RU2710983C1 - Способ многопозиционного наблюдения, контроля и управления над полетами пилотируемых и беспилотных авиационных систем в общем воздушном пространстве - Google Patents

Способ многопозиционного наблюдения, контроля и управления над полетами пилотируемых и беспилотных авиационных систем в общем воздушном пространстве Download PDF

Info

Publication number
RU2710983C1
RU2710983C1 RU2019108673A RU2019108673A RU2710983C1 RU 2710983 C1 RU2710983 C1 RU 2710983C1 RU 2019108673 A RU2019108673 A RU 2019108673A RU 2019108673 A RU2019108673 A RU 2019108673A RU 2710983 C1 RU2710983 C1 RU 2710983C1
Authority
RU
Russia
Prior art keywords
flight
aircraft
control
traffic
manned
Prior art date
Application number
RU2019108673A
Other languages
English (en)
Inventor
Александр Иванович Ильин
Original Assignee
Александр Иванович Ильин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Иванович Ильин filed Critical Александр Иванович Ильин
Priority to RU2019108673A priority Critical patent/RU2710983C1/ru
Application granted granted Critical
Publication of RU2710983C1 publication Critical patent/RU2710983C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)

Abstract

Изобретение относится к способу самоорганизующегося многопозиционного наблюдения, контроля и управления полетами пилотируемых и беспилотных авиационных систем. Для реализации способа используют наземную службу контроля и управления за полетом летательных аппаратов, куда передают информацию о трафиках взаимного полета, аэронавигационные данные, пилотажно-навигационные характеристики каждого из летательных аппаратов, их идентификационные номера и координаты и параметры движения, вырабатывают команды управления трафиком полета. При потере связи с наземными службами летательный аппарат переходит в режим автономного полета, осуществляя связь с другими летательными аппаратами для корректировки полета. В случае потери управления летательным аппаратом технические данные передаются в службу пресечения несанкционированного полета. Обеспечивается повышение управляемости летательных аппаратов и безопасности их полетов. 1 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Техническое решение относится к области информационно-измерительной техники, а именно к автоматизированным системам управления и контроля. Способ относится к системам управления и контроля пилотируемыми и беспилотными авиационными системами для обеспечения безопасности их полета в общем воздушном пространстве, но может быть применен и на других транспортных средствах.
УРОВЕНЬ ТЕХНИКИ
В настоящее время широкое распространение получают различные системы и способы доставки товаров и грузов с помощью БАС (беспилотные авиационные системы).
Известна система навигации БАС, описанная в патенте США №8626361, опубликованном 25.11.2008. В известной системе первый БАС содержит данные, представляющие собой маршрут полета первого БАС и наземную станцию. Наземная станция принимает данные с БАС, представляющие собой, маршрут полета первого БАС, рассчитывает маршрут полета для второго БАС, таким образом, чтобы траектории полета первого БАС и второго БАС не пересекались, и передает рассчитанный маршрут полета на второй БАС.
Известна система учета положения БАС, описанная в патенте США №8386175, опубликованном 18.03.2010. Известная система включает в себя систему отчетности управления воздушным движением (УВД) в сочетании с наземной станции управления (НСУ), УВД включает в себя систему автоматической трансляции наблюдения за БАС и информации о трафике услуг вещания, приемопередатчик и один или более телекоммуникационных модемов. НСУ выполнена с возможностью приема данных о позиции БАС в воздушном пространстве и сообщает позицию БАС в воздушном пространстве оператору УВД или в коммуникационный центр через приемопередатчик. УВД также может быть выполнен с возможностью отображения положения БАС в воздушном пространстве, на одном или более экранах.
Известна система управления БЛА, описанная в патенте США №8521339, опубликованном 08.04.2010. В известной системе организована удаленная связь между БАС и базовой станцией. БАС передает на базовую станцию свои координаты с привязкой к карте, базовая станция определяет вектора скорости для БАС и направляет БАС в соответствии с определенным вектором скорости до тех пор, пока БАС не достигнет цели.
Известна система безопасности полетов БАС в гражданском воздушном пространстве, описанная в патенте США №8838289, опубликованном 07.02.2008. Известная система включает в себя: наземную станция оснащенную системой технического зрения; БАС; удаленный оператор, управляющий наземной станцией; канал связи между БАС и наземной станцией; систему на борту БАС для обнаружения присутствия и положение вблизи воздушных судов и передачи этой информации удаленному оператору; Из предшествующего уровня техники известен способ управления беспилотным летательным аппаратом и устройство для его реализации (см. патент RU №2390815, опубл. 27.05.2010 г.), характеризующий управление одним или несколькими беспилотными летательными аппаратами, каждый из которых оборудован бортовой автоматической системой управления, спутниковой навигационной системой, высокоточными синхронизированными часами, а также бортовым вычислителем и приемо-передающей радиостанцией, с помощью которой осуществляется цифровая радиосвязь с базовой радиостанцией, со стационарным или подвижным пунктом управления, который оборудован автоматизированным рабочим местом оператора, при этом передача команд управления движением беспилотного летательного аппарата, передача данных о координатах и параметрах его движения, а также передача идентификационных номеров и данных о координатах и параметрах движения других подвижных объектов, оборудованных приемопередающими радиостанциями и находящихся в пределах радиовидимости, производится в один или несколько общих радиоканалов, причем трансляция сообщений каждой передающей радиостанцией производится в заранее заданный отрезок дискретной шкалы единого времени с временным упреждением, которого достаточно для компенсации запаздывания в получении и исполнении указанных команд.
