RU2714920C1 - Способ питания асинхронных двигателей трехфазного переменного тока системы вспомогательных машин электровоза - Google Patents

Способ питания асинхронных двигателей трехфазного переменного тока системы вспомогательных машин электровоза Download PDF

Info

Publication number
RU2714920C1
RU2714920C1 RU2019121988A RU2019121988A RU2714920C1 RU 2714920 C1 RU2714920 C1 RU 2714920C1 RU 2019121988 A RU2019121988 A RU 2019121988A RU 2019121988 A RU2019121988 A RU 2019121988A RU 2714920 C1 RU2714920 C1 RU 2714920C1
Authority
RU
Russia
Prior art keywords
phase
active rectifier
traction
auxiliary
winding
Prior art date
Application number
RU2019121988A
Other languages
English (en)
Inventor
Станислав Васильевич Власьевский
Владимир Степанович Климаш
Александр Викторович Гуляев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС)
Priority to RU2019121988A priority Critical patent/RU2714920C1/ru
Application granted granted Critical
Publication of RU2714920C1 publication Critical patent/RU2714920C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • B60L1/04Supplying electric power to auxiliary equipment of vehicles to electric heating circuits fed by the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Использование: в области электротехники. Технический результат - увеличение коэффициента мощности электровоза при номинальной нагрузке. Способ питания асинхронных двигателей трехфазного переменного тока системы вспомогательных машин электровоза реализуется в устройстве, содержащем однофазный силовой трансформатор, выпрямительно-инверторный преобразователь, тяговые двигатели, сглаживающий реактор, активный выпрямитель, систему управления активным выпрямителем, сглаживающий конденсатор, резонансный фильтр, корректирующий блок, автономный инвертор напряжения, трехфазные асинхронные двигатели вспомогательных машин. Способ заключается в повышении коэффициента мощности электровоза в режимах тяги и рекуперативного торможения при регулировании входного тока активного выпрямителя. Способ отличается от известных тем, что фаза тока первичной обмотки силового трансформатора приближается к нулю градусов в режимах тяги и рекуперативного торможения путем целенаправленного регулирования фазы входного тока активного выпрямителя, при котором происходит подача запирающих сигналов управления на транзисторные плечи активного выпрямителя с опережением относительно конца полупериода напряжения на 90 градусов, в результате чего обеспечивается опережающий фазовый сдвиг входного тока активного выпрямителя на 90 градусов, при этом с целью обеспечения синусоидальной формы тока в обмотке собственных нужд входной ток активного выпрямителя корректируется последовательно соединенными между собой конденсаторами корректирующего блока, который параллельно подключен к выходу активного выпрямителя и к входу автономного инвертора напряжения, причем средняя точка конденсаторов корректирующего блока подключена к нулевому выводу вторичной обмотки собственных нужд. 3 ил.

