RU2714510C1 - Способ радиолокации с изменением несущей частоты от импульса к импульсу - Google Patents

Способ радиолокации с изменением несущей частоты от импульса к импульсу Download PDF

Info

Publication number
RU2714510C1
RU2714510C1 RU2019121277A RU2019121277A RU2714510C1 RU 2714510 C1 RU2714510 C1 RU 2714510C1 RU 2019121277 A RU2019121277 A RU 2019121277A RU 2019121277 A RU2019121277 A RU 2019121277A RU 2714510 C1 RU2714510 C1 RU 2714510C1
Authority
RU
Russia
Prior art keywords
frequency
pulse
noise
intermediate frequency
signal
Prior art date
Application number
RU2019121277A
Other languages
English (en)
Inventor
Валерий Александрович Козлов
Анатолий Львович Кунилов
Мария Михайловна Ивойлова
Артем Васильевич Белинский
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом", Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Priority to RU2019121277A priority Critical patent/RU2714510C1/ru
Application granted granted Critical
Publication of RU2714510C1 publication Critical patent/RU2714510C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/12Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the pulse-recurrence frequency is varied to provide a desired time relationship between the transmission of a pulse and the receipt of the echo of a preceding pulse
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/22Systems for measuring distance only using transmission of interrupted, pulse modulated waves using irregular pulse repetition frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/22Systems for measuring distance only using transmission of interrupted, pulse modulated waves using irregular pulse repetition frequency
    • G01S13/227Systems for measuring distance only using transmission of interrupted, pulse modulated waves using irregular pulse repetition frequency with repetitive trains of uniform pulse sequences, each sequence having a different pulse repetition frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/24Systems for measuring distance only using transmission of interrupted, pulse modulated waves using frequency agility of carrier wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/30Systems for measuring distance only using transmission of interrupted, pulse modulated waves using more than one pulse per radar period
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/70Radar-tracking systems; Analogous systems for range tracking only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к области радиолокационной техники и может быть использовано при построении бортовых импульсных некогерентных радиовысотомеров. Технический результат - расширение диапазона измеряемых дальностей, снижение энергопотребления, снижение уровня паразитных сигналов и наводок по цепям питания и управления. Способ радиолокации заключается в формировании излучаемого сигнала прямым гетеродинированием вниз на промежуточную частоту входного собственного шума приемного устройства, усилением, его последующей узкополосной фильтрацией на промежуточной частоте частотно-избирательным устройством с получением квазигармонического шума промежуточной частоты, возвратным гетеродинированием вверх шума с промежуточной частоты на несущую, усилением, ограничением амплитуды сверху, его амплитудно-импульсной манипуляцией, усилением до требуемого уровня излучаемой импульсной мощности и последующем излучении, при этом фильтрация отраженного сигнала, усиление и детектирование осуществляется на промежуточной частоте. 4 з.п. ф-лы, 4 ил.

