RU2710492C1 - Производственный сталелитейный комплекс и способ эксплуатации производственного комплекса - Google Patents

Производственный сталелитейный комплекс и способ эксплуатации производственного комплекса Download PDF

Info

Publication number
RU2710492C1
RU2710492C1 RU2016128061A RU2016128061A RU2710492C1 RU 2710492 C1 RU2710492 C1 RU 2710492C1 RU 2016128061 A RU2016128061 A RU 2016128061A RU 2016128061 A RU2016128061 A RU 2016128061A RU 2710492 C1 RU2710492 C1 RU 2710492C1
Authority
RU
Russia
Prior art keywords
gas
production
power plant
plant
chemical
Prior art date
Application number
RU2016128061A
Other languages
English (en)
Inventor
Райнхольд АХАЦ
Йенс ВАГНЕР
Маркус ОЛЕС
Петер ШМЁЛЕ
Ральф Кляйншмидт
Штефан Германн
Бербель Кольбе
Маттиас Патрик КРЮГЕР
Original Assignee
Тиссенкрупп Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52134104&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2710492(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Тиссенкрупп Аг filed Critical Тиссенкрупп Аг
Application granted granted Critical
Publication of RU2710492C1 publication Critical patent/RU2710492C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/002Evacuating and treating of exhaust gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B27/00Arrangements for withdrawal of the distillation gases
    • C10B27/06Conduit details, e.g. valves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • C12P7/28Acetone-containing products
    • C12P7/30Acetone-containing products produced from substrate containing inorganic compounds other than water
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/285Plants therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/002Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid using an auxiliary fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/28Increasing the gas reduction potential of recycled exhaust gases by separation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/62Energy conversion other than by heat exchange, e.g. by use of exhaust gas in energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Microbiology (AREA)
  • Mechanical Engineering (AREA)
  • Biotechnology (AREA)
  • Electrochemistry (AREA)
  • Botany (AREA)
  • Analytical Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Industrial Gases (AREA)
  • Manufacture Of Iron (AREA)

Abstract

Изобретение относится к сталелитейному производственному комплексу, включающему доменную печь для производства чугуна, конвертер для производства нерафинированной стали, газоотводную систему для газов, возникающих при производстве чугуна и/или нерафинированной стали, и энергетическую установку для производства электроэнергии. Энергетическая установка конструктивно выполнена в виде газотурбинной энергетической установки или газотурбинной и паротурбинной энергетической установки и работает на газе, который содержит по меньшей мере часть колошникового газа, который возникает в доменной печи при производстве чугуна, и/или часть конвертерного газа, который возникает в конвертере при производстве стали. Производственный комплекс дополнительно включает химическую установку для производства химических продуктов и биотехнологическую установку для биохимических процессов, которые расположены параллельно относительно подачи газа, а также коксовую батарею для производства кокса. Газоотводящая система включает технологически управляемое газораспределительное устройство для разделения потоков газа, которые подаются в энергетическую установку, химическую установку и биотехнологическую установку. Изобретение позволяет повысить экономическую эффективность всего процесса и создать производственный комплекс, позволяющий сократить расходы на производство стали. 4 н. и 17 з.п. ф-лы, 2 ил.

Description

Изобретение относится к производственному сталелитейному комплексу и способу эксплуатации производственного комплекса.
Производственный сталелитейный комплекс включает доменную печь для производства чугуна, конвертер для производства нерафинированной стали, газоотводную систему для газов, возникающих при производстве чугуна и/или нерафинированной стали, и также энергетическую установку для производства электроэнергии. Энергетическая установка конструктивно выполнена как газо-турбинная энергетическая установка или газо-турбинная и паротурбинная энергетическая установка и работает на газе, который содержит по меньшей мере часть колошникового газа, который возникает в доменной печи при производстве чугуна и/или часть конвертерного газа, который возникает в конвертер для производства стали.