Description

Изобретение относится к области электротехники, в частности к электромеханическим комплексам и системам, и может быть использовано в системе питания асинхронных двигателей трехфазного переменного тока вспомогательных машин, на электроподвижном составе (электровозах и электропоездах), получающих питание от контактной сети однофазного переменного тока.
Эксплуатация электровозов переменного тока, имеющих систему вспомогательных машин на основе асинхронных двигателей трехфазного переменного тока, сопровождается не высокой энергетической эффективностью, выраженной в низком коэффициенте мощности, достаточно высоким коэффициентом искажения синусоидальности питающего напряжения на первичной обмотке тягового трансформатора электровоза, а также высоким коэффициентом несимметрии трехфазного питающего напряжения асинхронных двигателей вспомогательных машин. Это вызывает значительное потребление реактивной энергии из сети.
Известны различные пути повышения эффективности работы электровоза переменного тока с системой питания асинхронных двигателей вспомогательных машин в виде снижения коэффициента искажения в обмотке собственных нужд и коэффициента несимметрии в 3-фазной системе питания асинхронных двигателей. Коэффициенты искажения синусоидальности и несимметрии влияют на повышение энергетической эффективности, но это не решает в полной мере задачу повышения коэффициента мощности. Однако улучшение коэффициента мощности электровоза до сих пор не выполнено и требует дальнейшего решения. Одним из путей повышения энергетической эффективности является повышение коэффициента мощности электровоза путем снижения угла сдвига фаз между током и напряжением в первичной обмотке тягового трансформатора. Таким образом, проблема повышения энергетической эффективности путем повышения коэффициента мощности требует дальнейшего решения.
Известен способ питания асинхронных двигателей трехфазного переменного тока системы вспомогательных машин электровоза [Некрасов О.А. Вспомогательные машины электроподвижного состава переменного тока. М.: Транспорт, 1967. 168 с.], в состав которого входит: тяговый трансформатор, выпрямительно-инверторный преобразователь, тяговые двигатели, электромеханический фазорасщепитель и асинхронные двигатели, вращающие вспомогательные машины электровоза. Однофазный тяговый трансформатор имеет первичную обмотку, подключенную к тяговой сети, и две вторичные обмотки (тяговую и собственных нужд), подключенные к тяговому электрооборудованию электровоза. К тяговой обмотке подключены через выпрямительно-инверторный преобразователь тяговые двигатели, а к обмотке собственных нужд подключены через электромеханический фазорасщепитель асинхронные двигатели вспомогательных машин. Асинхронные двигатели с короткозамкнутым ротором вращают вспомогательные машины (вентиляторы, компрессоры, насосы) электровоза.
Электромеханический фазорасщепитель представляет собой совмещенную электрическую машину, состоящую из однофазного асинхронного двигателя и трехфазного синхронного генератора. Две из трех статорных обмоток асинхронного двигателя подключены к однофазной обмотке собственных нужд тягового трансформатора, а третья обмотка подключена к ней через фазосмещающее устройство. Ротор фазорасщепителя выполнен в виде короткозамкнутой беличьей клетки и вращается с синхронной скоростью генератора. Электродвижущая сила генератора наводится во всех трех фазах машины. Фазы векторов электродвижущей силы определяются пространственным расположением фаз обмотки статора.
Способ питания заключается в том, что вторичная обмотка собственных нужд подает напряжение на две из трех фазных статорных обмоток асинхронного двигателя непосредственно, а на третью обмотку через фазосмещающее устройство в виде пускового конденсатора. В результате в асинхронном двигателе возникает вращающееся магнитное поле, которое создает вращение его ротора. Вращение ротора фазорасщепителя при подключении во время пуска третьей (генераторной) обмотки синхронного генератора создает в статоре фазорасщепителя трехфазную систему напряжений, подаваемую на статорные обмотки асинхронных двигателей вспомогательных машин.
Достоинство данного способа питания асинхронных двигателей вспомогательных машин заключается в том, что электромашинный фазорасщепитель одновременно исполняет роль пускового асинхронного двигателя, обеспечивающего большой пусковой момент, и трехфазного синхронного генератора напряжения, формирующего трехфазную систему питания асинхронных двигателей вспомогательных машин. Большой пусковой момент сокращает время пуска и снижает количество потребляемой энергии асинхронных двигателей вспомогательных машин во время пуска.
К недостаткам аналога следует отнести то, что вспомогательные трехфазные асинхронные двигатели всегда работают в номинальном режиме без возможности регулирования скорости вращения, отсутствует плавный пуск асинхронных двигателей. Данный способ питания оказывает негативное влияние на энергетические показатели электровоза: имеет низкий коэффициент мощности и возникновение несимметрии напряжений при изменении нагрузки. Все это отрицательно сказывается на работе асинхронных двигателей, вызывая их частые повреждения.