Description

Изобретение относится к области радиолокационной техники и может быть использовано при построении бортовых импульсных некогерентных радиовысотомеров с изменением несущей частоты от импульса к импульсу.
Известен способ радиолокации с изменением несущей частоты от импульса к импульсу [Справочник по радиолокации Том 1 / под ред. М. Сколника. - М.: «Сов., радио», 1976. - С. 8], заключающийся в использовании одновременно перестраиваемых по частоте передатчика и приемника, выбранный за аналог.
Реализация способа-аналога заключается в следующем.
В передатчике с перестройкой частоты формируются излучаемые радиоимпульсы несущей частоты, которые излучаются в направлении цели. Отраженные сигналы принимаются приемником, в котором частота настройки изменяется с помощью перестраиваемого по частоте гетеродина. Частоты передатчика и гетеродина приемника перестраиваются таким образом, чтобы разностная частота всегда имела постоянное значение, равное промежуточной частоте приемника, при этом фильтрация отраженных сигналов обеспечивается на промежуточной частоте частотно-избирательным устройством (ЧИУ).
Недостатками способа-аналога являются:
- сложность сопряжения частот передатчика и гетеродина приемника при их перестройке в рабочем диапазоне частот;
- необходимость обеспечения долговременной стабильности частотных параметров задающего генератора передатчика, гетеродина и ЧИУ при эксплуатации прибора.
Известен способ радиолокации с изменением несущей частоты от импульса к импульсу [Радиоприемные устройства / под ред. В.И. Сифорова. - М.: «Сов. радио», 1974. - С. 504], заключающийся в использовании системы автоматической подстройки частоты (АПЧ) гетеродина приемника, обеспечивающей сопряжение несущей частоты передатчика с частотой настройки приемника, выбранный за аналог.
Реализация данного способа - аналога заключается в следующем.
В передатчике формируются радиоимпульсы несущей частоты, которые излучаются в направлении цели. Часть мощности сигнала передатчика поступает в систему АПЧ гетеродина приемника и за время, равное длительности излучаемого радиоимпульса, система АПЧ подстраивает частоту гетеродина приемника, при этом частота дискриминатора системы АПЧ равна центральной частоте ЧИУ, совпадающей с промежуточной частотой приемника.
Отраженный от цели сигнал поступает в приемник, частота настройки которого с помощью системы АПЧ гетеродина во время излучения радиоимпульса подстроена под несущую частоту передатчика.
Недостатками способа-аналога являются:
- необходимость обеспечения стабильности частотных характеристик дискриминатора системы АПЧ гетеродина и амплитудно-частотной характеристики (АЧХ) усилителя промежуточной частоты приемника;
- наличие остаточной расстройки в системе АПЧ гетеродина;
- наличие ограничений на длительность излучаемых радиоимпульсов при перестройке их несущей частоты ввиду инерционности системы АПЧ гетеродина.
Известен способ радиолокации с изменением несущей частоты от импульса к импульсу [Патент №2628526 РФ, МПК G01S 13/24 (2006/01). Способ радиолокации с перестройкой несущей частоты от импульса к импульсу / Катин С.В., Кашин А.В., Козлов В.А., Кунилов А.Л.; заявители и патентообладатели Госкорпорация «Росатом», ФГУП «ФНПЦ НИИИС им. Ю.Е. Седакова». - №2016149715; заявлено 16.12.2016; опубликовано 18.08.2017, Бюл. №23], заключающийся в получении сигнала несущей частоты методом прямого гетеродинирования радиоимпульсов фиксированной частоты вверх по частоте на величину частоты гетеродинного сигнала и приеме отраженного сигнала методом возвратного гетеродинирования сдвигом его вниз по частоте с последующей фильтрацией отраженного сигнала на частоте радиоимпульсов фиксированной частоты частотно-избирательным устройством (ЧИУ), при этом перестройку несущей частоты осуществляют изменением частоты гетеродинного сигнала. При прямом гетеродинировании в качестве радиоимпульсов фиксированной частоты используют отклик ЧИУ на сверхкороткое импульсное воздействие, а после возвратного гетеродинирования фильтрацию отраженного сигнала производят этим же ЧИУ, причем прямое и возвратное гетеродинирование осуществляют одним и тем же устройством. Данный способ выбран за прототип.
Реализация способа - прототипа заключается в следующем.
Радиоимпульсный сигнал несущей частоты ƒ0 формируется смесителем 3 (фиг. 1) методом прямого гетеродинирования вверх по частоте из отклика узкополосного ЧИУ 2 (фиг. 1) на сверхкороткий импульс δ(t) (фиг. 2а) источника сверхкоротких импульсов 1 (фиг. 1), имеющий вид радиоимпульса g(t) (фиг. 2б), длительность которого определяется полосой пропускания ΔƒЧИУ АЧХ этого ЧИУ, и гетеродинного сигнала UИПЧ(t) (фиг. 2в) источника непрерывного сигнала с перестройкой частоты 7 (фиг. 1). Полученный радиоимпульсный сигнал несущей частоты U0(t) (фиг. 2г) с помощью переключателя «Передача-Прием» 4 (фиг. 1), находящегося в положении «Передача», направляется в усилитель мощности 5 (фиг. 1) и далее через антенну излучается в направлении цели.
