RU2712162C1 - Способ получения галлатного раствора - Google Patents

Способ получения галлатного раствора Download PDF

Info

Publication number
RU2712162C1
RU2712162C1 RU2019122382A RU2019122382A RU2712162C1 RU 2712162 C1 RU2712162 C1 RU 2712162C1 RU 2019122382 A RU2019122382 A RU 2019122382A RU 2019122382 A RU2019122382 A RU 2019122382A RU 2712162 C1 RU2712162 C1 RU 2712162C1
Authority
RU
Russia
Prior art keywords
solution
gallium
concentration
gallate
eluate
Prior art date
Application number
RU2019122382A
Other languages
English (en)
Inventor
Александр Александрович Дамаскин
Александр Геннадиевич Сусс
Максим Николаевич Печёнкин
Анна Александровна Дамаскина
Original Assignee
Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" filed Critical Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority to RU2019122382A priority Critical patent/RU2712162C1/ru
Application granted granted Critical
Publication of RU2712162C1 publication Critical patent/RU2712162C1/ru
Priority to PCT/RU2020/050155 priority patent/WO2021010868A1/ru
Priority to EP20841186.8A priority patent/EP3998363A4/en
Priority to AU2020314315A priority patent/AU2020314315A1/en
Priority to CA3146073A priority patent/CA3146073A1/en
Priority to US17/574,470 priority patent/US20220204357A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/003Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B58/00Obtaining gallium or indium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к области металлургии редких металлов, а именно к способам извлечения галлия из щелочных галлийсодержащих растворов, в том числе оборотных растворов глиноземного производства. Галлатный раствор получают из щелочного галлийсодержащего раствора. Проводят сорбцию галлия из оборотного раствора на ионите на основе дивинилбензольного полимера, десорбцию галлия раствором серной кислоты с получением галлийсодержащего элюата, последующее концентрирование галлия путем перевода его в твердую фазу нейтрализацией элюата каустическим раствором с осаждением осадка гидроксида галлия при заданной температуре. Проводят сгущение и фильтрование осадка с дальнейшим его растворением в каустическом растворе до получения заданной концентрации галлия в растворе. Способ позволяет увеличить концентрацию галлия путем перевода его в твердую фазу при нейтрализации кислых элюатов щелочным раствором, что позволяет упростить процесс концентрирования и уменьшить количество технологических операций и, как следствие, удешевить производство галлия. 2 н. и 12 з.п. ф-лы, 1 ил., 3 пр.

