RU2712103C1 - Способ управления противообледенительной системой турбореактивного двухконтурного двигателя - Google Patents

Способ управления противообледенительной системой турбореактивного двухконтурного двигателя Download PDF

Info

Publication number
RU2712103C1
RU2712103C1 RU2019111022A RU2019111022A RU2712103C1 RU 2712103 C1 RU2712103 C1 RU 2712103C1 RU 2019111022 A RU2019111022 A RU 2019111022A RU 2019111022 A RU2019111022 A RU 2019111022A RU 2712103 C1 RU2712103 C1 RU 2712103C1
Authority
RU
Russia
Prior art keywords
icing
engine
hot air
rotor
icing system
Prior art date
Application number
RU2019111022A
Other languages
English (en)
Inventor
Павел Александрович Каджардузов
Юрий Александрович Эзрохи
Original Assignee
Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" filed Critical Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова"
Priority to RU2019111022A priority Critical patent/RU2712103C1/ru
Application granted granted Critical
Publication of RU2712103C1 publication Critical patent/RU2712103C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/02De-icing or preventing icing on exterior surfaces of aircraft by ducted hot gas or liquid
    • B64D15/04Hot gas application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/20Means for detecting icing or initiating de-icing
    • B64D15/22Automatic initiation by icing detector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • F02C6/08Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

Изобретение относится к противообледенительным системам летательных аппаратов, в частности к способу управления противообледенительной системой турбореактивного двухконтурного двигателя (ТРДД). Способ управления противообледенительной системой ТРДД заключается в том, что в полете при помощи установленного на входе двигателя датчика измеряют наружные параметры условий полета, по изменению которых формируют сигналы на открытие заслонки коллектора для отбора горячего воздуха из компрессора высокого давления и на датчики измерения частоты вращения ротора вентилятора и частоты вращения ротора газогенератора, определяют отношение частот вращения и вычисляют величину скольжения роторов, по изменению которой судят о характере и месте обледенения, затем формируют сигнал на электронный блок управления регулирующим устройством, которое по соответствующему каналу направляет поток горячего воздуха к определенному месту обледенения. Технический результат - создание способа управления противообледенительной системой ТРДД, обеспечивающего повышение эффективности работы двигателя за счет уменьшения количества отбираемого рабочего тела (горячего воздуха). 4 ил.