Недостатком известных способов управления беспилотным летательным аппаратом является то, что управление и контроль БВС осуществляется с наземного пункта управления в пределах радиовидимости, что затрудняет поддержание безотказного состояния оборудования БВС при эксплуатации, а также осуществление контроля за выполнением санкционированного трафика полета БВС, а это снижает уровень безопасности полетов, а по существу делает невозможным обеспечение интеграции беспилотных авиационных систем в общее воздушное пространство.
Существующие правила управления воздушным движением (УВД) сформировались, когда масштабы БАС по существу ограничивались авиамодельным спортом.
Воздушное пространство пронизано специальными путями, которые переходят из одной контролируемой зоны в другую. Точное число летательных аппаратов сказать довольно сложно, поскольку оно измеряется уже тысячами самолетов, число которых из года в год только растет.
Можно представить, что будет в воздушном пространстве, когда число увеличится на порядки. И здесь без автоматизированного управления эксплуатацией беспилотного воздушного судна при полетах в общем воздушном пространстве не обойтись, причем автоматически должен формироваться и контролироваться не только трафик полета, но также остаточный ресурс и предотказное состояние на всех этапах жизненного цикла, а также выявление случаев несанкционированного изменения трафика полета БВС.
Типовая структура системы управления для БАС состоит из различных источников данных. Полученные данные попадают в блок бортовой системы управления (БАСУ), где производится оценка параметров движения объекта и выработка управляющих воздействий на исполнительные механизмы объекта. В качестве входных данных блок системы управления также может принимать внешние управляющие воздействия. Выработанные значения сигналов управления подаются на органы управления полетом БАС. В памяти БАСУ хранятся программы выполнения полета и конфигурации блока управления, изменяющиеся под воздействием определенных событий, происходящих на БАС в полете.
В настоящее время традиционные средства управления воздушным движением пилотируемой гражданской авиации меняются на многопозиционные системы наблюдения (МПСН), основанные на многопозиционных технологиях АЗН-В, активно используются в качестве высокоточного источника информации о воздушной обстановке в аэропортовых, аэродромных и трассовых зонах УВД. Наземная станция аэродромной многопозиционной системы наблюдения (МПСН-А) предназначена для определения местоположения и управления движением воздушных судов, спецавтотранспортом, техническими средствами и другими объектами, оборудованных ответчиками, находящихся на посадочной прямой и рабочей площади аэродрома (площади маневрирования и перроне, на взлетно-посадочной полосе, рулежных дорожках и местах стоянок воздушных судов). Московский аэропорт Домодедово первым в России устанавливает аэродромную многопозиционную систему наблюдения. Установка АМПСН и ее интеграция в уже работающую в Домодедово систему A-SMGCS (Усовершенствованная система управления наземным движением и контроля за ним) является наилучшим решением обеспечения контроля за наземным движением на аэродроме. Объединенные функции двух систем обеспечат наиболее полное и точное отображение на мониторах диспетчеров вышки УВД местоположения и передвижения самолетов и транспортных средств на взлетно-посадочных полосах, рулежных дорожках и перронах аэропорта. В основе новой системы лежит развертывание сети наземных станций системы АМПСН, рассредоточенных по всему аэродрому, стойки центральной обработки информации и 150 маяков (передающих устройств), установленных на спецтранспорт.
Однако МПСН имеет существенный недостаток:
- является системой высокоточного источника информации о воздушной обстановке в аэропортовых, аэродромных и трассовых зонах УВД и не учитывает необходимость обеспечения совместных полетов в общем воздушном пространстве, так как оснащение всего пространства территории Российской Федерации будет очень дорогой и практически не реализуемой задачей.
СУЩНОСТЬ ТЕХНИЧЕСКОГО РЕШЕНИЯ
Предлагаемое техническое решение направлено на устранение недостатков, присущих существующим аналогам. Задачей заявляемого способа самоорганизующейся многопозиционной системы наблюдения, контроля и управления над полетами пилотируемых и беспилотных авиационных систем в общем воздушном пространстве, что повысит уровень обеспечения безопасности полетов на всех участках полета БАС.
Технический результат от использования данного технического решения заключается в обеспечении безопасных полетов пилотируемой и беспилотной авиации в общем воздушном пространстве.
Такой технический результат заявляемого способа обеспечивается за счет того, что наряду с наземными многопозиционными системами наблюдения, которые размещаются в первую очередь в районе аэропортов, совмещенные со службой управления воздушным движением, формируется воздушная многопозиционная система наблюдения, используя сами летательные аппараты, которые используются, как подвижные элементы системы многопозиционного наблюдения.
Способ самоорганизующегося многопозиционного наблюдения, контроля и управления над полетами пилотируемых и беспилотных авиационных систем в общем воздушном пространстве, который включает наземную структуру многопозиционной системы наблюдения, контроля и управления, пилотируемыми и беспилотными аппаратами, а каждый летательный аппарат оборудован бортовой автоматической системой управления, спутниковой навигационной системой, высокоточными синхронизированными часами, а также бортовым вычислителем и приемо-передающей радиостанцией, с помощью которой осуществляется цифровая радиосвязь с базовой радиостанцией, со стационарным или подвижным пунктами управления, которые оборудованы автоматизированным рабочим местом оператора, отличающийся тем, что наряду с наземными многопозиционными системами наблюдения, которые размещаются в первую очередь в районе аэропортов, совмещенные со службой управления воздушным движением, формируется воздушная многопозиционная система наблюдения, используя сами летательные аппараты, которые используются, как подвижные маяки, которым присваиваются идентификационные номера, передаваемыми с командами управления движением беспилотного летательного аппарата и данные о координатах и параметрах его движения, а также блок приема информации с других летательных аппаратов, находящихся в