Отраженный от цели сигнал в виде радиоимпульса UОТР(t) (фиг. 2д) через малошумящий усилитель 6 (фиг. 1) и переключатель 4 (фиг. 1), находящийся в положении «Прием», направляется в смеситель 3 (фиг. 1), на который поступает гетеродинный сигнал UИПЧ(t) (фиг. 2в) с источника непрерывного сигнала с перестройкой частоты 7 (фиг. 1), частота которого после формирования радиоимпульса несущей частоты не изменяется до начала следующего такта. Далее радиоимпульс промежуточной частоты UПЧ(t) (фиг. 2е) проходит через ЧИУ 2 (фиг. 1), АЧХ которого по полосе пропускания K(ƒ) согласована со спектром S0(ƒ) излучаемого радиоимпульса. В следующем такте частота источника непрерывного сигнала с перестройкой частоты 7 (фиг. 1) изменяется и передатчик излучает, а приемник принимает радиоимпульс с другой несущей частотой.
Недостатками способа-прототипа являются:
- необходимость применения источника сверхкоротких видеоимпульсов;
- отсутствие возможности управления длительностью радиоимпульса, формируемого в ЧИУ;
- жесткие требования к форме АЧХ ЧИУ;
- отсутствие возможности оптимизации режима преобразования радиоимпульсного сигнала с промежуточной частоты на несущую (излучаемую) частоту и с несущей (принимаемой) частоты на промежуточную частоту методом прямого и возвратного гетеродинирования при использовании одного и того же устройства.
Первый недостаток обусловлен технической сложностью создания источника видеоимпульсного сигнала со сверхкоротким фронтом (τФ ~ 10…100 пс).
Второй недостаток связан с зависимостью длительности радиоимпульсного отклика ЧИУ на импульсное воздействие τРИ от полосы пропускания ЧИУ Δƒ как τРИ ≈ 1/Δƒ, где Δƒ - полоса пропускания ЧИУ, т.е. увеличение длительности радиоимпульса возможно только при уменьшении полосы пропускания ЧИУ, что технически не всегда реализуемо [Астайкин А.И. Излучение и прием сверхкоротких импульсов: Монография. - Саров: ФГУП «РФЯЦ-ВНИИЭФ», 2008. С. 305-309.]. Это приводит к ограничению диапазона измеряемых дальностей.
Третий недостаток обусловлен зависимостью огибающей радиоимпульса от формы АЧХ ЧИУ, при которой возможно появление в осциллограмме формируемого радиоимпульса «хвостов» и «предвестников» [Там же].
Четвертый недостаток связан с необходимостью использования для прямого и возвратного гетеродинирования преобразующего устройства взаимного типа на основе диодного смесителя, режим работы которого при приеме отраженных радиоимпульсов (режим работы приемного смесителя) должен обеспечивать минимальный уровень вносимого шума, а при формировании излучаемых сигналов (режим работы смесителя сдвига) - максимальный коэффициент преобразования, что технически реализовать на одном устройстве достаточно сложно. Таким образом, неоптимальность прямого и возвратного гетеродинирования с помощью одного и того же устройства приводит к необходимости введения дополнительных каскадов в усилителе мощности, что ухудшает массогабаритные характеристики и снижает общий КПД приемопередающего устройства.
Техническим результатом предлагаемого изобретения являются расширение диапазона измеряемых дальностей (за счет расширения диапазона длительностей излучаемых радиоимпульсов), снижение энергопотребления, снижение уровня паразитных сигналов и наводок по цепям питания и управления.
Технический результат достигается тем, что в способе радиолокации с изменением несущей частоты от импульса к импульсу, заключающемся в формировании излучаемого сигнала и фильтрации отраженного сигнала одним частотно-избирательным устройством с применением метода прямого и возвратного гетеродинирования с изменением несущей частоты перестройкой частоты гетеродинного сигнала и детектировании отраженного сигнала на промежуточной частоте, излучаемый сигнал получают прямым гетеродинированием вниз на промежуточную частоту входного собственного шума приемного устройства, усилением, его последующей узкополосной фильтрацией на промежуточной частоте частотно-избирательным устройством с получением квазигармонического шума промежуточной частоты, возвратным гетеродинированием вверх квазигармонического шума с промежуточной частоты на несущую частоту, усилением, ограничением амплитуды сверху этого шума, его амплитудно-импульсной манипуляцией, усилением до требуемого уровня излучаемой импульсной мощности с последующим излучением передающей антенной.
Кроме того, на время формирования излучаемого сигнала приемное устройство вводят в режим повышенного значения коэффициента шума.
Кроме того, прямым гетеродинированием входного собственного шума приемного устройства вниз на промежуточную частоту обеспечивают минимальный коэффициент шума, а возвратным гетеродинированием квазигармонического шума с промежуточной частоты вверх на несущую частоту обеспечивают максимальный коэффициент преобразования.
Кроме того, порог ограничения амплитуды сверху квазигармонического шума несущей частоты выбирают по заданному отношению среднего количества радиоимпульсов с полным энергетическим наполнением к общему количеству радиоимпульсов в излучаемой последовательности из соотношения
Figure 00000001
где
U0 - порог ограничения амплитуды квазигармонического шума,
σ - эффективное значение квазигармонического шума,
N - отношение среднего количества радиоимпульсов с полным энергетическим наполнением к общему количеству радиоимпульсов в излучаемой последовательности.