Чугун получают в доменной печи из железной руды, добавок и также кокса и других восстановителей, таких как уголь, нефть, газ, биомасса, переработанные отходы пластмасс или другие вещества, содержащие углерод и/или водород. СО, СО2, водород и пары воды неизбежно возникают в качестве продуктов реакций восстановления. Помимо вышеуказанных составляющих, колошниковый газ, получаемый в доменном процессе, часто имеет высокое содержание азота. Количество и состав колошникового газа зависят от исходного сырья и режима работы и подвержены колебаниям. Однако обычно колошниковый газ содержит 35-60% об. N2, 20-30% об. СО, 20-30% об. CO2 и 2-15% об. Н2. Около 30-40% колошникового газа, получаемого при производстве чугуна, обычно используется для нагрева горячего воздуха для доменного процесса в воздухонагревателях; оставшееся количество колошникового газа может быть использовано в других установках для нагрева или для выработки электроэнергии.
В конвертере для производства стали, который расположен после доменного процесса по технологической схеме, чугун превращается в нерафинированную сталь. Продувкой кислорода в жидкий чугун удаляются вредные примеси, такие как углерод, кремний, сера и фосфор. Так как процессы окисления вызывают интенсивное выделение тепла, часто добавляют лом в количестве до 25% по отношению к передельному чугуну в качестве охлаждающего вещества. Кроме того, добавляют известь для образования шлака и легирующей добавки. Конвертерный газ, который имеет высокое содержание СО, а также содержит азот, водород и CO2 удаляют из конвертера для производства стали. Типичный состав конвертерного газа включает 50-70% об. СО, 10-20% об. N2, около 15% об. СО2 и около 2% об. Н2. Конвертерный газ либо сжигают или, в случае современных металлургических заводов, улавливают и передают для использования для производства энергии.
Производственный комплекс необязательно может работать вместе с коксовой батарей. В этом случае производственный комплекс, описанный вначале, дополнительно включает коксовую батарею, в которой уголь превращается в кокс с помощью процесса коксования. При коксовании угля в кокс образуется коксовый газ, с высоким содержанием водорода и значительных количеств СН4. Обычно коксовый газ содержит 55-70% об. Н2, 20-30% об. СН4, 5-10% об. N2 и 5-10% об. СО. Кроме того, коксовый газ включает фракции СО2, NH3 и H2S. На практике коксовый газ используется в различных областях для нагрева и в процессе выработки энергии для производства электроэнергии. Кроме того, известно использование коксового газа вместе с колошниковым газом или с конвертерным газом для производства синтез-газов. В соответствии со способом, известным из WO 2010/136313 А1, коксовый газ разделяют на поток газа, богатый по водороду, и остаточный поток газа, содержащий СН4 и СО, остаточный поток газа подают в доменный процесс и поток газа, богатый по водороду, смешивают с колошниковым газом и далее перерабатывают в синтез-газ. Известно из ЕР 0200880 А2 смешивание конвертерного газа и коксового газа и их использование в качестве синтез-газа для синтеза метанола.
В объединенном металлургическом заводе, который работает вместе с коксовой батарей, около 40-50% исходных газов, которые формируются в виде колошникового газа, конвертерного газа и коксового газа, используются для химических технологических процессов. Около 50-60% образующихся газов направляют в процесс выработки энергии и используют для выработки электроэнергии. Электроэнергия, произведенная в процессе выработки энергии, покрывает потребность в электроэнергии для производства чугуна и нерафинированной стали. В идеальном случае энергетический баланс замкнут, так что, кроме железной руды и углерода в виде угля и кокса в качестве источников энергии, никаких дополнительных затрат энергии не требуется и кроме нерафинированной стали и шлака никакие продукты не выходят из производственного комплекса.
На этом фоне, в основу настоящего изобретения была поставлена задача дальнейшего повышения экономической эффективности всего процесса и создания производственного комплекса, с помощью которого можно сократить расходы на производство стали.
Исходя из производственного комплекса по производству стали, включающего доменную печь для производства чугуна, конвертер для производства нерафинированной стали, газо-отводную систему для газов, возникающих при производстве чугуна и/или нерафинированной стали, и энергетическую установку для производства электроэнергии, в соответствии с изобретением химическая и биотехнологическая установки соединены с газо-отводящей системой, энергетическая, химическая и биотехнологическая установки расположены параллельно относительно подачи газа. В соответствии с изобретением, газ-отводящая система включает функционально контролируемое газораспределительное устройство для разделения потоков газа, которые подаются в энергетическую установку, химическую и биотехнологическую установки. Преимущественные модификации производственного комплекса согласно изобретению, описаны в пп. 2-4.