Description

Изобретение относится к противообледенительным системам летательных аппаратов, в частности к способу управления противообледенительной системой турбореактивного двухконтурного двигателя и может быть использовано в системах управления двигателем летательного аппарата.
В условиях полета необходимы постоянный контроль состояния турбореактивного двухконтурного двигателя (ТРДД) и повышение точности его управления, особенно в условиях обледенения элементов проточной части двигателя за счет имеющихся в атмосферном воздухе жидких переохлажденных капель размерами до 20 мкм, представляющих «классическое» обледенение, больших ледяных кристаллов и смеси фаз, включающих одновременно большие ледяные кристаллы и крупные переохлажденные капли воды размерами от 50 мкм до 2 мм. В зависимости от атмосферных условий обледенение элементов конструкции происходит в различных местах проточной части двигателя. При «классическом» обледенении образование льда происходит за счет имеющихся в атмосферном воздухе небольших ледяных кристаллов и жидких переохлажденных капель воды, в основном, на входе в двигатель в районе вентилятора, а при обледенении в условиях больших ледяных кристаллов и смеси фаз лед образуется в подпорных ступенях и в районе входа в компрессор высокого давления газогенератора. Образование льда в районе входа в компрессор высокого давления газогенератора обусловлено тем, что большие ледяные кристаллы, попадая в двигатель, проходят с воздухом через вентилятор и подпорные ступени, частично растаивают, поскольку температура воздуха в проточной части этих узлов повышается, в результате чего на поверхности вокруг больших ледяных кристаллов образуется водяная оболочка, которая при столкновении с конструкцией проточной части создает на ее поверхности водную пленку, к которой прилипают поступающие с воздухом кристаллы, образуя нарастание льда.
Образование ледяных кристаллов и переохлажденных капель воды различных размеров связано с определенными атмосферными условиями, в которых формируется только характерный, особый размер частиц льда и переохлажденных капель. В этой связи одновременное обледенение различных мест в проточной части двигателя ледяными кристаллами и переохлажденными каплями воды, которые имеют разные размеры, практически исключено.
Актуальность проблемы обеспечения работоспособности ТРДД в этих условиях объясняется необходимостью предупреждения возможного обледенения элементов конструкции проточной части двигателя, а в случае возникновения этого процесса быстрого его диагностирования и последующей ликвидации. Для этих целей ТРДД содержит противообледенительную систему, включение которой по определенному сигналу осуществляется системой управления, принцип работы которой состоит в отборе от двигателя в необходимом количестве горячего воздуха и подачей его во внутренние полости защищаемых от обледенения поверхностей элементов конструкции двигателя.
Известен способ управления противообледенительной системой турбореактивного двухконтурного двигателя, заключающийся в том, что на двигателе в полетных условиях по измеренным наружным параметрам условий полета формируют сигнал на включение электрической схемы, состоящей из источника тока, системы подводящих проводов и электронагревательных элементов, расположенных в местах возможного обледенения элементов конструкции двигателя (US 6725645, 2004).
Недостатком технического решения является необходимость наличия на борту летательного аппарата либо дополнительного источника тока (аккумуляторных батарей), либо электрогенератора для преобразования механической энергии, отобранной от вала двигателя, в электрическую, что неизбежно приведет как к дополнительным потерям энергии при ее преобразовании, так и к увеличению массово-габаритных показателей двигателя.
Известен способ управления противообледенительной системой газотурбинного двигателя (US 9683489, 2017), в котором противообледенительная система газотурбинного двигателя включает один или несколько источников горячего воздуха, один или несколько датчиков обледенения, наружной температуры и высоты полета, а также регулирующее устройство. В регулирующее устройство поступают сигналы от одного или нескольких датчиков, после чего обеспечивают подвод горячего воздуха в то или иное место в двигателе в зависимости от показаний датчиков. К недостаткам данного способа относится низкая надежность показаний датчиков, работа которых в условиях обледенения может нарушаться за счет образующегося на них льда, что приводит к искажению передаваемых ими данных и может не обеспечить необходимый подвод горячего воздуха в место образования льда в конструкции двигателя, а также ошибочно направить избыточное количество горячего воздуха в те элементы конструкции, которые на данном режиме не подвергались обледенению.
Известен способ управления противообледенительной системой воздухозаборника газотурбинного двигателя (RU 2666886, 2018), заключающийся в получении данных о наружных условиях полета с помощью специальных датчиков, фиксирующих условия обледенения, которые взаимодействуют с самолетной и двигательной системами, обеспечивающими подачу горячего воздуха ко всем возможным местам обледенения.
Недостатком известного технического решения является то обстоятельство, что подача отбираемого из компрессора высокого давления горячего воздуха осуществляется одновременно ко всем элементам конструкции двигателя, которые могут быть подвержены обледенению, без предварительного определения конкретного места обледенения. Это приводит к снижению эффективности работы двигателя за счет нерационально увеличенного отбора рабочего тела (горячего воздуха).