Кроме того, длительность излучаемого радиоимпульса устанавливают независимо от величины полосы пропускания частотно-избирательного устройства.
Способ-прототип радиолокации с изменением несущей частоты от импульса к импульсу поясняют фигура 1 и фигура 2.
На фигуре 1 приведена функциональная схема, поясняющая способ-прототип радиолокации с изменением несущей частоты от импульса к импульсу. На ней показаны: 1 - источник сверхкоротких импульсов (ИСКИ); 2 - частотно-избирательное устройство промежуточной частоты (ЧИУ); 3 - смеситель (СМ), осуществляющий прямое и возвратное гетеродинирование; 4 - переключатель «Передача-Прием» (Перекл); 5 - усилитель мощности (УМ); 6 - малошумящий усилитель (МШУ); 7 - источник непрерывного сигнала с перестройкой частоты (ИНС).
На фигуре 2 приведены эпюры напряжения сигналов, поясняющие способ-прототип радиолокации с изменением несущей частоты от импульса к импульсу, где:
а - сверхкороткие импульсы δ(t);
б - радиоимпульсы - отклики ЧИУ на воздействие сверхкоротких импульсов g(t);
в - перестраиваемый по частоте гетеродинный сигнал UИПЧ(t);
г - радиоимпульсные сигналы несущей частоты U0(t), полученные методом прямого гетеродинирования из откликов δ(t) и сигнала UИПЧ(t);
д - отраженные сигналы несущей частоты UОТР(t);
е - сигналы промежуточной частоты UПЧ(t), полученные методом возвратного гетеродинирования из отраженных сигналов UОТР(t) и сигнала UИПЧ(t).
Предлагаемый способ радиолокации с изменением несущей частоты от импульса к импульсу поясняют фигура 3 и фигура 4.
На фигуре 3 приведена функциональная схема, поясняющая предлагаемый способ радиолокации с изменением несущей частоты от импульса к импульсу. На ней показаны: 8 - отключатель приемника (ОП); 9 - входной усилитель приемника (ВУП) с управляемым коэффициентом шума; 10 - смеситель (СМ); 11 - перестраиваемый по частоте гетеродин (Гет); 12 - предварительный усилитель промежуточной частоты (ПУПЧ); 13 - ЧИУ в виде полосно-пропускающего фильтра промежуточной частоты (ППФ); 14 - усилитель промежуточной частоты (УПЧ); 15 - первый направленный ответвитель (HO1); 16 - первый амплитудный детектор (АД1); 17 - смеситель сдвига (CMC); 18 - усилитель-ограничитель (УО); 19 - амплитудно-импульсный манипулятор (АИМ); 20 - второй направленный ответвитель (НО2); 21 - выходной усилитель мощности (ВУМ); 22 - второй амплитудный детектор (АД2), 23 - квантователь (КB).
На фигуре 4 приведены эпюры напряжения сигналов, поясняющие предлагаемый способ радиолокации с изменение несущей частоты от импульса к импульсу, где:
а - широкополосный шум входных каскадов приемного устройства u(t) при излучении (1) и приеме (2);
б - квазигармонический шум промежуточной частоты на выходе ЧИУ s(t), полученный прямым гетеродинированием широкополосного шума входных каскадов приемного устройства;
в - перестраиваемый по частоте непрерывный гетеродинный сигнал UГЕТ(t);
г - квазигармонический шум несущей частоты U0(t), полученный методом возвратного гетеродинирования из сигнала s(t) и сигнала UГЕТ(t);
д - ограниченный квазигармонический шум несущей частоты UОГР(t);
е - излучаемый радиоимпульсный квазигармонический сигнал UРИ(t);
ж - отраженный радиоимпульсный сигнал UОТР(t);
з - отраженный сигнал промежуточной частоты UПЧ(t);
и - огибающая отраженного сигнала UОГ(t).
Способ получения излучаемого сигнала состоит в следующем.
При отключенном с помощью отключателя приемника 8 (фиг. 3) входе приемного устройства собственные шумы входного усилителя приемника 9 (фиг. 3) u(t) (фиг. 4а) максимального уровня путем прямого гетеродинирования с помощью смесителя 10 (фиг. 3) и непрерывного гетеродинного сигнала UГЕТ(t) (фиг. 4в) с выхода гетеродина 11 (фиг. 3) опускают на промежуточную частоту и после усиления в предварительном усилителе промежуточной частоты 12 (фиг. 3), узкополосной фильтрации в ППФ 13 (фиг. 3) и усиления в усилителе промежуточной частоты 14 (фиг. 3) преобразуют в квазигармонический шум промежуточной частоты s(t) (фиг. 4б). Далее возвратным гетеродинированием вверх квазигармонического шума с промежуточной частоты на несущую частоту с помощью смесителя сдвига 17 (фиг. 3) и непрерывного сигнала UГЕТ(t) (фиг. 4в) с выхода гетеродина 11 (фиг. 3) квазигармонический шум несущей частоты усиливают и ограничивают по амплитуде сверху в усилителе - ограничителе 18 (фиг. 3) и из полученного сигнала в виде ограниченного по амплитуде сверху квазигармонического шума несущей частоты UОГР(t) (фиг. 4д) амплитудно-импульсной манипуляцией с помощью амплитудно-импульсного манипулятора 19 (фиг. 3) формируют радиоимпульсный квазигармонический сигнал UРИ(t) (фиг. 4е) и после усиления в выходном усилителе мощности 21 (фиг. 3) излучают передающей антенной.
Для формирования стартового импульса для измерения задержки отраженного радиоимпульса относительно излучаемого небольшую часть последнего с помощью второго направленного ответвителя 20 (фиг. 3) передают на второй амплитудный детектор 22 (фиг. 3), выделенную огибающую радиоимпульса квантуют квантователем 23 (фиг. 3) и полученный видеоимпульс в качестве стартового импульса подают в блок обработки (на фиг. 3 не показан).
Способ приема отраженного сигнала состоит в следующем.