ближайшем пространстве о трафиках их полета, причем, радиосигнал дополнительно обрабатывается, например, используя принцип Доплера, для уточнения реальных координат других летательных аппаратов, а в блоке обработки полученная информация о трафиках взаимного полета, а также аэронавигационные данные и пилотажно-навигационные характеристики, включая команды наземной службы контроля и управления за полетом летательных аппаратов, преобразуются в команды управления трафиком полета, обеспечивая безопасный совместный полет, исключающий столкновение, а также передаются идентификационные номера и данные о координатах и параметрах движения других летательных аппаратов, оборудованных приемопередающими радиостанциями и находящихся в пределах радиовидимости наземной многопозиционной системы наблюдения и службы управления воздушным движением, образуя единую самоорганизующуюся сеть многопозиционного наблюдения, контроля и управления над полетами пилотируемых и беспилотных летательных аппаратов в общем воздушном пространстве, включающую наземную структуру и сеть летательных аппаратов, причем в передаваемом сообщении с летательных аппаратов, указывается идентификационный номер наземной станции, которая осуществляет контроль и управление за его полетом, который свидетельствует о необходимости ретрансляции, полученного сообщения, по этому адресу, а сформированный трафик связи служит каналом управления и контроля за полетом летательных аппаратов, причем, когда трафик контроля и управления невозможно организовать, то летательный аппарат переходит в режим автономного полета, осуществляя прием сигналов оповещения от приближающихся летательных аппаратов, обеспечивая безопасность полета, а в случае выявления получения недостоверной информации о трафике полета с летательного аппарата, который отклоняется от санкционированного трафика полета, корректируют трафики полетов таких летательных аппаратов, передавая через систему ретрансляции сигналы управления, а в случае невозможности корректировки полета летательного аппарата, например, когда недостоверная информация с летательного аппарата передается умышленно, то информация о времени потери управления с таким летательным аппаратом и параметрах его движения, планируемом трафике полета, а также технические данные в режиме онлайн передаются в службу пресечения несанкционированного полета беспилотного летательного аппарата.
Это позволит эффективным путем решить проблему совместных полетов пилотируемой и беспилотной авиации в общем воздушном пространстве.
Проведенный анализ технических решений позволил установить, что аналоги, характеризующиеся совокупностью признаков, тождественных всем признакам заявленного технического решения, отсутствуют в известных носителях информации, что указывает на соответствие заявленного способа условию патентоспособности "новизна".
Результаты поиска известных решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипа признаками, показали, что они не следуют явным образом из уровня техники.
Из уровня техники также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения преобразований на достижение указанного технического результата. Следовательно, заявленное изобретение соответствует условию патентоспособности "изобретательский уровень".
Это позволит эффективным путем решить проблемы информативности средств наблюдения за воздушной обстановкой, а также применение эффективных способов управления БАС.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Заявленный способ реализуется по блок-схеме, представленной на Фиг. 1, которая состоит из следующих основных блоков:
1 - воздушная многопозиционная система наблюдения, использующая летательные аппараты, включающая сеть пилотируемых летательных аппаратов П1, П1, …, Пm и беспилотных летательных аппаратов Б1, Б2, …, Бn;
2 - наземными многопозиционными системами наблюдения, использующая распределенные наземные маяки Н1, Н2, …, Нk;
3 - служба управления воздушным движением, использующая центр контроля и управления 3-1, центр анализа и обработки информации 3-2, центр приема и передачи информации 3-3; портал базы данных 3-4.
ПОДРОБНОЕ ОПИСАНИЕ ТЕХНИЧЕСКОГО РЕШЕНИЯ
Изобретение относится к области информационно-измерительной техники, а именно к автоматизированным системам управления и контроля. Способ относится к пилотируемым и беспилотным авиационным системам для обеспечения безопасности их полета в общем воздушном пространстве, но может быть применен и на других транспортных средствах.
Данное техническое решение направлено на устранение недостатков, присущих существующим аналогам. Задачей заявляемого способа самоорганизующейся многопозиционной системы наблюдения, контроля и управления над полетами пилотируемых и беспилотных авиационных систем в общем воздушном пространстве, что повысит уровень обеспечение безопасности полетов на всех участках их полета.
Технический результат от использования данного технического решения заключается в обеспечении безопасных полетов пилотируемой и беспилотной авиации в общем воздушном пространстве.
Такой технический результат заявляемого способа обеспечивается за счет того, что наряду с наземными многопозиционными системами наблюдения, которые размещаются в первую очередь в районе аэропортов, совмещенные со службой управления воздушным движением, формируется воздушная многопозиционная система наблюдения, используя сами летательные аппараты, которые используются, как подвижные элементы многопозиционная системы наблюдения.
Заявленный способ поясняется схемой, на которой показано осуществление контроля и управления летательными аппаратами, реализующий заявленный способ.
Для осуществления полетов БАС необходимо зарегистрировать в базе данных с присвоением регистрационного номера и последующими изменениями, отражающими техническое состояние БАС в процессе всего жизненного цикла, как при техническом обслуживании и ремонте, так и в процессе полета. Эта информация используется для осуществления контроля за полетом БАС, с целью обеспечения безопасного полета.
Для выполнения конкретного полета, с использованием зарегистрированного БВС, подается заявка, которая анализируется на предмет возможности ее выполнения, корректируется при необходимости и выдается разрешение на выполнение согласованного полета в заданном воздушном пространстве.
