расход реагентов, необходимость наличия дорогостоящего оборудования и высокие энергозатраты.
Известен способ получения сорбента для очисти сточных вод от многокомпонентных загрязнений, в котором целлюлозосодержащие отходы табачно-махорочного производства растительного происхождения в виде табачной пыли смешивают с водной суспензией бентонитовой глины, имеющей соотношение (мас. ч.): бентонитовая глина : вода, равное 3:5. Пластичную массу, имеющую соотношение компонентов (мас. %): табачная пыль - 50-70, глинистая суспензия - 30-50, гранулируют. Гранулы подвергают химической обработке в растворе серной кислоты и термической обработке при температуре 300-750°C (RU 2644880, МПК B01J 20/24, B01J 20/12, B01J 20/30, опубл. 14.02.2018).
Недостатком способа является использование высокотемпературной обработки и недостаточно высокая сорбционная емкость сорбента.
Известен способ получения сорбента из лузги подсолнечника, в котором осуществляют замачивание лузги, сушку при 80°С до постоянной массы и измельчение до фракции 0,3-0,5 мм. Замачивание лузги проводят в 0,5 М растворе гидроксида натрия при массовом соотношении лузга/раствор гидроксида натрия, равном 1:5, в поле СВЧ с удельной мощностью 1-5 Вт/см3 в течение 5-15 мин (RU 2650978, МПК B01J 20/30, опубл. 18.04.2018).
Недостатком известного способа является низкая сорбционная емкость сорбента.
Наиболее близким по технической сущности к заявленному изобретению является способ модифицирования сорбентов на основе целлюлозы для извлечения ионов тяжелых металлов из водных растворов. Осуществляют двухстадийную модификацию исходного сорбента, выбранного из хлопковой или древесной целлюлозы, короткого льняного волокна, древесных опилок или стеблей топинамбура. На первой стадии проводят обработку исходного сорбента раствором окислителя, выбранного из метаперйодата натрия, йодной кислоты или гипохлорита натрия, под действием микроволнового облучения. На второй стадии осуществляют обработку раствором 3-10% сульфаниловой кислоты. После каждой стадии обработки продукт промывают водой (RU 2640547, МПК B01J 20/30, B01J 20/24, опубл. 09.01.2018).
Недостатком известного способа является сложность процедуры модификации сорбента и большой расход необходимых реагентов.
Технический результат заключается в получении сорбента в виде окисленной бактериальной целлюлозы, обладающего способностью извлекать ионы тяжелых металлов из водных растворов.
Сущность изобретения заключается в том, что способ извлечения тяжелых металлов из водных растворов включает выдерживание в очищаемой воде в течение 60 мин при комнатной температуре сорбента на основе модифицированной гель-пленки бактериальной целлюлозы, получаемой биологическим синтезом в статических условиях культивирования в течение 5 сут с последующей очисткой 0,5%-ным раствором гидроксида натрия в течение 120 мин, промывкой водой до значения pH 7,0, окислением в 0,3 мМ растворе 2,2,6,6-тетраметилпиперидин-1-ил)оксила, 28 мМ бромида натрия и 5 мМ гипохлорита натрия в течение 60 мин при температуре 25°С при модуле сорбент : раствор равным 1:500 при pH 10,0 с последующей промывкой водой после окончания реакции окисления до значения pH 5,5.
В процессе химического окисления целлюлозы бактериального происхождения в биополимер вводятся функциональные карбоксильные группы, которые способны связывать ионы тяжелых металлов по механизму ионного обмена. Бактериальная целлюлоза обладает высокой удельной площадью поверхности, что даже при невысокой степени окисления позволяет добиться большой концентрации функциональных групп на единицу массы сорбента. Для получения сорбента используют бактериальную целлюлозу, полученную культивированием продуцента Gluconacetobacter sucrofermentans H-110 на соответствующей среде (RU 2536973, МПК C12N 1/20, C12P 19/04, C12R 1/01, опубл. 