Description

Область техники
Изобретение относится к области металлургии редких металлов, а именно, к способам извлечения галлия из щелочных галлийсодержащих растворов, в том числе, оборотных растворов глиноземного производства.
Уровень техники
Известен способ извлечения галлия из алюминатных растворов (патент РФ 2157421, С22В 58/00, С22В 3/24, опубл. 10.10.2000 г.), В галлий содержащий раствор добавляют реагент - сополимер винилхлоридный и малеиново ангидридный сополимер, на скелете из оксида кремния. Полученный раствор охлаждают до (-4)-(-8)°С и перемешивают при этой температуре в течение 25-30 мин. Сгущают полученную пульпу, после чего декантируют раствор и отфильтровывают осадок, содержащий галлий. Способ исключает применение кислот, позволяет увеличить степень извлечения галлия из раствора и сократить время процесса, но охлаждение промышленных алюминатных растворов, обычная температура которых составляет 80-100°С, до отрицательных температур потребует столь значительных затрат энергии и времени, что значительно снижает эффект от применения данного способа.
Известен способ извлечения галлия из щелочно-карбонатных алюминийсодержащих растворов (патент РФ 2586168, С22В 58/00, С22В 3/26, опубл. 10.06.2016 г.). Способ включает экстракцию галлия раствором азотсодержащего экстрагента N-(2-гидрокси-5-нонилбензил)-β,β-дигидроксиэтиламина в смеси разбавителей, содержащей октан с добавкой 25 об. % октанола. Далее проводят отделение галлия от алюминия реэкстракцией раствором NaOH с концентрацией 4 моль/л. В данном способе используются жидкие органические соединения и растворители, имеющие высокую пожаро и взрывоопасность, что накладывает дополнительные расходы на создание условий в рамках действующего глиноземного производства.
Известен способ извлечения галлия из щелочно-карбонатных алюминийсодержащих растворов (патент РФ 2118391, С22В 58/00, опубл. 27 08.1998 г.). Способ получения галлия включает в себя две стадии карбонизации алюминатного раствора. На первой стадии карбонизируют до содержания каустической щелочи не более 1-2 г/л и отделяют осадок гидроксида алюминия от содощелочного раствора. На второй стадии карбонизируют до содержания бикарбонатной щелочи 20-50 г/л, отделяют осадок, обогащенный галлием, и выделяют из осадка галлий. При этом первую стадию ведут в присутствии кальцийсодержащих соединений при соотношении CaO/Ga, равно (1-5)/1. Для организации карбонизации галлий содержащего раствора необходим большой источник углекислого газа, газация раствора баллонным газом экономически не целесообразна.
Наиболее близким к заявляемому техническому решению (прототипом) является способ извлечения галлия при переработке алюминиевых руд на глинозем (патент РФ 2051113, C02F 1/42, опубл. 27.12.1995 г.). Способ заключается в том, что после сорбции галлия на ионите проводят промывку насыщенного ионита раствором с содержанием оксида натрия 4-6 г/л в течение 0,5-2,0 ч и десорбируют галлий в две ступени с поддержанием на 1 ступени значения рН 1,0-2,5 при времени контакта ионита с раствором 0,4-0,6 частей от общего времени десорбции. Последующее концентрирование галлия из кислых элюатов осуществляют сорбцией на амфолите ВПК, а десорбцию ведут щелочным раствором в две ступени при времени контакта ионита с раствором на 1 ступени 0,4-0,5 частей от общего времени десорбции. В процессах десорбции как при сорбционном извлечении галлия, так и при его концентрировании, на первой ступени используют аппарат с воздушным перемешиванием и взвешенным слоем ионита, на второй ступени аппарат с плотным слоем ионита. Сущность способа состоит в последовательной двустадийной сорбции - десорбции с применением двух видов ионитов, что усложняет и удорожает производство.
Раскрытие изобретения
Задача изобретения - повышение степени извлечения галлия непосредственно из щелочно-алюминатных растворов, получаемых при переработке бокситов по способу Байера с последующей концентрацией соединений галлия в твердом осадке.
Техническим результатом является решение поставленной задачи, увеличение концентрации галлия путем перевода его в твердую фазу при нейтрализации кислых элюатов щелочным раствором, что позволяет упростить процесс концентрирования и уменьшить количество технологических операций и как следствие удешевить производство галлия.