Каждый зарегистрированный БАС должен иметь лицензионный информационный блок, который не допускает несанкционированного вскрытия и перенастройки, включающий следующую базовую комплектацию - блок навигации БАС, блок передачи данных БАС, блок приема данных БАС, блок формирования команд управления БАС, блок ретрансляции БАС (допускается упрощенная комплектация).
Региональный центр контроля за полетом БАС принимает информацию, характеризующую текущее техническое состояние и трафик полета БАС, происходит сравнение с согласованными параметрами полета, выявляет отклонения от санкционированного и по результатам анализа принимается решение. Причем такой контроль осуществляется над всеми БАС, которые находятся в зоне контроля данного регионального центра, используя либо линии передачи информации непосредственно с БАС, либо за счет ретрансляции через другие БАС.
Дополнительно, осуществляется вычисление по доплеровским измерениям текущих параметров трафика полета других БАС, которые ретранслируются по каналам связи наземным службам управления воздушным движением.
В случае перехода БАС из одного регионального центра в другой в соответствие с запланированным санкционированным трафиком полета, то дальнейший контроль переходит к этому центру.
В случае отсутствия прямой радиовидимости информация ретранслируется через другие БАС наземным службам управления воздушным движением.
Пакет информации для ретрансляции дополняется пакетами с информацией, поступившей для ретрансляции с других БАС и направляется наземным службам управления воздушным движением (ретрансляция может осуществляться через спутниковые каналы связи).
В случае отклонения от санкционированного трафика полета служба управления воздушным движением подает команды на возвращение к санкционированному трафику полета и автоматически эта информация поступает в службу пресечения несанкционированного полета беспилотного воздушного судна.
В случае возвращения БВС к санкционированному трафику полета продолжается штатный режим работы службы управления воздушным движением, а если принятые меры не дали положительного результата, то служба пресечения несанкционированного полета беспилотного воздушного судна принимает меры по пресечению такого полета, используя информацию о характеристиках БВС, времени и месте начала несанкционированного полета.
Поставленная цель достигается тем, что в известном способе самоорганизующегося многопозиционного наблюдения, контроля и управления над полетами пилотируемых и беспилотных авиационных систем в общем воздушном пространстве, который включает наземную структуру многопозиционной системы наблюдения, контроля и управления, пилотируемыми и беспилотными аппаратами, а каждый летательный аппарат оборудован бортовой автоматической системой управления, спутниковой навигационной системой, высокоточными синхронизированными часами, а также бортовым вычислителем и приемо-передающей радиостанцией, с помощью которой осуществляется цифровая радиосвязь с базовой радиостанцией, со стационарным или подвижным пунктами управления, которые оборудованы автоматизированным рабочим местом оператора, при этом, наряду с наземными многопозиционными системами наблюдения, которые размещаются в первую очередь в районе аэропортов, совмещенные со службой управления воздушным движением, формируется воздушная многопозиционная система наблюдения, используя сами летательные аппараты, которые используются, как подвижные маяки, которым присваиваются идентификационные номера, передаваемыми с командами управления движением беспилотного летательного аппарата и данные о координатах и параметрах его движения, а также блок приема информации с других летательных аппаратов, находящихся в ближайшем пространстве о трафиках их полета, причем, радиосигнал дополнительно обрабатывается, например, используя принцип Доплера, для уточнения реальных координат других летательных аппаратов, а в блоке обработки полученная информация о трафиках взаимного полета, а также аэронавигационные данные и пилотажно-навигационные характеристики, включая команды наземной службы контроля и управления за полетом летательных аппаратов, преобразуются в команды управления трафиком полета, обеспечивая безопасный совместный полет, исключающий столкновение, а также передаются идентификационные номера и данные о координатах и параметрах движения других летательных аппаратов, оборудованных приемопередающими радиостанциями и находящихся в пределах радиовидимости наземной многопозиционной системы наблюдения и службы управления воздушным движением, образуя единую самоорганизующуюся сеть многопозиционного наблюдения, контроля и управления над полетами пилотируемых и беспилотных летательных аппаратов в общем воздушном пространстве, включающую наземную структуру и сеть летательных аппаратов, причем в передаваемом сообщении с летательных аппаратов, указывается идентификационный номер наземной станции, которая осуществляет контроль и управление за его полетом, который свидетельствует о необходимости ретрансляции, полученного сообщения, по этому адресу, а сформированный трафик связи служит каналом управления и контроля за полетом летательных аппаратов, причем, когда трафик контроля и управления невозможно организовать, то летательный аппарат переходит в режим автономного полета, осуществляя прием сигналов оповещения от приближающихся летательных аппаратов, обеспечивая безопасность полета, а в случае выявления получения недостоверной информации о трафике полета с летательного аппарата, который отклоняется от санкционированного трафика полета, корректируют трафики полетов таких летательных аппаратов, передавая через систему ретрансляции сигналы управления, а в случае невозможности корректировки полета летательного аппарата, например, когда недостоверная информация с летательного аппарата передается умышленно, то информация о времени потери управления с таким летательным аппаратом и параметрах его движения, планируемом трафике полета, а также технические данные в режиме онлайн передаются в службу пресечения несанкционированного полета беспилотного летательного аппарата. Это позволит эффективным путем решить проблемы информативности средств наблюдения за воздушной обстановкой, а также применение эффективных способов управления БАС.