27.12.2014; RU 2536257, МПК C12N 1/20, C12R 1/01, опубл. 20.12.2014). Культивирование осуществляют в стационарных условиях культивирования при температуре 28°С в течение 5 суток в пластиковых кюветах объемом 7 л заполненных на 1/7 объема. Полученную гель-пленку бактериальной целлюлозы очищают последовательной обработкой 0,2 н. раствором гидроксида натрия при температуре 80°C в течение 120 мин для удаления клеток и компонентов культуральной среды и 0,5%-ным водным раствором уксусной кислоты при температуре 80°C в течение 60 мин с тщательной отмывкой дистиллированной водой до значения pH 5,5 после каждого этапа. Окисление бактериальной целлюлозы проводят в водном растворе с гидромодулем 1:500, содержащем 2,2,6,6-тетраметилпиперидин-1-ил)оксила в концентрации 0,3 мМ, бромида натрия в концентрации 28 мМ и 5 мМ гипохлорита натрия. Модификацию сорбента проводят в течение 60 мин при температуре 25°С с поддержанием значения pH равным 10,0, которое корректировалось добавлением 0,05 N гидроксида натрия. По окончании реакции гель-пленку бактериальной целлюлозы промывают водой до достижения значения pH 5,5. В качестве модельного элемента тяжелого металла был выбран никель (II), который использовался в виде сульфата никеля.
Пример реализации заявленного способа.
Пример 1. Бактериальная целлюлоза была получена в ходе культивирования продуцента в статических условиях культивирования в течение 5 сут с последующей очисткой 0,5%-ным водным раствором гидроксида натрия в течение 120 мин и последующей промывкой водой до значения рН 7,0. 0,1 г бактериальной целлюлозы заливают 50 мл раствора 2,2,6,6-тетраметилпиперидин-1-ил)оксила в концентрации 0,3 мМ, бромида натрия в концентрации 28 мМ и 5 мМ гипохлорита натрия. Модификация сорбента проводилась в течение 60 мин при 25°С с поддержанием значения pH равным 10,0, которое корректировалось добавлением 0,05 N гидроксида натрия. По окончании реакции окисления гель-пленку бактериальной целлюлозы промывают дистиллированной водой до достижения значения pH 5,5 для удаления непрореагировавших компонентов реакционной смеси. Полученный в виде гель-пленки сорбент помещают в емкость объемом 250 мл и заливают 100 мл раствора сульфата никеля имеющем значение pH 5,5 и содержащем 0,038 ммоль ионов никеля. Через 60 мин в растворе определяют количество ионов никеля, которое составляет 0,02 ммоль ионов никеля (степень извлечения 47,36 %).
Пример 2. Бактериальная целлюлоза была получена в ходе культивирования продуцента в статических условиях культивирования в течение 5 сут с последующей очисткой 0,5%-ным водным раствором гидроксида натрия в течение 120 мин и последующей промывкой водой до значения рН 7,0. 0,1 г бактериальной целлюлозы заливают 50 мл раствора 2,2,6,6-тетраметилпиперидин-1-ил)оксила в концентрации 0,3 мМ, бромида натрия в концентрации 28 мМ и 5 мМ гипохлорита натрия. Модификацию сорбента проводят в течение 60 мин при температуре 25°С с поддержанием значения pH равным 10,0, которое корректировалось добавлением 0,05 N гидроксида натрия. По окончании реакции окисления гель-пленку бактериальной целлюлозы промывают водой до достижения значения pH 5,5 для удаления непрореагировавших компонентов реакционной смеси. Полученный в виде гель-пленки сорбент помещают в емкость объемом 250 мл и заливают 100 мл раствора сульфата никеля имеющем значение pH 5,5 и содержащем 0,023 ммоль ионов никеля. Через 60 мин в растворе определяют количество ионов никеля, которое составляет 0,008 ммоль ионов никеля (степень извлечения 64,2%).
По сравнению с известным решением заявленное изобретение позволяет получить сорбент в виде окисленной бактериальной целлюлозы, обладающего способностью извлекать ионы тяжелых металлов из водных растворов.