Наиболее близким аналогом к заявляемому техническому решению является способ управления противообледенительной системой турбореактивного двухконтурного двигателя, заключающийся в том, что в полете при помощи установленного на входе двигателя датчика измеряют наружные параметры условий полета, по изменению которых формируют сигнал на срабатывание регулирующего устройства, которое открывает канал, по которому осуществляют отбор горячего воздуха из компрессора высокого давления и его поступление на все элементы конструкции, подверженные возможному обледенению, при этом сама подача горячего воздуха осуществляется в пульсирующем режиме (US 4831819, 1989).
Недостатком известного технического решения является то, что несмотря на подачу горячего воздуха в пульсирующем режиме на элементы конструкции, подверженные обледенению, эта подача осуществляется ко всем возможным местам обледенения одновременно, что требует необоснованно повышенного расхода отбираемого воздуха и приводит к неэффективному использованию рабочего тела (горячего воздуха) и как следствие к снижению тяги двигателя и его экономичности.
Техническая проблема, решаемая заявляемым изобретением, заключается в устранении указанного выше недостатка и в расширении арсенала технических средств, а именно в создании способа управления противообледенительной системой турбореактивного двухконтурного двигателя.
Технический результат, обеспечиваемый предлагаемым изобретением, заключается в реализации его назначения, т.е. в создании способа управления противообледенительной системой турбореактивного двухконтурного двигателя, обеспечивающего повышение эффективности работы двигателя за счет уменьшения количества отбираемого рабочего тела (горячего воздуха).
Заявленный технический результат достигается за счет того, что при осуществлении способа управления противообледенительной системой турбореактивного двухконтурного двигателя в полете при помощи установленного на входе двигателя датчика измеряют наружные параметры условий полета, по изменению которых формируют сигналы на открытие заслонки коллектора для отбора горячего воздуха из компрессора высокого давления и на датчики измерения частоты вращения ротора вентилятора и частоты вращения ротора газогенератора, определяют отношение частот вращения и вычисляют величину скольжения роторов, по изменению которой судят о характере и месте обледенения, затем формируют сигнал на электронный блок управления регулирующим устройством, которое по соответствующему каналу направляет поток горячего воздуха к определенному месту обледенения.
Указанные существенные признаки обеспечивают решение поставленной технической проблемы с достижением заявленного технического результата, так как только совокупность существенных признаков, характеризующих изобретение, позволяет создать способ управления противообледенительной системой турбореактивного двухконтурного двигателя, обеспечивающего повышение эффективности работы двигателя за счет уменьшения количества отбираемого рабочего тела (горячего воздуха).
Предлагаемое техническое решение основано на том, что при обледенении входных элементов вентилятора или входных элементов газогенератора происходит существенное ухудшение режимов работы обледеневшего узла, что приводит к заметному снижению его эффективности и, в конечном итоге, частоты его вращения. В связи с этим по изменению величины скольжения роторов (см. Теория двухконтурных турбореактивных двигателей / Под ред. С.М. Шляхтенко и В.А. Сосунова - Москва: Машиностроение, 1979), то есть по изменению отношения частоты вращения газогенератора (nгг) и частоты вращения вентилятора (nв)
nгг/nв
можно судить о месте обледенения в проточной части двигателя. Так, увеличение величины скольжения роторов говорит об обледенении входных элементов вентилятора, а уменьшение - свидетельствует об обледенении входных элементов газогенератора.
Настоящее изобретение поясняется подробным описанием способа управления противообледенительной системой турбореактивного двухконтурного двигателя со ссылкой на фигуры 1-4, где
на фиг. 1 схематично представлен ТРДД и противообледенительная система;
на фиг. 2 приведен график зависимости снижения удельного расхода топлива от величины снижения расхода отбираемого горячего воздуха;
на фиг. 3 приведен график зависимости снижения уровня температуры газа перед турбиной от величины снижения расхода отбираемого горячего воздуха;
на фиг. 4 приведен график повышения тяги двигателя от величины снижения расхода отбираемого горячего воздуха.
На фиг. 1 приняты следующие обозначения:
1 - ТРДД;
2 - вентилятор;
3 - газогенератор;
4 - турбина вентилятора 2;
5 - выходное устройство;
6 - противообледенительная система;
7 - коллектор;
8 - заслонка;
9 - регулирующее устройство;
10 - электронный блок управления регулирующим устройством 9;
11 - трубопровод;
12 - канал подвода горячего воздуха к вентилятору 2;
13 - канал подвода горячего воздуха к газогенератору 3;
14 - датчик обледенения;
15 - датчик измерения частоты вращения ротора вентилятора 2;
16 - датчик измерения частоты вращения ротора газогенератора 3;
17 - блок вычисления величины скольжения роторов;
18 - блок определения изменения величины скольжения роторов.