Наиболее близким к заявленному решению по совокупности существенных признаков и достигаемому результату является способ питания асинхронных двигателей трехфазного переменного тока системы вспомогательных машин электровоза [Тишкин А.А. Энергосбережение в системах питания вспомогательных машин электровозов переменного тока серии «Ермак» за счет внедрения ШПВМ-250-У2 / А.А. Тишкин, А.А. Курганов, А.А. Калюжный, И.В. Синявский // Электровозостроение: сб. научн. тр. / Всерос. н.-и., проектноконструк. ин-т электровозостроения (ОАО «ВЭлНИИ»). - Новочеркасск, 2012. - Т. 63. - С. 63-74] с небольшими по величине коэффициентами искажения синусоидальности и несимметрии. В этом способе осуществляется преобразование питающего напряжения однофазного переменного тока тяговой сети в трехфазный переменный ток питания асинхронных двигателей с короткозамкнутым ротором вспомогательных машин электровоза переменного тока.
Способ питания асинхронных двигателей трехфазного переменного тока реализуется в известной системе вспомогательных машин электровоза переменного тока, которая содержит: однофазный силовой трансформатор с первичной обмоткой, подключенной к тяговой сети, и двумя вторичными обмотками - тяговой и собственных нужд, при этом тяговая вторичная обмотка предназначена для питания тяговых двигателей и подключена к ним через выпрямительно-инверторный преобразователь, а вторичная обмотка собственных нужд предназначена для питания трехфазных асинхронных двигателей вспомогательных машин электровоза и подключена к ним через последовательно включенный сглаживающий реактор, активный выпрямитель, к выходу которого параллельно присоединены сглаживающий конденсатор, резонансный фильтр и автономный инвертор напряжения, от которого получают питание асинхронные двигатели трехфазного переменного тока.
Способ питания асинхронных двигателей трехфазного переменного тока заключается в том, что обмотка собственных нужд подает напряжение на активный выпрямитель, с выхода которого пульсирующий ток сглаживается с помощью резонансного LC-фильтра и подается на вход трехфазного мостового инвертора напряжения на IGBT модулях, на выходе которого формируется трехфазное переменное синусоидальное напряжение в соответствии с управляющими сигналами согласно закону регулирования U/f.
Достоинством прототипа является снижение коэффициентов искажения синусоидальности и несимметрии напряжения, и возможность регулирования скорости вращения и поддержание номинального значения момента вращения асинхронных двигателей.
Недостатком данного способа питания асинхронных двигателей является то, что в номинальном режиме работы частотного преобразователя не достигается высокое значение коэффициента мощности. Кроме того при регулировании скорости вращения асинхронных двигателей происходит регулирование трехфазного напряжения и частоты тока инвертора, в результате которого будут увеличиваться искажения синусоидальности напряжения в питающей сети.
Задача решаемая изобретением, заключается в разработке способа питания асинхронных двигателей трехфазного переменного тока системы вспомогательных машин электровоза с высоким коэффициентом мощности в режимах тяги и рекуперативного торможения, в котором осуществляется целенаправленное регулирование фазы входного тока активного выпрямителя преобразователя частоты, подключенного к обмотке собственных нужд вторичной обмотки трансформатора, при котором фаза тока первичной обмотки трансформатора максимально приближается к 0 град. в режиме тяги и рекуперативного торможения электровоза.
Для решения поставленной задачи в известном способе питания асинхронных двигателей трехфазного переменного тока системы вспомогательных машин электровоза, в состав которой входит однофазный силовой трансформатор с первичной обмоткой, подключенной к тяговой сети, и вторичной обмоткой - обмоткой собственных нужд, которая подключена к асинхронным двигателям трехфазного переменного тока через последовательно включенный сглаживающий реактор, активный выпрямитель, к выходу которого параллельно присоединены сглаживающий конденсатор, резонансный фильтр и автономный инвертор напряжения, от которого, получают питание асинхронные двигатели трехфазного переменного тока, заключающемся в подаче напряжения с обмотки собственных нужд на активный выпрямитель, с выхода которого пульсирующий ток сглаживается с помощью резонансного LC-фильтра и подается на вход трехфазного мостового инвертора напряжения на IGBT модулях, на выходе которого формируется трехфазное переменное синусоидальное напряжение в соответствии с управляющими сигналами согласно закону регулирования U/f, увеличение коэффициента мощности электровоза в режимах тяги и рекуперативного торможения при регулировании входного тока активного выпрямителя осуществляется тем, что фаза тока