Задачей изобретения также является способ по п. 5 функционирования производственного комплекса, который включает доменную печь для производства чугуна, конвертер для производства стали, химическую установку, биотехнологическую установку и энергетическую установку. В соответствии со способом согласно изобретению по меньшей мере часть количества колошникового газа, который возникает при производстве чугуна в доменной печи и/или часть количества конвертерного газа, который возникает при производстве нерафинированной стали, используют в качестве газа пригодного для работы энергетической установки, химической и биотехнологической установок. Первая часть потока полезного газа подают в химическую установку и используют после операции обработки газа в качестве синтез-газа для производства химических продуктов. Вторую часть потока полезного газа используют в энергетическую установку для производства электроэнергии. Третью часть потока полезного газа подают в биотехнологическую установку и используют в биохимических процессах. Третья часть потока может быть использована для биохимических процессов с проведением или без проведения обработки газа. В случае изменения газового потока, подаваемого в энергетическую установку, вторая часть потока и третья часть потока полезного газа меняются поочередно, так что химическая установка может работать с частичным потоком полезного газа, который меньше подвержен технологическим колебаниям, чем часть потока полезного газа, которую используют в биотехнологической установке. Третья часть потока полезного газа соответственно регулируется так, что первая часть потока полезного газа, используемого в химической установке, подается постоянно с диапазоном колебаний ±20%.
В химической установке химические продукты получаются из синтез-газов, которые соответственно содержат компоненты реагирующих веществ. Химические продукты могут быть, например, аммиаком или метанолом или же другими углеводородными соединениями.
Под биотехнологической установкой понимается установка ферментации синтез-газа, содержащего СО и Н2 в качестве основных компонентов. Углеводородные соединения, например, этанол, ацетон и т.п., также могут быть получены из этого синтез-газа. Однако доля водорода в этом случае в основном образуется из воды, которую используют в качестве среды в процессе ферментации. Таким образом, газ, который имеет высокое содержание СО, требуется для получения синтез-газа. Предпочтительно используют конвертерный газ или смешанный газ, который содержит конвертерный газ и колошниковый газ.
Часть потока полезного газа, который используют в энергетической установке для производства электроэнергии, подвержена значительным технологическим колебаниям. Электроэнергия, вырабатываемая в энергетической установке, охватывает часть электроэнергии необходимой для производственного комплекса. Дополнительно получают электричество из внешних источников, предпочтительно получают полностью или по меньшей мере частично из возобновляемых источников энергии и производимого, например, ветряными турбинами генераторных установок, солнечными электростанциями, геотермальными энергетическими установками, гидроэлектростанциями, приливными энергетическими установками и т.п. Для достижения экономически эффективной насколько возможно работы производственного комплекса, работу энергетической установки ограничивают, если имеются внешние источники электричества в достаточном количестве и по выгодным ценам. Если электричество из возобновляемых источников не доступно в достаточной степени или электроэнергия из внешних источников имеет более высокую цену, чем электричество, которое может быть произведено энергетической установкой, мощность энергетической установки увеличивается, и большая часть полезного газа используется в процессе генерации энергии для производства электроэнергии. Поэтому доля полезного газа, который может быть использован в качестве синтез-газа для производства химических продуктов, в результате может быть подвержена существенным технологическим колебаниям, что обусловлено работой энергетической установки.
Динамический контроль химической установки при изменении нагрузки является технически сложным. Проблема, состоящая в том, что химическая установка, работающая вместе с энергетической установкой, не может реагировать достаточно гибко на изменение нагрузки энергетической установки, решается в соответствии с изобретением первоначально только мощность биотехнологической установки адаптируют при изменении нагрузки энергетической установки и поочередно изменяется часть потока полезного газа, который предназначен для биотехнологической установки и часть потока полезного газа, который используется в энергетическом установке, так что химическая установка может работать с частью потока полезного газа, который подвержен значительно меньшим технологическим колебаниям, чем часть потока полезного газа, который используется в биотехнологической установке. Идея в соответствии с изобретением, таким образом, использует тот факт, что биотехнологическая установка является гораздо более гибкой к изменению нагрузки по сравнению с химической установкой.