На фиг. 1 представлена схема ТРДД 1, включающего вентилятор 2, газогенератор 3, турбину 4 вентилятора 2 и выходное устройство 5, противообледенительную систему 6, состоящую из коллектора 7 для отбора горячего воздуха из компрессора высокого давления (КВД) газогенератора 3, заслонки 8, регулирующего устройства 9, электронного блока 10 управления регулирующим устройством 9, трубопровода 11 подвода горячего воздуха от коллектора 7 до регулирующего устройства 9, канала 12 подвода горячего воздуха от регулирующего устройства 9 к входным элементам вентилятора 2, канала 13 подвода горячего воздуха от регулирующего устройства 9 к элементам на входе в газогенератор 3, датчика 14 обледенения, установленного на входе двигателя 1, а также датчика 15 измерения частоты вращения ротора вентилятора 2 и датчика 16 измерения частоты вращения ротора газогенератора 3, блока 17 вычисления величины скольжения роторов и блока 18 определения изменения величины скольжения роторов во времени, соединенного с электронным блоком 10 управления регулирующим устройством 9.
Способ управления противообледенительной системой 6 турбореактивного двухконтурного двигателя 1 реализуется следующим образом. В полете при помощи установленного на входе двигателя 1 датчика 14 измеряют наружные параметры условий полета. Датчик 14 регистрирует наличие в атмосферном воздухе вероятных условий для обледенения (низкая температура атмосферного воздуха, наличие переохлажденных капель или кристаллов льда). По изменению наружных параметров условий полета формируют сигналы на открытие заслонки 8 коллектора 7 для отбора горячего воздуха из КВД газогенератора 3 и на датчики 15 и 16. Открытие заслонки 8 коллектора 7 обеспечивает подвод горячего воздуха из КВД газогенератора 3 по трубопроводу 11 в регулирующее устройство 9. С помощью датчиков 15 и 16 измеряют частоту вращения ротора вентилятора 2 (nв) и частоту вращения ротора газогенератора 3 (nгг) соответственно. Сигналы от датчиков 15 и 16 поступают в блок 17 вычисления величины скольжения роторов, где определяют отношение частот вращения и вычисляют величину скольжения роторов
nгг/nв.
Сигнал от блока 17 поступает в блок 18 определения изменения величины скольжения роторов. По изменению величины скольжения роторов во времени судят о характере и месте обледенения. Затем от блока 18 формируют сигнал на электронный блок 10 управления регулирующим устройством 9, которое по соответствующему каналу направляет поток горячего воздуха к определенному месту обледенения.
В зависимости от сигнала блока 10 управления, связанного с изменением величины скольжения роторов, горячий воздух направляется регулирующим устройством 9 в канал 12 подачи горячего воздуха к входным элементам вентилятора 2 или в канал 13 подачи воздуха к элементам на входе в газогенератор 3. Так, при уменьшении величины скольжения роторов блок 10 управления подает регулирующему устройству 9 сигнал на подачу горячего воздуха по каналу 13, а при увеличении - по каналу 12. Таким образом, горячий воздух в необходимом количестве поступает именно к тому элементу конструкции, которое подвержено обледенению при данных условиях работы, обеспечивая тем самым работоспособность двигателя при всех видах обледенения его проточной части.
Предлагаемый способ управления противообледенительной системой ТРДД в случае обледенения одного из двух возможных мест проточной части двигателя, представляющих входную часть двигателя, включая вентилятор, или входную часть газогенератора, позволяет определить место образования льда и обеспечить подвод к нему горячего воздуха, при отключении подвода горячего воздуха к другим элементам проточного тракта, не подверженным на данном режиме обледенению, уменьшить суммарный отбор воздуха из проточного тракта двигателя и тем самым повысить эффективность его работы.
Расчетные оценки, проведенные для ТРДД типа ПД-14, показали, что в условиях обледенения при уменьшении величины скольжения роторов горячий воздух следует подавать только на входные элементы газогенератора и не подавать его на входные элементы вентилятора. Это позволит уменьшить отбираемый из КВД расход горячего воздуха приблизительно на 1-1,2%, что, в свою очередь, позволит на режиме крейсерского полета (при сохранении необходимого уровня тяги) повысить экономичность двигателя на 1,2-1,5%, снизить температуру газа перед турбиной приблизительно на 20-25 К, а на максимальном режиме разгона и набора высоты при сохранении на прежнем уровне температуры газа перед турбиной повысить тягу двигателя приблизительно на 2,5-3%.
При увеличении величины скольжения роторов в условиях обледенения горячий воздух следует подавать только на входные элементы вентилятора и не подавать его на входные элементы газогенератора. Это позволит уменьшить отбираемый из КВД расход горячего воздуха приблизительно на 0,5-0,6%, что, в свою очередь, позволит на режиме крейсерского полета (при сохранении необходимого уровня тяги) повысить экономичность двигателя на 0,6-0,75%, снизить температуру газа перед турбиной приблизительно на 10-12 К, а на максимальном режиме разгона и набора высоты при сохранении на прежнем уровне температуры газа перед турбиной повысить тягу двигателя приблизительно на 1,25-1,5%.
На фиг. 2-4 для ТРДД типа ПД-14 приведены графики зависимости снижения удельного расхода топлива (δCr) и уровня температуры газа перед турбиной
Figure 00000001
на крейсерском режиме при постоянном уровне тяги
(R=const)
и повышения тяги двигателя (δR) на режимах набора высоты
(при условии
Figure 00000002
)
от величины снижения расхода (δGотб) отбираемого из проточного тракта компрессора горячего воздуха.
Таким образом, техническое решение обеспечивает повышение эффективности работы двигателя путем уменьшения расхода горячего воздуха, отбираемого из проточной части двигателя и используемого противообледенительной системой в конкретном месте обледенения, при безусловном обеспечении работоспособности двигателя при всех видах обледенения его проточной части.