первичной обмотки тягового трансформатора приближается к нулю градусов в режимах тяги и рекуперативного торможения путем целенаправленного регулирования фазы входного тока активного выпрямителя, при котором происходит подача запирающих сигналов управления на транзисторные плечи активного выпрямителя с опережением относительно конца полупериода напряжения на 90 градусов, в результате чего обеспечивается опережающий фазовый сдвиг входного тока активного выпрямителя на 90 градусов, при этом с целью обеспечения синусоидальной формы тока в обмотке собственных нужд входной ток активного выпрямителя корректируется последовательно соединенными между собой конденсаторами корректирующего блока, который параллельно подключен к выходу активного выпрямителя и к входу автономного инвертора напряжения, причем средняя точка конденсаторов корректирующего блока подключена к нулевому выводу вторичной обмотки собственных нужд.
Целенаправленное регулирование фазы входного тока активного выпрямителя, при котором происходит подача запирающих сигналов управления на транзисторные плечи активного выпрямителя с опережением относительно конца полупериода напряжения на 90 градусов, в результате чего обеспечивается опережающий фазовый сдвиг входного тока активного выпрямителя на 90 градусов, при этом с целью обеспечения синусоидальной формы тока в обмотке собственных нужд входной ток активного выпрямителя корректируется последовательно соединенными между собой конденсаторами корректирующего блока, который параллельно подключен к выходу активного выпрямителя и к входу автономного инвертора напряжения, причем средняя точка конденсаторов корректирующего блока подключена к нулевому выводу вторичной обмотки собственных нужд, отличает заявляемое решение от прототипа. Наличие существенных отличительных признаков свидетельствует о соответствии заявляемого решения критерию патентоспособности «новизна».
Благодаря целенаправленному регулированию фазы входного тока активного выпрямителя, при котором происходит приближение фазы тока первичной обмотки тягового трансформатора к нулю градусов в режимах тяги и рекуперативного торможения, осуществляется достижение высокого коэффициента мощности электровоза в режимах тяги и рекуперативного торможения.
Это обусловлено следующим, в режиме тяги электровоза (рис. 3; а, б) ток I1ВИП в тяговой обмотке трансформатора и ток I1ОСН в обмотке собственных нужд имеют индуктивный характер. Работа системы вспомогательных машин обеспечивает отставание тока I1ОСН относительно напряжения U1 на некоторый угол. При геометрическом суммировании векторов токов I1ВИП и I1ОСН получается результирующий вектор тока I11 первичной обмотки трансформатора с увеличенным углом сдвига фаз ϕ. В итоге из сети потребляется значительная реактивная мощность индуктивного характера. Для повышения коэффициента мощности электровоза необходимо не только снизить до нуля потребляемую вспомогательными машинами реактивную мощность, но и изменить ее характер с индуктивного на емкостный. В результате ток в обмотке собственных нужд трансформатора I1ОСН будет опережать по фазе напряжение U1 и частично компенсировать индуктивную составляющую тока I1ВИП в тяговой обмотке. При этом изменится результирующий вектор тока I11' первичной обмотки трансформатора, что приведет к снижению угла сдвига фаз ϕ' и повышению коэффициента мощности электровоза.
В режиме рекуперативного торможения электровоза (рис. 3; в, г) ток I1ВИП в тяговой обмотке трансформатора смещен относительно напряжения U1, в действительности ток I1ВИП в тяговой обмотке трансформатора имеет емкостной характер. Работа системы вспомогательных машин обеспечивает отставание тока I1ОСН относительно напряжения U1 на некоторый угол. При геометрическом суммировании векторов токов I1ВИП и I1ОСН получается результирующий вектор тока I11 первичной обмотки трансформатора с увеличенным углом сдвига фаз ϕ. В итоге из сети потребляется значительная реактивная мощность индуктивного характера. Для повышения коэффициента мощности электровоза в режиме рекуперативного торможения необходимо не только снизить до нуля потребляемую вспомогательными машинами реактивную мощность, но и изменить ее характер с индуктивного на емкостный. В результате ток в обмотке собственных нужд трансформатора I1ОСН будет опережать по фазе напряжение U1 и частично компенсировать индуктивную составляющую тока I1ВИП в тяговой обмотке. При этом изменится результирующий вектор тока I11' первичной обмотки трансформатора, что приведет к снижению угла сдвига фаз ϕ' и повышению коэффициента мощности электровоза.