Технический результат достигается за счет того, что способ получения галлатного раствора из раствора глиноземного производства включает сорбцию галлия из оборотного раствора на ионите на основе дивинилбензольного полимера, десорбцию галлия раствором серной кислоты с получением галлийсодержащего элюата, последующее концентрирование галлия путем перевода его в твердую фазу нейтрализацией элюата каустическим раствором до рН 6,8-7,2 с осаждением осадка гидроксида галлия при температуре 40-95°С, сгущение и фильтрование осадка с дальнейшим его растворением в каустическом растворе до получения концентрации галлия в растворе не менее 20 г/дм3.
Предпочтительно, чтобы концентрация раствора серной кислоты составляла 1-10 мас. % с целью минимизации химического разрушения ионита; концентрация каустического раствора составляла 50-500 г/дм3 Na2O, минимальная концентрация каустического раствора обусловлена ограничением объемов растворов возвращаемых после нейтрализации в глиноземное производство, а максимальная - предельным содержанием каустической щелочи в растворе; при этом приготовление галлатного раствора осуществляют при температуре 60-80°С - данный диапазон обусловлен скоростью растворения гидроксида галлия и вязкостью получаемого галлатного раствора.
Целесообразно также, чтобы способ включал стадию охлаждения до температуры ниже 20°С или перед сорбцией оборотного раствора или после приготовления галлатного раствора, при этом примесные компоненты отфильтровываются.
После стадии сгущения и фильтрования нейтральный раствор направляется в глиноземное производство, в том числе, возможно его объединение с нейтрализованными стоками со шламового поля при разомкнутом водообороте.
Осуществление изобретения
Сущность способа состоит в последовательной одностадийной сорбции-десорбции с применением ионита на основе дивинилбензольного полимера с последующим концентрированием галлия путем перевода его в твердую фазу при нейтрализации кислого элюата щелочным раствором до рН 6,8-7,2 с осаждением осадка гидроксида галлия при заданной температуре, предпочтительно, 40-95°С, сгущением и фильтрованием осадка с дальнейшим его растворением в каустическом растворе до получения заданной концентрации галлия в растворе, предпочтительно, не менее 20 г/дм3. В других диапазонах рН степень перевода галлия в твердый осадок значительно ниже, а более низкая и более высокая температура снижает скорость осветления раствора после нейтрализации. Следует отметить, что из апробированных в лаборатории ионитов сорбцию галлия напрямую из оборотных растворов положительный технологический результат показали только иониты на основе дивинилбензольного полимера.
После стадии сгущения и фильтрования нейтральный раствор направляется в глиноземное производство. В том числе, возможно, его объединение с нейтрализованными стоками со шламового поля при разомкнутом водообороте.
Для снижения негативного влияния примесных компонентов оборотного раствора на сорбцию галлия с применением ионита на основе дивинилбензольного полимера необходимо проводить предварительное охлаждение оборотного раствора до температуры ниже 20°С при этом из раствора кристаллизуется соли ванадия и органических соединений. Данное охлаждение рекомендуется проводить при содержании V2O5 в оборотном растворе выше 0,5 г/дм3.
Для получения более высоких качественных показателей товарного продукта (галлия) необходимо проводить охлаждение готового галлатного раствора до температуры ниже 20°С, при этом из раствора кристаллизуются соли ванадия. Данное охлаждение рекомендуется проводить при содержании V2O5 в галлатном растворе выше 0,5 г/дм3.
Объем правовой охраны испрашивается для нового способа получения галлатного раствора из щелочного галлийсодержащего раствора, который отличается от прототипа тем, что включает сорбцию галлия из оборотного раствора на ионите на основе дивинилбензольного полимера, десорбцию галлия раствором серной кислоты с получением галлийсодержащего элюата, последующее концентрирование галлия путем перевода его в твердую фазу нейтрализацией элюата каустическим раствором с осаждением осадка гидроксида галлия при заданной температуре, сгущение и фильтрование осадка с дальнейшим его растворением в каустическом растворе до получения заданной концентрации галлия в