Claims (1)

  1. Способ управления противообледенительной системой турбореактивного двухконтурного двигателя, характеризующийся тем, что в полете при помощи установленного на входе двигателя датчика измеряют наружные параметры условий полета, по изменению которых формируют сигналы на открытие заслонки коллектора для отбора горячего воздуха из компрессора высокого давления и на датчики измерения частоты вращения ротора вентилятора и частоты вращения ротора газогенератора, определяют отношение частот вращения и вычисляют величину скольжения роторов, по изменению которой судят о характере и месте обледенения, затем формируют сигнал на электронный блок управления регулирующим устройством, которое по соответствующему каналу направляет поток горячего воздуха к определенному месту обледенения.
RU2019111022A 2019-04-12 2019-04-12 Способ управления противообледенительной системой турбореактивного двухконтурного двигателя RU2712103C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019111022A RU2712103C1 (ru) 2019-04-12 2019-04-12 Способ управления противообледенительной системой турбореактивного двухконтурного двигателя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019111022A RU2712103C1 (ru) 2019-04-12 2019-04-12 Способ управления противообледенительной системой турбореактивного двухконтурного двигателя

Publications (1)

Publication Number Publication Date
RU2712103C1 true RU2712103C1 (ru) 2020-01-24

Family

ID=69184202

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019111022A RU2712103C1 (ru) 2019-04-12 2019-04-12 Способ управления противообледенительной системой турбореактивного двухконтурного двигателя

Country Status (1)

Country Link
RU (1) RU2712103C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116702654A (zh) * 2023-06-21 2023-09-05 中国航发沈阳发动机研究所 一种航空发动机防冰引气优化方法
RU2814576C1 (ru) * 2023-05-31 2024-03-01 Акционерное общество "Лётно-исследовательский институт имени М.М. Громова" Устройство для борьбы с кристаллическим обледенением двигателей ТРДД