Claims (1)

  1. Способ многопозиционного наблюдения, контроля и управления полетами пилотируемых и беспилотных авиационных систем, заключающийся в том, что в наземную службу контроля и управления за полетом летательных аппаратов соответствующего регионального центра каждый летательный аппарат передает заявку на выполнение полета в заданном воздушном пространстве, где анализируется информация о трафиках взаимного полета аэронавигационные данные и пилотажно-навигационные характеристики каждого из летательных аппаратов, их идентификационные номера, непрерывно анализируются координаты и параметры движения летательных аппаратов в полете, получая информацию с летательных аппаратов, например используя АЗН-В, формируют наземно-воздушную сеть многопозиционного наблюдения, контроля и управления полетами пилотируемых и беспилотных летательных аппаратов в общем воздушном пространстве, вырабатывают команды управления трафиком полета, при потере связи с наземными службами летательный аппарат переходит в режим автономного полета, принимая попытки связи с другими летательными аппаратами для корректировки полета и ретрансляции данных его полета региональному центру, при этом в случае отклонения от санкционированного трафика полета подается команда на возвращение к санкционированному трафику и автоматически эта информация поступает в службу пресечения несанкционированного полета, которая принимает меры по пресечению полета в случае невозвращения летательного аппарата к санкционированному трафику.
RU2019108673A 2019-03-26 2019-03-26 Способ многопозиционного наблюдения, контроля и управления над полетами пилотируемых и беспилотных авиационных систем в общем воздушном пространстве RU2710983C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019108673A RU2710983C1 (ru) 2019-03-26 2019-03-26 Способ многопозиционного наблюдения, контроля и управления над полетами пилотируемых и беспилотных авиационных систем в общем воздушном пространстве