Отраженный радиоимпульсный сигнал UОТР(t) (фиг. 4ж) усиливают входным усилителем приемника 9 (фиг. 3), находящимся в режиме минимального коэффициента шума, прямым гетеродинированием преобразуют в сигнал промежуточной частоты UПЧ(t) (фиг. 4з) с помощью смесителя 10 (фиг. 3) и гетеродина 11 (фиг. 3). После усиления в предварительном усилителе промежуточной частоты 12 (фиг. 3), фильтрации в ППФ 13 (фиг. 3) отраженный сигнал промежуточной частоты усиливают усилителем промежуточной частоты 14 (фиг. 3) и через первый направленный ответвитель 15 (фиг. 3) детектируют на первом амплитудном детекторе 16, (фиг. 3), на выходе которого выделяют огибающую отраженного сигнала UОГ(t) (фиг. 4и), при этом амплитудно-импульсный манипулятор 19 (фиг. 3) содержат в запертом состоянии.
Таким образом, при сохранении в течение одного такта работы приемопередающего устройства постоянства частоты гетеродинного сигнала несущая частота излучаемого сигнала полностью совпадает с частотой настройки приемника.
На время формирования излучаемого сигнала приемное устройство вводят в режим повышенного значения коэффициента шума.
При реализации входного усилителя приемника на СВЧ-транзисторах его максимальный коэффициент шума достигается при максимальном коэффициенте усиления по мощности, что оптимально для режима «Передача». Переход входного усилителя приемника в состояние минимального коэффициента шума (для режима «Прием») может обеспечиваться рассогласованием входного импеданса СВЧ-транзистора с выходным импедансом источника сигнала при одновременном изменении режима СВЧ-транзистора по постоянному току [Радиоприемные устройства / под ред. А.П. Жуковского. - М.: «Высш. шк.», 1989. С. 41].
Прямое гетеродинирование входного собственного шума приемного устройства вниз на промежуточную частоту осуществляется смесителем 10 (фиг. 3), обеспечивающим минимальный коэффициент шума, а возвратное гетеродинирование квазигармонического шума с промежуточной частоты вверх на несущую частоту осуществляется смесителем сдвига 17 (фиг. 3), обеспечивающим максимальный коэффициент преобразования.
Длительность излучаемого радиоимпульса устанавливается амплитудно-импульсным манипулятором независимо от величины полосы пропускания частотно-избирательного устройства.
При практической реализации частотно-избирательное устройство выполняется в виде ППФ с максимально крутыми скатами АЧХ при максимальном внеполосном ослаблении.
Уровень ограничения в усилителе - ограничителе определяется по заданной вероятности превышения огибающей квазигармонического шума фиксированного порога (по аналогии с определением порога обнаружения по заданной вероятности ложной тревоги для нормального шума в отсутствие сигнала) в соответствии с соотношением [Оптимальные фильтры и накопители импульсных сигналов / Ю.С. Лезин. - М.: «Сов. радио», 1963. - С. 192]
Figure 00000002
где
F - вероятность превышения огибающей порога (вероятность ложной тревоги в отсутствие сигнала),
U0 - порог ограничения,
u - напряжение шума,
σ - эффективное значение шума,
Figure 00000003
- значение порога ограничения, нормированное на эффективное значение шума.
Вероятность ложной тревоги F может рассматриваться как среднее количество радиоимпульсов с полным энергетическим наполнением n1, отнесенное к общему количеству радиоимпульсов в последовательности n0, т.е. при n1/n0=N
F=N [Характеристики обнаружения / М.С. Каценбоген. - М.: «Сов. радио», 1965. - С. 25].
Отсюда порог ограничения U0 может быть определен с использованием соотношения (1) как
Figure 00000004
Таким образом, предлагаемый способ радиолокации с изменением несущей частоты от импульса к импульсу позволяет обеспечить согласование несущей частоты излучаемых радиоимпульсных сигналов с частотой настройки приемного устройства за счет использования единого ЧИУ, обеспечивающего как формирование излучаемого сигнала, так и фильтрацию отраженного сигнала, при этом жесткие требования к частотной стабильности реализующих его устройств в условиях действия дестабилизирующих факторов и старении не предъявляются.
Следует отметить, что формирование стартового импульса возможно также для радиоимпульсов с неполным энергетическим наполнением при понижении порога квантования, что в условиях отражения этих радиоимпульсов от отражающей поверхности с малыми потерями или наличия достаточного запаса энергетического потенциала может обеспечить их полноценный прием.
Предлагаемый способ радиолокации с изменением несущей частоты от импульса к импульсу позволяет, по сравнению с прототипом:
- расширить диапазон измеряемых дальностей (за счет расширения диапазона длительностей излучаемых радиоимпульсов);
- снизить требования к ЧИУ по форме АЧХ и полосе пропускания;
- оптимизировать режимы работы устройств, осуществляющих прямое и возвратное гетеродинирование сигналов;
- повысить общий КПД за счет исключения из схемы второго (видеоимпульсного) генератора;
- снизить уровень паразитных сигналов и наводок по цепям питания и управления ввиду наличия в схеме прибора только одного генерирующего устройства с узкополосным спектром - перестраиваемого по частоте гетеродина.
Таким образом, предлагаемый способ радиолокации обладает существенными преимуществами перед прототипом и аналогами.