Причинно-следственная связь «целенаправленное регулирование фазы входного тока активного выпрямителя, при котором происходит подача запирающих сигналов управления на транзисторные плечи активного выпрямителя с опережением относительно конца полупериода напряжения на 90 градусов, в результате чего обеспечивается опережающий фазовый сдвиг входного тока активного выпрямителя на 90 градусов, при этом с целью обеспечения синусоидальной формы тока в обмотке собственных нужд входной ток активного выпрямителя корректируется последовательно соединенными между собой конденсаторами корректирующего блока, который параллельно подключен к выходу активного выпрямителя и к входу автономного инвертора напряжения, причем средняя точка конденсаторов корректирующего блока подключена к нулевому выводу вторичной обмотки собственных нужд - увеличение коэффициента мощности электровоза» явно не вытекает из существующего уровня техники и является новой.
Наличие новой причинно-следственной связи «существенные отличительные признаки - результат» свидетельствует о соответствии заявленного решения критерию патентоспособности «изобретательский уровень».
На фиг. 1 представлена блочная схема системы вспомогательных машин электровоза по заявляемому способу питания асинхронных двигателей переменного тока.
На фиг. 2 показаны процессы работы по заявленному способу управления
На фиг. 3 показаны векторные диаграммы напряжения и тока первичной обмотки тягового трансформатора и тока обмотки собственных нужд электровоза в режимах тяги (а - прототип, б - заявляемое решение) и рекуперативного торможения (в - прототип, г - заявляемое решение).
Заявляемый способ питания асинхронных двигателей трехфазного переменного тока системы вспомогательных машин электровоза с высоким коэффициентом мощности в режимах тяги и рекуперативного торможения, в котором осуществляется целенаправленное регулирование фазы входного тока активного выпрямителя преобразователь частоты, подключенного к обмотка собственных нужд вторичной обмотки трансформатора, при котором фаза тока первичной обмотки трансформатора максимально приближается к 0 град в режиме тяги и рекуперативного торможения электровоза, осуществляется например, в устройстве, содержащем однофазный трансформатор, систему питания тяговых двигателей и систему питания асинхронных двигателей вспомогательных машин. Система питания вспомогательных машин содержит обмотку собственных нужд, активный выпрямитель, построенный по мостовой схеме с использованием современной элементной базы - IGBT транзисторов, микропроцессорную системой управления, резонансный L2C2-фильтр, дополнительные корректирующие конденсаторы С3 и С4, трехфазный инвертор напряжения с системой управления.
Блочная силовая схема электровоза переменного тока, представленная на фиг. 1, содержит: однофазный тяговый трансформатор, систему питания тяговых двигателей и систему питания асинхронных двигателей вспомогательных машин. Тяговый трансформатор содержит: первичную обмотку 1 и две вторичные обмотки - тяговую обмотку 2 и обмотку собственных нужд 3. Система питания тяговых двигателей содержит выпрямительно-инверторный преобразователь 4 (ВИП) и тяговые двигатели 5. Система питания вспомогательных машин, содержит сглаживающий реактор L1, активный выпрямитель 6, с его системой управления 7 (СУ), сглаживающий конденсатор С1, резонансный фильтр L2C2 и корректирующий блок 8, состоящий из конденсаторов С3 и С4, автономный инвертор напряжения 9 (АИН), трехфазные асинхронные двигатели вспомогательных машин 10.
Тяговая обмотка 2 соединена с выпрямительно-инверторным преобразователем. В свою очередь выпрямительно-инверторный преобразователь 4 подключен к тяговым двигателям 5. Обмотка собственных нужд 3 однофазного силового трансформатора соединена с активным выпрямителем 6, который имеет систему управления 7. Автономный инвертор напряжения 9 своим входом подключен к активному выпрямителю 6 через резонансный фильтр L2C2, сглаживающий конденсатор С1 и корректирующие конденсатор С3 и С4. Выход автономного инвертора напряжения 9 соединен с трехфазными асинхронными двигателями вспомогательных машин 10.
Способ питания асинхронных двигателей трехфазного переменного тока системы вспомогательных машин электровоза с высоким коэффициентом мощности заключается в целенаправленном регулировании фазы входного тока активного выпрямителя, при котором происходит приближение фазы тока первичной обмотки тягового трансформатора к нулю градусов, путем регулирования углов закрытия плеч активного выпрямителя с опережением на 90 град. относительно конца полупериода напряжения сети в режимах тяги и рекуперативного торможения.
Работа силовой схемы электровоза переменного тока осуществляется следующим образом. В режиме электрической тяги электровоза основная часть энергии потребляется тяговыми двигателями 5 из сети через первичную 1, тяговую вторичную обмотку трансформатора 2 и выпрямительно-инверторный преобразователь 4. Кроме того, из сети также потребляется энергия для трехфазных асинхронных двигателей 10. В режиме рекуперативного торможения тяговыми двигателями основная часть энергии передается в контактную сеть (первичную обмотку трансформатора, а устройствами 10 также потребляется.