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019108673A RU2710983C1 (ru) 2019-03-26 2019-03-26 Способ многопозиционного наблюдения, контроля и управления над полетами пилотируемых и беспилотных авиационных систем в общем воздушном пространстве

Publications (1)

Publication Number Publication Date
RU2710983C1 true RU2710983C1 (ru) 2020-01-14

Family

ID=69171457

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019108673A RU2710983C1 (ru) 2019-03-26 2019-03-26 Способ многопозиционного наблюдения, контроля и управления над полетами пилотируемых и беспилотных авиационных систем в общем воздушном пространстве

Country Status (1)

Country Link
RU (1) RU2710983C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566066A (zh) * 2022-03-01 2022-05-31 山东欧龙电子科技有限公司 一种用于载人飞行器空管指挥的飞行数据处理平台
RU2820676C1 (ru) * 2023-10-02 2024-06-07 Публичное акционерное общество "Научно-производственное объединение "Алмаз" имени академика А.А. Расплетина (ПАО "НПО "Алмаз") Сеть беспроводной связи для аэродромной многопозиционной системы наблюдения

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU82971U1 (ru) * 2008-10-29 2009-05-10 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" Система радиосвязи с подвижными объектами
US9052375B2 (en) * 2009-09-10 2015-06-09 The Boeing Company Method for validating aircraft traffic control data
US20160275801A1 (en) * 2013-12-19 2016-09-22 USA as Represented by the Administrator of the National Aeronautics & Space Administration (NASA) Unmanned Aerial Systems Traffic Management
RU2609625C2 (ru) * 2015-05-14 2017-02-02 Александр Александрович Алдюхов Способ организации воздушного движения на основе бортового глонасс/gps-оборудования и gsm/gprs сетей в воздушном пространстве классов c, g
RU2674536C1 (ru) * 2018-03-22 2018-12-11 Александр Иванович Ильин Способ автоматизированного контроля и управления полетами беспилотных авиационных систем в общем воздушном пространстве