растворе. Концентрация раствора серной кислоты предпочтительно составляет 1-10 мас. %, концентрация каустического раствора предпочтительно составляет 50-500 г/дм3 Na2O, приготовление галлатного раствора предпочтительно осуществляют при температуре 60-80°С. Также способ предпочтительно включает стадию охлаждения перед сорбцией оборотного раствора и/или после приготовления галлатного раствора. Охлаждение целесообразно проводить до температуры ниже 20°С. При охлаждении примесные компоненты отфильтровываются. После стадии сгущения и фильтрования нейтральный раствор направляется в глиноземное производство и/или после стадии сгущения и фильтрования нейтральный раствор объединяется с нейтрализованными стоками со шламового поля при разомкнутом водообороте и направляется в глиноземное производство. Осаждение осадка гидроксида галлия предпочтительно проводят при температуре 40-95°С, концентрация галлия в галлатном растворе предпочтительно составляет не менее 20 г/дм3. Перевод в твердую фазу нейтрализацией элюата каустическим раствором проводят до рН 6,8-7,2. В качестве щелочного галлийсодержащего раствора предпочтительно использовать раствор глиноземного производства. Соответственно, галлатный раствор, полученный указанным способом, имеет концентрацию галлия в растворе не менее 20 г/дм3.
Примеры конкретного выполнения способа.
Пример 1
20,4 м3 оборотного раствора с содержанием галлия 0,33 г/дм3 направляется на сорбцию на ионите на основе дивинилбензольного полимера. При проведении сорбции содержание галлия в растворе снижается до 0,16 г/дм3. Насыщенный ионит отправляется на десорбцию 5-ти мас. % раствором серной кислоты объемом 2,7 м3. При этом в элюате возрастает содержание галлия до 1 г/дм3. Полученный кислый элюат нейтрализуется 236 дм3 крепкого каустического раствора (450 г/дм3 Na2O) до рН 6,8-7,2 с осаждением осадка гидроксида галлия при температуре 40°С. Полученный осадок, содержащий в основном гидроксид галлия, сгущается и отфильтровывается. Полученные 5 кг осадка, из них 3,46 кг - гидроксид галлия, растворяются при температуре 60-80°С в крепком каустическом растворе до получения концентрации галлия в растворе 40 г/дм3. Полученный раствор охлаждается до температуры ниже 20°С, при этом происходит кристаллизация примесных компонентов, которые в дальнейшем отфильтровываются.
Пример 2.
20,4 м3 оборотного раствора с содержанием галлия 0,33 г/дм3 направляется на охлаждение до температуры ниже 20°С для выделения примесных солей ванадия. Оборотный раствор после охлаждения отфильтровывается и в количестве 19,4 м3 направляется на сорбцию на ионите на основе дивинилбензольного полимера. При проведении сорбции содержание галлия в растворе снижается до 0,16 г/дм3. Насыщенный ионит отправляется на десорбцию 10-ти мас. % раствором серной кислоты объемом 1,3 м3. При этом в элюате возрастает содержание галлия до 2 г/дм3. Полученный кислый элюат нейтрализуется 201,6 дм3 крепкого каустического раствора (500 г/дм3 Na2O) до рН 6,8-7,2 с осаждением осадка гидроксида галлия при температуре 95°С. Полученный осадок, содержащий в основном гидроксид галлия, сгущается и отфильтровывается. Полученные 4,75 кг осадка, из них 3,29 кг - гидроксид галлия, растворяются при температуре 60-80°С в крепком каустическом растворе до получения концентрации галлия в растворе 70 г/дм3.
Пример 3.
20,4 м3 оборотного раствора с содержанием галлия 0,33 г/дм3 направляется на сорбцию на ионите. При проведении сорбции содержание галлия в растворе снижается до 0,16 г/дм3. Насыщенный ионит на основе дивинилбензольного полимера отправляется на десорбцию 1 мас. % раствором серной кислоты объемом 13,5 м3. При этом в элюате возрастает содержание галлия до 0,4 г/дм3. Полученный кислый элюат нейтрализуется 2145 дм3 крепкого каустического раствора (50 г/дм3 Na2O) до рН 6,8-7,2 с осаждением осадка гидроксида галлия при температуре 95°С. Полученный осадок, содержащий в основном гидроксид галлия, сгущается и отфильтровывается. Полученные 5 кг осадка, из них 3,46 кг - гидроксид галлия, растворяются при температуре 60-80°С в крепком каустическом растворе до получения концентрации галлия в растворе 20 г/дм3. Полученный раствор охлаждается до температуры ниже 20°С, при этом происходит кристаллизация примесных компонентов, которые в дальнейшем отфильтровываются.