Claims (9)

1. Способ радиолокации с изменением несущей частоты от импульса к импульсу, заключающийся в формировании излучаемого сигнала и фильтрации отраженного сигнала одним частотно-избирательным устройством с применением метода прямого и возвратного гетеродинирования с изменением несущей частоты перестройкой частоты гетеродинного сигнала и детектировании отраженного сигнала на промежуточной частоте, отличающийся тем, что излучаемый сигнал получают прямым гетеродинированием вниз на промежуточную частоту входного собственного шума приемного устройства, усилением, его последующей узкополосной фильтрацией на промежуточной частоте частотно-избирательным устройством с получением квазигармонического шума промежуточной частоты, возвратным гетеродинированием вверх квазигармонического шума с промежуточной частоты на несущую частоту, усилением, ограничением амплитуды сверху этого шума, его амплитудно-импульсной манипуляцией, усилением до требуемого уровня излучаемой импульсной мощности с последующим излучением передающей антенной.
2. Способ по п. 1, отличающийся тем, что на время формирования излучаемого сигнала приемное устройство вводят в режим повышенного значения коэффициента шума.
3. Способ по п. 1, отличающийся тем, что прямым гетеродинированием входного собственного шума приемного устройства вниз на промежуточную частоту обеспечивают минимальный коэффициент шума, а возвратным гетеродинированием квазигармонического шума с промежуточной частоты вверх на несущую частоту обеспечивают максимальный коэффициент преобразования.
4. Способ радиолокации с изменением несущей частоты от импульса к импульсу по п. 1, отличающийся тем, что порог ограничения амплитуды сверху квазигармонического шума несущей частоты выбирают по заданному отношению среднего количества радиоимпульсов с полным энергетическим наполнением к общему количеству радиоимпульсов в излучаемой последовательности из соотношения
Figure 00000005
где
U0 - порог ограничения амплитуды квазигармонического шума,
σ - эффективное значение квазигармонического шума,
N - отношение среднего количества радиоимпульсов с полным энергетическим наполнением к общему количеству радиоимпульсов в излучаемой последовательности.
5. Способ по п. 1, отличающийся тем, что длительность излучаемого радиоимпульса устанавливают независимо от величины полосы пропускания частотно-избирательного устройства.
RU2019121277A 2019-07-04 2019-07-04 Способ радиолокации с изменением несущей частоты от импульса к импульсу RU2714510C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019121277A RU2714510C1 (ru) 2019-07-04 2019-07-04 Способ радиолокации с изменением несущей частоты от импульса к импульсу