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU82971U1 (ru) * 2008-10-29 2009-05-10 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" Система радиосвязи с подвижными объектами
US9052375B2 (en) * 2009-09-10 2015-06-09 The Boeing Company Method for validating aircraft traffic control data
US20160275801A1 (en) * 2013-12-19 2016-09-22 USA as Represented by the Administrator of the National Aeronautics & Space Administration (NASA) Unmanned Aerial Systems Traffic Management
RU2609625C2 (ru) * 2015-05-14 2017-02-02 Александр Александрович Алдюхов Способ организации воздушного движения на основе бортового глонасс/gps-оборудования и gsm/gprs сетей в воздушном пространстве классов c, g
RU2674536C1 (ru) * 2018-03-22 2018-12-11 Александр Иванович Ильин Способ автоматизированного контроля и управления полетами беспилотных авиационных систем в общем воздушном пространстве

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566066A (zh) * 2022-03-01 2022-05-31 山东欧龙电子科技有限公司 一种用于载人飞行器空管指挥的飞行数据处理平台
RU2820676C1 (ru) * 2023-10-02 2024-06-07 Публичное акционерное общество "Научно-производственное объединение "Алмаз" имени академика А.А. Расплетина (ПАО "НПО "Алмаз") Сеть беспроводной связи для аэродромной многопозиционной системы наблюдения

Similar Documents

Publication Publication Date Title
RU2692306C2 (ru) Система сопровождения для беспилотных авиационных транспортных средств
US20210358311A1 (en) Automated system of air traffic control (atc) for at least one unmanned aerial vehicle (uav)
US7495600B2 (en) Airfield surface target detection and tracking using distributed multilateration sensors and W-band radar sensors
US9310477B1 (en) Systems and methods for monitoring airborne objects
US9697736B2 (en) Tracking of suspect aircraft
US7212917B2 (en) Tracking, relay, and control information flow analysis process for information-based systems
US20180181125A1 (en) On-ground vehicle collision avoidance utilizing unmanned aerial vehicles
US7755532B2 (en) Methods and apparatus for assignment and maintenance of unique aircraft addresses for TIS-B services
Ali Traffic management for drones flying in the city
EP3323209B1 (en) Low earth orbit satellite for air traffic control
US11513233B2 (en) Drone escort system
US20040044463A1 (en) Surface surveillance system for an airport and method
JP7086183B2 (ja) 空港地上車両位置データを放送型自動従属監視(ads‐b)ネットワークインフラストラクチャへ追跡、処理および統合するための方法およびシステム
CN111819610A (zh) 用于无人驾驶飞行器和载人飞行器的空中态势信息和交通管理***
RU2662611C1 (ru) Способ автоматизированного управления эксплуатацией беспилотного воздушного судна в общем воздушном пространстве для обеспечения безопасного полета с выявлением случаев несанкционированного изменения трафика полета
US20080158041A1 (en) Airport Surface Detector and Control System
RU2710983C1 (ru) Способ многопозиционного наблюдения, контроля и управления над полетами пилотируемых и беспилотных авиационных систем в общем воздушном пространстве
Radišić et al. Challenges and solutions for urban UAV operations
US20180026707A1 (en) System and method for re-broadcasting ads-b data
RU2683703C1 (ru) Логическая архитектура комплексной автоматизированной системы контроля и управления беспилотными авиационными системами, обеспечивающая их безопасную интеграцию в общее воздушное пространство
Siergiejczyk et al. Some issues of data quality analysis of automatic surveillance at the airport
RU2674536C1 (ru) Способ автоматизированного контроля и управления полетами беспилотных авиационных систем в общем воздушном пространстве
RU2609625C2 (ru) Способ организации воздушного движения на основе бортового глонасс/gps-оборудования и gsm/gprs сетей в воздушном пространстве классов c, g
CN208256104U (zh) 一种基于ads-b的通航机场场面监视***
US20170249850A1 (en) Air traffic control