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007340C1 (ru) * 1990-07-18 1994-02-15 Авиационный комплекс им.С.В.Ильюшина Противообледенительная система носка мотогондолы двухконтурного турбореактивного двигателя летательного аппарата
RU2473972C1 (ru) * 2012-01-17 2013-01-27 Олег Петрович Ильин Сигнализатор обледенения лопастей роторного агрегата
RU2529927C1 (ru) * 2010-08-30 2014-10-10 Мицубиси Хеви Индастрис, Лтд. Противообледенительная система летательного аппарата и летательный аппарат, оснащенный указанной системой
US20150176490A1 (en) * 2013-08-21 2015-06-25 The Boeing Company Aircraft Engine Anti-Icing (EAI) Barrier Assembly, System and Method
US10017259B2 (en) * 2015-08-13 2018-07-10 Safran Aero Boosters Sa De-icing splitter for an axial turbine engine compressor
EP3444446A1 (en) * 2017-08-14 2019-02-20 General Electric Company Inlet frame for a gas turbine engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007340C1 (ru) * 1990-07-18 1994-02-15 Авиационный комплекс им.С.В.Ильюшина Противообледенительная система носка мотогондолы двухконтурного турбореактивного двигателя летательного аппарата
RU2529927C1 (ru) * 2010-08-30 2014-10-10 Мицубиси Хеви Индастрис, Лтд. Противообледенительная система летательного аппарата и летательный аппарат, оснащенный указанной системой
RU2473972C1 (ru) * 2012-01-17 2013-01-27 Олег Петрович Ильин Сигнализатор обледенения лопастей роторного агрегата
US20150176490A1 (en) * 2013-08-21 2015-06-25 The Boeing Company Aircraft Engine Anti-Icing (EAI) Barrier Assembly, System and Method
US10017259B2 (en) * 2015-08-13 2018-07-10 Safran Aero Boosters Sa De-icing splitter for an axial turbine engine compressor
EP3444446A1 (en) * 2017-08-14 2019-02-20 General Electric Company Inlet frame for a gas turbine engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2814576C1 (ru) * 2023-05-31 2024-03-01 Акционерное общество "Лётно-исследовательский институт имени М.М. Громова" Устройство для борьбы с кристаллическим обледенением двигателей ТРДД
CN116702654A (zh) * 2023-06-21 2023-09-05 中国航发沈阳发动机研究所 一种航空发动机防冰引气优化方法

Similar Documents

Publication Publication Date Title
US10414508B2 (en) Gas-electric propulsion system for an aircraft
US20110004388A1 (en) Turbofan temperature control with variable area nozzle
JP4293599B2 (ja) ターボファンエンジンの内部防氷装置
CA2807909C (fr) Procede d'optimisation de l'operabilite de motorisation d'un aeronef et groupe de puissance principal de mise en oeuvre
GB2558228A (en) Aircraft electrically-assisted propulsion control system
US10072579B2 (en) Apparatus for discriminating ignition in a gas-turbine aeroengine
JP5356967B2 (ja) 航空機用ガスタービン・エンジン
CA2783222C (fr) Procede de determination de vitesse air d'un aeronef et aeronef equipe de moyens de mise en oeuvre
EP2762707B1 (en) Method of controlling a cooling system
US10822996B2 (en) Gas turbine engine health determination
US20240209754A1 (en) Method for operating a flight-propulsion system
JP6633961B2 (ja) 航空機用ガスタービン・エンジンの運転パラメータ推定装置
RU2712103C1 (ru) Способ управления противообледенительной системой турбореактивного двухконтурного двигателя
US20160305345A1 (en) Control apparatus for a gas-turbine aeroengine
EP3269944B1 (en) A method of operating a gas turbine engine
RU2476915C2 (ru) Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков
US20210163141A1 (en) Gas turbine engine, nacelle thereof, and associated method of operating a gas turbine engine
EP3106649A1 (en) Aircraft gas turbine propulsion engine control without aircraft total air temperature sensors
RU2347093C2 (ru) Способ управления двухконтурным двухвальным газотурбинным двигателем самолета и устройство для его осуществления
Wallner et al. Generalization of turbojet and turbine-propeller engine performance in windmilling condition
RU2310100C2 (ru) Способ защиты газотурбинного двигателя от возникновения неустойчивой работы компрессора
US11428119B2 (en) Method and system to promote ice shedding from rotor blades of an aircraft engine
Weir Propulsion Prospects
Acker et al. Effects of Inlet Icing on Performance of Axial-Flow Turbojet Engine in Natural Icing Conditions
US2988919A (en) Speed sensing system

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20210804