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019121277A RU2714510C1 (ru) 2019-07-04 2019-07-04 Способ радиолокации с изменением несущей частоты от импульса к импульсу

Publications (1)

Publication Number Publication Date
RU2714510C1 true RU2714510C1 (ru) 2020-02-18

Family

ID=69626145

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019121277A RU2714510C1 (ru) 2019-07-04 2019-07-04 Способ радиолокации с изменением несущей частоты от импульса к импульсу

Country Status (1)

Country Link
RU (1) RU2714510C1 (ru)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162805A (en) * 1975-02-19 1992-11-10 The United States Of America As Represented By The Secretary Of The Navy Frequency diversity sidelobe canceller
RU2262122C1 (ru) * 2004-04-29 2005-10-10 Открытое акционерное общество "Корпорация "Фазотрон - Научно-исследовательский институт радиостроения" ОАО "Корпорация "Фазотрон-НИИР" Система обнаружения радиолокационных сигналов
US20070252751A1 (en) * 2006-04-28 2007-11-01 Furuno Electric Company Limited Radar apparatus and radar tuning method
RU2326402C1 (ru) * 2007-01-17 2008-06-10 Дмитрий Геннадьевич Митрофанов Способ измерения радиальной скорости воздушной цели в режиме перестройки частоты от импульса к импульсу
RU2422851C1 (ru) * 2010-05-04 2011-06-27 Сергей Владимирович Ковалев Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании
JP2012078187A (ja) * 2010-09-30 2012-04-19 Toshiba Corp パラメータ検出器、レーダ装置、誘導装置、及びパラメータ検出方法
JP5197125B2 (ja) * 2008-04-22 2013-05-15 三菱電機株式会社 パルスレーダ装置
RU2628526C1 (ru) * 2016-12-16 2017-08-18 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ радиолокации с перестройкой несущей частоты от импульса к импульсу