В соответствии с предпочтительным осуществлением изобретения производственный комплекс дополнительно включает в себя коксовую батарею. Если производство чугуна и производство нерафинированной стали работают вместе с коксовой батарей, часть колошникового газа, который возникает при производстве чугуна и/или часть конвертерного газа, который возникает в конвертере для производства стали, могут быть смешаны с частью коксового газа, который возникает в коксовой батарее, и смешанный газ может быть использован в качестве полезного газа. Смесь коксового газа и колошникового газа или смешанного газа, содержащего коксовый газ, конвертерный газ и колошниковый газ, может быть использована для получения синтез-газа, например, для синтеза аммиака. Смешанный газ, содержащий коксовый газ и конвертерный газ, или смешанный газ, содержащий коксовый газ, конвертерный газ и колошниковый газ, пригоден для получения углеводородных соединений.
Конвертерный газ, колошниковый газ или смешанный газ, содержащий эти два компонента газа, предпочтительно используют для работы биотехнологической установки. Коксовый газ не подходит или подходит в меньшей степени для биотехнической установки. В этом плане может быть целесообразным использовать в химической и в биотехнологической установке потоки полезного газа, которые различаются по своему составу.
Неочищенные газы - коксовый газ, конвертерный газ и/или колошниковый газ - могут быть обработаны по отдельности или совместно в виде смешанного газа и затем использованы в качестве синтез-газа в химической и биотехнологической установке. Обработка коксового газа, в частности, включает очистку газа для отделения вредных компонентов, в частности, смолы, серы и соединений серы, ароматических углеводородов (БТК) и высококипящих углеводородов. Операция обработки газа также необходима для получения синтез-газа. В ходе обработки газа доля компонентов СО, CO2 и Н2 в неочищенном газе изменяется. Обработка газа включает, например, адсорбцию при переменном давлении для отделения и обогащения Н2 и/или реакцию конверсии водяного газа для конверсии СО в водород и/или паровой риформинг для конверсии фракции CH4 в СО и водород в коксовом газе.
Первая часть потока полезного газа, используемого в химической установке, может быть обогащена водородом, который получается в дополнительной установке. Получение водорода предпочтительно выполняют электролизом воды, причем электролиз воды, может выполняться с использованием электроэнергии из возобновляемых источников. Кислород также образуется при электролизе воды и может быть использован в доменной печи для производства чугуна и/или в конвертере для производства нерафинированной стали.
Изобретение также включает применение химической установки вместе с биотехнологической установкой для объединения с металлургическим заводом по п. 14.
Изобретение ниже поясняется на основе фигур, которые представляют пример осуществления. Схематично,
Фиг. 1 представляет значительно упрощенную блок-схему производственного комплекса для производства стали, включающего доменную печь для производства чугуна и конвертер для производства нерафинированной стали, энергетическую установку, химическую установку и биотехнологическую установку,
Фиг. 2 представляет значительно упрощенную блок-схему производственного комплекса, который включает в дополнение к доменной печи для производства чугуна, конвертеру для производства нерафинированной стали, энергетической установке, химической установке и биотехнологической установке также коксовую батарею.
Производственный комплекс по производству стали, который представлен на фиг. 1, содержит доменную печь 1 для производства чугуна, конвертер 2 для производства нерафинированной стали и энергетическую установку 3 для выработки электроэнергии.
В доменной печи 1 получают чугун 6 по существу из железной руды 4 и восстановителей 5, в частности, кокса и угля. Реакции восстановления вызывают образование в доменной печи колошникового газа 7, который содержит азот, СО и CO2 в качестве основных компонентов и небольшую долю Н2. В конвертере для производства стали 2, который расположен после доменной печи в технологической схеме, чугун 6 превращают в нерафинированную сталь 8. Продувкой кислорода в жидком чугуне удаляются вредные примеси, в частности, углерод, кремний и фосфор. Для охлаждения может быть добавлен лом в количестве до 25%, относительно количества чугуна. Кроме того, добавляют известь для образования шлака и легирующей добавки. В верхней части конвертера удаляется конвертерный газ 9, который содержит очень высокую долю СО.
Энергетическая установка 3 конструктивно выполнена как газо-турбинная энергетическая установка или газо-турбинная и паротурбинная энергетическая установка и работает на газе, который включает в себя по меньшей мере часть колошникового газа 7, который возникает при производстве чугуна в доменной печи 1 и/или часть конвертерного газа, который возникает в конвертер для производства стали 2. Газо-отводящая система предусмотрена для транспорта газов.