Работа системы вспомогательных машин заключается в том, что обмотка собственных нужд 3 подает напряжение на активный выпрямитель 6, с выхода которого пульсирующий ток сглаживается с помощью резонансного L2C2-фильтра и сглаживающего конденсатора C1. Конденсаторами С3 и С4 блока 8 корректируется форма и фаза входного тока активного выпрямителя 6. Выходное напряжение активного выпрямителя 6 подается на вход трехфазного инвертора напряжения 9 на IGBT транзисторах, на выходе которого формируется трехфазное переменное синусоидальное напряжение.
Активный выпрямитель 6 с помощью системы управления регулирует фазу своего входного тока, протекающего в обмотке собственных нужд 3. Система управления 7 выполняет генерацию импульсного сигнала, предназначенного для открытия и закрытия силовых транзисторов активного выпрямителя в заданные промежутки времени (интервалы). Регулирование выпрямленного напряжения активного выпрямителя 6 осуществляется путем подачи импульсов управления с фазой α=0 эл. град. в начале каждого полупериода напряжения сети на IGBT транзистор с целью его открытия и снятия этих импульсов с фазой α'ОСН=90 эл. град с целью его закрытия. Отсчет фазы снятия импульсов α'ОСН ведется от начала полупериода напряжения сети. Управляются фазы переднего и заднего фронтов выпрямленного напряжения выпрямителя. Таким образом, микропроцессорная система управления обеспечивает опережающий фазовый сдвиг потребляемого тока на 90° в режимах электрической тяги и рекуперативного торможения электровоза. То есть управляемый выпрямитель подключает нагрузку к тяговому трансформатору в заданные промежутки времени, чтобы регулировать фазу потребляемого тока. В результате будет изменен характер нагрузки с индуктивного на емкостный, благодаря чему ток нагрузки (вспомогательных машины) протекающий во вторичной обмотке трансформатора будет частично компенсировать индуктивную составляющую тока в тяговой обмотке, что приведет к повышению коэффициента мощности электровоза. При таком регулировании, посредством опережения выключения транзисторов в плечах выпрямительной схемы, можно обеспечить уменьшение угла фазового сдвига основной гармонической составляющей тока сети, что повышает коэффициент мощности электровоза (фиг. 2).
Векторные диаграммы процессов, представленные на рис. 3 (а, б) отражают режим тяги электровоза, В этом режиме ток I1ВИП в тяговой обмотке трансформатора и ток I1ОСН в обмотке собственных нужд имеет индуктивный характер. Работа системы вспомогательных машин обеспечивает отставание тока I1ОСН относительно напряжения U1 на некоторый угол. При геометрическом суммировании векторов токов I1ВИП и I1ОСН получается результирующий вектор тока I11 первичной обмотки трансформатора с увеличенным углом сдвига фаз ϕ. В итоге из сети потребляется значительная реактивная мощность индуктивного характера. Для повышения коэффициента мощности электровоза необходимо не только снизить до нуля потребляемую вспомогательными машинами реактивную мощность, но и изменить ее характер с индуктивного на емкостный. В результате ток в обмотке собственных нужд трансформатора I1ОСН будет опережать по фазе напряжение U1 и частично компенсировать индуктивную составляющую тока I1ВИП в тяговой обмотке. При этом изменится результирующий вектор тока I11' первичной обмотки трансформатора, что приведет к снижению угла сдвига фаз ϕ' и повышению коэффициента мощности электровоза.
Диаграмма процессов на фиг. 3 (в, г) отражает режим рекуперативного торможения электровоза. В этом режиме ток I1ВИП в тяговой обмотке трансформатора смещен относительно напряжения U1, в действительности ток I1ВИП в тяговой обмотке трансформатора имеет емкостной характер. Работа системы вспомогательных машин обеспечивает отставание тока I1ОСН относительно напряжения U1 на некоторый угол. При геометрическом суммировании векторов токов I1ВИП и I1ОСН получается результирующий вектор тока I11 первичной обмотки трансформатора с увеличенным углом сдвига фаз ϕ. В итоге из сети потребляется значительная реактивная мощность индуктивного характера. Для повышения коэффициента мощности электровоза в режиме рекуперативного торможения необходимо не только снизить до нуля потребляемую вспомогательными машинами реактивную мощность, но и изменить ее характер с индуктивного на емкостный. В результате ток в обмотке собственных нужд трансформатора I1ОСН будет опережать по фазе напряжение U1 и частично компенсировать индуктивную составляющую тока I1ВИП в тяговой обмотке. При этом изменится результирующий вектор тока I11' первичной обмотки трансформатора, что приведет к снижению угла сдвига фаз ϕ' и повышению коэффициента мощности электровоза.
Процессы работы системы вспомогательных машин в режимах тяги и рекуперативного торможения электровоза, описанные в заявочных материалах были получены путем математического моделирования систем тяговой нагрузки и вспомогательных машин электровоза.
Процессы моделирования показали, что по сравнению с прототипом коэффициент мощности электровоза при применении предлагаемой системы питания вспомогательных машин при номинальной нагрузке увеличился в режиме тяги с 0,8390 до 0,8494, а в режиме рекуперативного торможения с 0,7151 до 0,7249.