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162805A (en) * 1975-02-19 1992-11-10 The United States Of America As Represented By The Secretary Of The Navy Frequency diversity sidelobe canceller
RU2262122C1 (ru) * 2004-04-29 2005-10-10 Открытое акционерное общество "Корпорация "Фазотрон - Научно-исследовательский институт радиостроения" ОАО "Корпорация "Фазотрон-НИИР" Система обнаружения радиолокационных сигналов
US20070252751A1 (en) * 2006-04-28 2007-11-01 Furuno Electric Company Limited Radar apparatus and radar tuning method
RU2326402C1 (ru) * 2007-01-17 2008-06-10 Дмитрий Геннадьевич Митрофанов Способ измерения радиальной скорости воздушной цели в режиме перестройки частоты от импульса к импульсу
JP5197125B2 (ja) * 2008-04-22 2013-05-15 三菱電機株式会社 パルスレーダ装置
RU2422851C1 (ru) * 2010-05-04 2011-06-27 Сергей Владимирович Ковалев Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании
JP2012078187A (ja) * 2010-09-30 2012-04-19 Toshiba Corp パラメータ検出器、レーダ装置、誘導装置、及びパラメータ検出方法
RU2628526C1 (ru) * 2016-12-16 2017-08-18 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ радиолокации с перестройкой несущей частоты от импульса к импульсу

Similar Documents

Publication Publication Date Title
US5966090A (en) Differential pulse radar motion sensor
EP0901642B1 (en) Pulse homodyne field disturbance sensor
US6657704B2 (en) Distance measurement apparatus
US20080080599A1 (en) Heterodyne rf transceiver for radar sensor
EP2159597A2 (en) Pulsed radar with improved short distance range resolution
US20220397649A1 (en) Narrowband tia and signaling for optical distance measurement systems
JPH10505670A (ja) レンジ感度補償を行うレンジ・ゲート制御形のフィールド外乱センサ
RU2412450C2 (ru) Способ снижения нижней границы измерения малых высот до нуля и устройство когерентного импульсно-доплеровского радиовысотомера, реализующего способ
US4142189A (en) Radar system
RU2615996C1 (ru) Сверхширокополосный радиолокатор с активной многочастотной антенной решеткой
US10677912B2 (en) Signal processing device, radar apparatus and method of processing signal
RU2714510C1 (ru) Способ радиолокации с изменением несущей частоты от импульса к импульсу
US20230236285A1 (en) A radar system having a photonics-based signal generator
US11480654B2 (en) Radar transceiver
US3983482A (en) Delayed pulse transmission systems
US4068235A (en) Frequency diversity radar system
RU2799999C1 (ru) Способ радиолокации с перестройкой несущей частоты от импульса к импульсу
RU2413242C2 (ru) Способ обнаружения одноконтурных параметрических рассеивателей
RU58727U1 (ru) Радиолокационный измеритель расстояний
RU2628526C1 (ru) Способ радиолокации с перестройкой несущей частоты от импульса к импульсу
RU2822284C1 (ru) Способ импульсно-доплеровской радиолокации и устройство с автодинным приёмопередатчиком для контроля двух зон селекции цели по дальности
RU2803413C1 (ru) Способ импульсно-доплеровской радиолокации и устройство с автодинным приёмопередатчиком для его реализации
US4126861A (en) Pulse doppler ranging system (U)
RU214271U1 (ru) Радиополяриметрическое приемопередающее устройство для селекции бронетанковых целей
RU2755202C1 (ru) Устройство импульсной локации на основе автодина