Claims (14)

1. Способ получения галлатного раствора из щелочного галлийсодержащего раствора, отличающийся тем, что он включает сорбцию галлия из оборотного раствора на ионите на основе дивинилбензольного полимера, десорбцию галлия раствором серной кислоты с получением галлийсодержащего элюата, последующее концентрирование галлия путем перевода его в твердую фазу нейтрализацией элюата каустическим раствором с осаждением осадка гидроксида галлия при заданной температуре, сгущение и фильтрование осадка с дальнейшим его растворением в каустическом растворе до получения заданной концентрации галлия в растворе.
2. Способ по п. 1, отличающийся тем, что концентрация раствора серной кислоты составляет 1-10 мас. %.
3. Способ по п. 1, отличающийся тем, что концентрация каустического раствора составляет 50-500 г/дм3 Na2O.
4. Способ по п. 1, отличающийся тем, что приготовление галлатного раствора осуществляют при температуре 60-80°С.
5. Способ по п. 1, отличающийся тем, что он включает стадию охлаждения перед сорбцией оборотного раствора и/или после приготовления галлатного раствора.
6. Способ по п. 5, отличающийся тем, что охлаждение проводят до температуры ниже 20°С.
7. Способ по п. 5, отличающийся тем, что при охлаждении примесные компоненты отфильтровывают.
8. Способ по п. 1, отличающийся тем, что после стадии сгущения и фильтрования нейтральный раствор направляют в глиноземное производство.
9. Способ по п. 1, отличающийся тем, что после стадии сгущения и фильтрования нейтральный раствор объединяют с нейтрализованными стоками со шламового поля при разомкнутом водообороте и направляют в глиноземное производство.
10. Способ по п. 1, отличающийся тем, что осаждение осадка гидроксида галлия проводят при температуре 40-95°С.
11. Способ по п. 1, отличающийся тем, что получают концентрацию галлия в галлатном растворе не менее 20 г/дм3.
12. Способ по п. 1, отличающийся тем, что перевод в твердую фазу нейтрализацией элюата каустическим раствором проводят до рН 6,8-7,2.
13. Способ по п. 1, отличающийся тем, что в качестве щелочного галлийсодержащего раствора используют раствор глиноземного производства.
14. Галлатный раствор, полученный способом по любому из пп. 1-13.
RU2019122382A 2019-07-12 2019-07-12 Способ получения галлатного раствора RU2712162C1 (ru)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2019122382A RU2712162C1 (ru) 2019-07-12 2019-07-12 Способ получения галлатного раствора
PCT/RU2020/050155 WO2021010868A1 (ru) 2019-07-12 2020-07-10 Способ получения галлатного раствора
EP20841186.8A EP3998363A4 (en) 2019-07-12 2020-07-10 PROCEDURE FOR PREPARING A GALLATE SOLUTION
AU2020314315A AU2020314315A1 (en) 2019-07-12 2020-07-10 Method for the production of a gallate solution
CA3146073A CA3146073A1 (en) 2019-07-12 2020-07-10 Method for the production of a gallate solution
US17/574,470 US20220204357A1 (en) 2019-07-12 2022-01-12 Method for the production of a gallate solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019122382A RU2712162C1 (ru) 2019-07-12 2019-07-12 Способ получения галлатного раствора

Publications (1)

Publication Number Publication Date
RU2712162C1 true RU2712162C1 (ru) 2020-01-24

Family

ID=69184097

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019122382A RU2712162C1 (ru) 2019-07-12 2019-07-12 Способ получения галлатного раствора

Country Status (6)

Country Link
US (1) US20220204357A1 (ru)
EP (1) EP3998363A4 (ru)
AU (1) AU2020314315A1 (ru)
CA (1) CA3146073A1 (ru)
RU (1) RU2712162C1 (ru)
WO (1) WO2021010868A1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0297998A1 (fr) * 1987-06-02 1989-01-04 Aluminium Pechiney Procédé d'extraction et de purification du gallium des liqueurs Bayer
SU1823980A3 (ru) * 1991-02-07 1995-10-10 Институт металлургии и обогащения АН КазССР Способ получения галлиевого концентрата из алюмокарбонатного осадка
RU2051113C1 (ru) * 1991-10-11 1995-12-27 Николаевский глиноземный завод Способ извлечения галлия из щелочных растворов
UA11021C2 (ru) * 1992-03-17 1996-12-25 Миколаївський Глиноземний Завод Способ извлечения галлия
RU2293780C2 (ru) * 2005-01-27 2007-02-20 Общество с ограниченной ответственностью "Медногорский медносерный комбинат" Способ извлечения галлия из металлизированного материала, содержащего галлий и алюминий

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111917A (ja) * 1984-11-01 1986-05-30 Sumitomo Chem Co Ltd ガリウムの回収方法
JPS61286220A (ja) * 1985-06-10 1986-12-16 Sumitomo Chem Co Ltd 吸着剤によるガリウム成分の回収方法
DE3814916A1 (de) * 1988-05-03 1989-11-16 Int Gallium Gmbh Verfahren zur gewinnung von gallium
RU2118391C1 (ru) 1997-02-04 1998-08-27 Акционерное общество открытого типа "Всероссийский алюминиево-магниевый институт", Открытое акционерное общество Пикалевское объединение "Глинозем" Способ получения галлия
RU2157421C2 (ru) 1998-07-07 2000-10-10 Институт химии нефти СО РАН Способ извлечения галлия из алюминатных растворов
CN102534214B (zh) * 2012-01-18 2014-03-12 西安蓝晓科技新材料股份有限公司 一种用螯合树脂从拜耳母液中回收镓的新方法
CN103805794B (zh) * 2013-12-30 2015-04-08 中国神华能源股份有限公司 酸法粉煤灰提取氧化铝粗***中镓的回收方法
RU2586168C1 (ru) 2015-03-05 2016-06-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский технологический университет" Способ отделения галлия от алюминия