Claims (1)

  1. Способ питания асинхронных двигателей трехфазного переменного тока системы вспомогательных машин электровоза, в состав которого входит однофазный силовой трансформатор с первичной обмоткой, подключенной к тяговой сети, и двумя вторичными обмотками - тяговой и собственных нужд, при этом тяговая вторичная обмотка предназначена для питания тяговых двигателей и подключена к ним через выпрямительно-инверторный преобразователь, а вторичная обмотка собственных нужд предназначена для питания трехфазных асинхронных двигателей вспомогательных машин электровоза и подключена к ним через последовательно включенный сглаживающий реактор, активный выпрямитель, к выходу которого параллельно присоединены сглаживающий конденсатор, резонансный фильтр и автономный инвертор напряжения, от которого получают питание асинхронные двигатели трехфазного переменного тока, заключающийся в увеличении коэффициента мощности электровоза в режимах тяги и рекуперативного торможения при регулировании входного тока активного выпрямителя, отличающийся тем, что фаза тока первичной обмотки тягового трансформатора приближается к нулю градусов в режимах тяги и рекуперативного торможения путем целенаправленного регулирования фазы входного тока активного выпрямителя, при котором происходит подача запирающих сигналов управления на транзисторные плечи активного выпрямителя с опережением относительно конца полупериода напряжения на 90 градусов, в результате чего обеспечивается опережающий фазовый сдвиг входного тока активного выпрямителя на 90 градусов, при этом с целью обеспечения синусоидальной формы тока в обмотке собственных нужд входной ток активного выпрямителя корректируется последовательно соединенными между собой конденсаторами корректирующего блока, который параллельно подключен к выходу активного выпрямителя и к входу автономного инвертора напряжения, причем средняя точка конденсаторов корректирующего блока подключена к нулевому выводу вторичной обмотки собственных нужд.
RU2019121988A 2019-07-09 2019-07-09 Способ питания асинхронных двигателей трехфазного переменного тока системы вспомогательных машин электровоза RU2714920C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019121988A RU2714920C1 (ru) 2019-07-09 2019-07-09 Способ питания асинхронных двигателей трехфазного переменного тока системы вспомогательных машин электровоза