Claims (1)

  1. Способ извлечения тяжелых металлов из водных растворов, включающий добавление и выдерживание в очищаемой воде в течение 60 мин при комнатной температуре сорбента на основе модифицированной гель-пленки бактериальной целлюлозы, получаемой биологическим синтезом в статических условиях культивирования в течение 5 сут с последующей очисткой 0,5%-ным раствором гидроксида натрия в течение 120 мин, промывкой водой до значения pH 7,0, окислением в 0,3 мМ растворе (2,2,6,6-тетраметилпиперидин-1-ил)оксила, 28 мМ бромида натрия и 5 мМ гипохлорита натрия в течение 60 мин при температуре 25°С при модуле сорбент:раствор, равном 1:500, при pH 10,0 с последующей промывкой водой после окончания реакции окисления до значения pH 5,5.
RU2019116707A 2019-05-30 2019-05-30 Способ извлечения тяжелых металлов из водных растворов RU2717777C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019116707A RU2717777C1 (ru) 2019-05-30 2019-05-30 Способ извлечения тяжелых металлов из водных растворов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019116707A RU2717777C1 (ru) 2019-05-30 2019-05-30 Способ извлечения тяжелых металлов из водных растворов

Publications (1)

Publication Number Publication Date
RU2717777C1 true RU2717777C1 (ru) 2020-03-25

Family

ID=69943318

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019116707A RU2717777C1 (ru) 2019-05-30 2019-05-30 Способ извлечения тяжелых металлов из водных растворов

Country Status (1)

Country Link
RU (1) RU2717777C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2743012C1 (ru) * 2020-08-21 2021-02-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" Способ получения микропористого сорбента на основе бактериальной целлюлозы
CN114870812A (zh) * 2022-06-26 2022-08-09 苏州北美国际高级中学 一种细菌纤维素活性氢氧化镁复合膜及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140238626A1 (en) * 2011-09-30 2014-08-28 Nippon Paper Industries Co., Ltd. Method for producing cellulose nanofibers
CN104525148A (zh) * 2015-01-12 2015-04-22 国家电网公司 吸附废水中Pb2+的氨基磺酸铵细菌纤维素的制备方法
RU2640547C1 (ru) * 2016-12-19 2018-01-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" (ИГХТУ) Способ модифицирования сорбентов на основе целлюлозы для извлечения ионов тяжелых металлов из водных растворов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140238626A1 (en) * 2011-09-30 2014-08-28 Nippon Paper Industries Co., Ltd. Method for producing cellulose nanofibers
CN104525148A (zh) * 2015-01-12 2015-04-22 国家电网公司 吸附废水中Pb2+的氨基磺酸铵细菌纤维素的制备方法
RU2640547C1 (ru) * 2016-12-19 2018-01-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" (ИГХТУ) Способ модифицирования сорбентов на основе целлюлозы для извлечения ионов тяжелых металлов из водных растворов

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2743012C1 (ru) * 2020-08-21 2021-02-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" Способ получения микропористого сорбента на основе бактериальной целлюлозы
CN114870812A (zh) * 2022-06-26 2022-08-09 苏州北美国际高级中学 一种细菌纤维素活性氢氧化镁复合膜及制备方法
CN114870812B (zh) * 2022-06-26 2024-02-06 苏州北美国际高级中学 一种细菌纤维素活性氢氧化镁复合膜及制备方法

Similar Documents

Publication Publication Date Title
Roa et al. Lignocellulose-based materials and their application in the removal of dyes from water: A review
Ali et al. Biosorption of crystal violet from water on leaf biomass of Calotropis procera
CN108325506B (zh) 一种吸附重金属的改性纤维素气凝胶的制备方法
CN104387617B (zh) 一种玉米秸秆改性纤维素凝胶的制备方法
CN106914225A (zh) 一种纤维素基双功能吸附剂的制备方法
CN105536715A (zh) 一种利用枫叶制备吸附材料的方法
RU2717777C1 (ru) Способ извлечения тяжелых металлов из водных растворов
WO2021007986A1 (zh) 一种羧基化榕树气生根纤维吸附剂及其制备方法与应用
CN107337764B (zh) 玉米秸穰半纤维素基疏水温敏凝胶的制备方法及应用
CN102351177A (zh) 一种处理含酚废水的竹质改性活性炭吸附剂的制备方法
US5648313A (en) Method for production of adsorption material
CN103055722A (zh) 一种具有重金属吸附功能的纳米纤维膜及其制备方法
CN109179554A (zh) 利用二氧化锰负载生物炭材料去除水体中强力霉素的方法
CN105413648A (zh) 一种银杏叶吸附材料及其制备方法
CN105536714A (zh) 一种重金属纤维素吸附剂及其制备方法
CN105435748A (zh) 一种植物纤维素吸附剂
CN105435749A (zh) 一种纤维素改性吸附剂及其制备工艺
CN105381787A (zh) 一种新型环保吸附材料及其制备工艺
CN108504695B (zh) 一种胞外聚合物及其制备方法、重金属处理剂和重金属废水处理方法
CN102363118B (zh) 一种脱除水产调味品中重金属铅的方法
CN103949223B (zh) 一种用于脱除发酵抑制物的吸附剂的制备方法
CN105642245B (zh) 一种磁性蛋清/丝瓜络吸附材料的制备方法
CN111115729A (zh) 一种工业废水处理管式膜过滤层用复合材料
RU2743012C1 (ru) Способ получения микропористого сорбента на основе бактериальной целлюлозы
CN106543068A (zh) 一种褪黑素分离工艺