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0297998A1 (fr) * 1987-06-02 1989-01-04 Aluminium Pechiney Procédé d'extraction et de purification du gallium des liqueurs Bayer
SU1823980A3 (ru) * 1991-02-07 1995-10-10 Институт металлургии и обогащения АН КазССР Способ получения галлиевого концентрата из алюмокарбонатного осадка
RU2051113C1 (ru) * 1991-10-11 1995-12-27 Николаевский глиноземный завод Способ извлечения галлия из щелочных растворов
UA11021C2 (ru) * 1992-03-17 1996-12-25 Миколаївський Глиноземний Завод Способ извлечения галлия
RU2293780C2 (ru) * 2005-01-27 2007-02-20 Общество с ограниченной ответственностью "Медногорский медносерный комбинат" Способ извлечения галлия из металлизированного материала, содержащего галлий и алюминий

Also Published As

Publication number Publication date
EP3998363A4 (en) 2023-07-19
US20220204357A1 (en) 2022-06-30
EP3998363A1 (en) 2022-05-18
CA3146073A1 (en) 2021-01-21
WO2021010868A1 (ru) 2021-01-21
AU2020314315A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
RU2659968C1 (ru) Способ получения литиевого концентрата из литиеносных природных рассолов и его переработки в хлорид лития или карбонат лития
WO2017045485A1 (zh) 一种从低锂卤水中分离镁和富集锂生产碳酸锂的方法
CN1022996C (zh) 从铝土矿生产氧化铝的改进方法
WO2016202271A1 (zh) 从含稀土的铝硅废料中回收稀土、铝和硅的方法
CN107758714B (zh) 一种粉煤灰中铝硅锂镓联合法协同提取的方法
CN109665501A (zh) 一种硫酸盐溶液氟循环脱镁工艺及***
WO2018233690A1 (zh) 钙铁榴石一步碱热法处理拜耳法赤泥生产铝酸钠的方法
CN112794520A (zh) 钢铁湿法脱硫废水处理***及方法
CN109052430B (zh) 一种赤泥酸处理除碱的方法
CN110669947A (zh) 用仲酰胺/烷基醇复合溶剂从含钙卤水中分离钙提取锂和硼的萃取体系、萃取方法和其应用
WO2019143264A1 (ru) Способ получения оксида скандия из скандий-содержащих концентратов
CN113292088A (zh) 一种从结晶氯化铝生产低镁和低钙氧化铝的方法
RU2712162C1 (ru) Способ получения галлатного раствора
WO2019019844A1 (zh) 钙铁榴石一步碱热法处理拜耳法赤泥生产4a沸石的方法
CN110106356B (zh) 一种粉末型钛系离子交换剂分离盐湖卤水中锂的方法
CN116904764A (zh) 一种从含锂碱性水溶液中选择性提取锂的方法及装置
CN107118138A (zh) 一种从强力霉素碱化母液中回收磺基水杨酸的方法
CN104743586A (zh) 一种拜耳法赤泥中铝碱浸取与氧化铝分解母液蒸发排盐的联合生产方法
CN116440873A (zh) 一种从拜尔法生产氧化铝的***中吸附锂的吸附剂及其使用方法
CN1565974A (zh) 氧化铝的常压低温溶出生产方法
CN110669938A (zh) 用仲酰胺/烷基酮复合溶剂从含镁卤水中分离镁提取锂的萃取体系、萃取方法和其应用
CN101397604B (zh) 高浓碱液浸取铝土矿预脱硅方法
CN113697834B (zh) 提钛渣制备弗里德尔盐的方法和弗里德尔盐
CN113443642A (zh) 一种铝酸钠溶液浓缩降温工艺
CN111392763A (zh) 一种从硫酸盐溶液中分离回收硫酸锌镁复盐的工艺和应用