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019121988A RU2714920C1 (ru) 2019-07-09 2019-07-09 Способ питания асинхронных двигателей трехфазного переменного тока системы вспомогательных машин электровоза

Publications (1)

Publication Number Publication Date
RU2714920C1 true RU2714920C1 (ru) 2020-02-21

Family

ID=69630853

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019121988A RU2714920C1 (ru) 2019-07-09 2019-07-09 Способ питания асинхронных двигателей трехфазного переменного тока системы вспомогательных машин электровоза

Country Status (1)

Country Link
RU (1) RU2714920C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112406636A (zh) * 2020-11-04 2021-02-26 西南交通大学 一种多所协同的再生制动能量利用***及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0904973A2 (de) * 1997-09-26 1999-03-31 Siemens Aktiengesellschaft Betriebsverfahren für ein Stromsystem eines Schienenfahrzeugs
RU2422299C1 (ru) * 2009-12-07 2011-06-27 Ооо "Гамем" Система электроснабжения электропоезда с асинхронным тяговым приводом
RU106999U1 (ru) * 2011-03-16 2011-07-27 Общество с ограниченной ответственностью "Перспективные Системы Транспорта" (ООО "ПСТ") Система симметрирования трехфазного напряжения асинхронных вспомогательных двигателей электроподвижного состава

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0904973A2 (de) * 1997-09-26 1999-03-31 Siemens Aktiengesellschaft Betriebsverfahren für ein Stromsystem eines Schienenfahrzeugs
RU2422299C1 (ru) * 2009-12-07 2011-06-27 Ооо "Гамем" Система электроснабжения электропоезда с асинхронным тяговым приводом
RU106999U1 (ru) * 2011-03-16 2011-07-27 Общество с ограниченной ответственностью "Перспективные Системы Транспорта" (ООО "ПСТ") Система симметрирования трехфазного напряжения асинхронных вспомогательных двигателей электроподвижного состава

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Тишкин А.А., Энергосбережение в системах питания вспомогательных машин электровозов переменного тока серии "Ермак" за счет внедрения ШПВМ-250-У2, "Вестник ВЭлНИИ", 2012, т.1(63), с.63-74. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112406636A (zh) * 2020-11-04 2021-02-26 西南交通大学 一种多所协同的再生制动能量利用***及其控制方法
CN112406636B (zh) * 2020-11-04 2022-01-28 西南交通大学 一种多所协同的再生制动能量利用***及其控制方法

Similar Documents

Publication Publication Date Title
US6954004B2 (en) Doubly fed induction machine
EP2807716B1 (en) Circuit for transferring power between a direct current line and an alternating-current line
US6984897B2 (en) Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls
CN105577060B (zh) 一种减少直流侧电容的交流电机驱动控制***及控制方法
US8648562B2 (en) Single power supply dual converter open-winding machine drive
US6924991B2 (en) Energy transfer multiplexer
CN107431442A (zh) 包括交流发电机的机电组件
RU2714920C1 (ru) Способ питания асинхронных двигателей трехфазного переменного тока системы вспомогательных машин электровоза
EP2232698A1 (en) Electric motor
CN103546087A (zh) 一种异步电机的非变频电容调速及绕组联接电路
RU2297090C1 (ru) Электрическая передача мощности тягового транспортного средства
US4326157A (en) Double inverter slip-recovery AC motor drive with asymmetrical gating per half-bridge
RU2639048C2 (ru) Способ преобразования частоты
RU2556236C1 (ru) Преобразовательный комплекс электроснабжения собственных нужд тепловоза
RU2213409C2 (ru) Способ управления автономным асинхронным генератором
Dias et al. Low cost single-phase grid-tie generator
EA010412B1 (ru) Трехфазный двигатель переменного тока с регулируемой скоростью
RU2626009C1 (ru) Компенсированная система электроснабжения удаленных потребителей электрической энергии
RU2695795C1 (ru) Способ подключения асинхронного двигателя к сети переменного синусоидального напряжения с помощью регулятора переменного напряжения
RU2474038C1 (ru) Двухдвигательный электропривод
WO2022252370A1 (zh) Spim电机驱动电路及方法
CN108964045A (zh) 船舶高压岸电电源不断电接入模式负载转移控制方法
CN101577518B (zh) 一种高功率因数负载换流同步电机调速***
KR840000939B1 (ko) 정지형슬립복구 전동기 구동장치
SU764084A1 (ru) Способ частотного регулировани скорости вращени двигател переменного тока