Согласно общему балансу, представленному на фиг. 1, углерод, подают в производственный комплекс в качестве восстановителя 5 в виде угля и кокса, а также железную руду 4. Получаемыми продуктами являются нерафинированная сталь 8 и неочищенные газы 7 и 9, которые различаются по количеству, составу, теплотворной способности и чистоте, и снова используются на различных участках производственного комплекса. В общем 40-50%, обычно около 45% необработанных газов 7 и 9 снова возвращаются в металлургический процесс производства чугуна или нерафинированной стали. 50-60%, обычно около 55%, неочищенных газов 7 и 9 могут быть использованы для работы энергетической установки 3.
Согласно схеме на фиг. 1, производственный комплекс дополнительно включает химическую установку 12 и биотехнологическую установку 3, энергетическую установку 3, химическую установку 12 и биотехнологическую установку 13, размещенные параллельно относительно подачи газа. Газоотводящая система имеет технологически контролируемое газораспределительного устройство 14 для разделения потоков газа, которые подаются на энергетическую установку 3, химическую установку 12 и биотехнологическую установку 13. Перед газораспределительным устройством 14 по потоку может быть расположено смешивающее устройство 21, для получения смешанного газа, состоящего из колошникового газа 7 и конвертерного газа 9.
Колошниковый газ 7 и конвертерный газ 9, могут быть объединены друг с другом любым необходимым образом. Объединение потоков газов 7, 9, зависит от искомого синтез-газа или продукта, который получается в химической установке 12. Кроме того, в объем притязаний настоящего изобретения входит подача в биотехнологическую установку 13 потока газа с составом, который отличается от состава газа, используемого в химической установке 12.
В случае производственного комплекса, представленного на фиг. 1 по меньшей мере часть колошникового газа 7, который возникает при производстве чугуна в доменной печи 3 и/или часть конвертерного газа 9, который возникает при производстве нерафинированной стали, используют для работы энергетической установки 3, химической установки 12 и биотехнологической установки 13. Первую часть потока 15.1 полезного газа подают в химическую установку 12 и используют после операции очистки газа в качестве синтез-газа для производства химических продуктов. Вторую часть потока 15.2 полезного газа используют в энергетической установке 3 для выработки электроэнергии. Третью часть потока 15.3 полезного газа подают в биотехнологическую установку 13 и используют в биохимических процессах.
Электричество 16, полученное из внешних источников, и электричество энергетической установки 17, которое производится с помощью энергетической установки 3 производственного комплекса, используют для покрытия потребности в электроэнергии производственного комплекса. Электричество 16, полученное из внешних источников, предпочтительно получают полностью или по меньшей мере частично из возобновляемых источников энергии и оно вырабатывается, например, ветряными турбинами генераторных установок, солнечными электростанциями, гидроэлектростанциями и т.п. Для достижения насколько это возможно экономически эффективного функционирования производственного комплекса электроэнергию покупают в качестве внешнего электричества 16 в периоды низких цен на электроэнергию и снижают процесс генерации электроэнергии. В периоды высоких цен на электроэнергию, увеличивается часть потока 15.2 полезного газа, который используется в энергетической установке 3 для производства электроэнергии.
В случае изменения потока газа, подаваемого в. энергетическую установку 3, поочередно меняются вторая часть потока 15.2 и третья часть потока 15.3 полезного газа, так что химическая установка 12 может работать с частью потока 15.1 полезного газа, который подвержен меньшим технологическим колебаниям, чем часть потока полезного газа 15.3, который используется в биотехнологической установке 13. Третья часть потока полезного газа 15,3 соответственно контролируется так, что первая часть потока полезного газа 15.1, используемого в химической установке 12, постоянно подается с диапазоном колебаний±20%.
В иллюстративном осуществлении фиг. 2, производственный комплекс дополнительно включает коксовую батарею 18. При коксовании угля в кокс возникает коксовый газ 20, содержащий большую долю водорода и CH4. Часть коксового газа 20 может быть использована для нагрева воздухонагревателей в доменной печи 1. Газоотводная система включает распределение коксового газа 20. По технологической схеме перед газораспределительным устройством 14 в направлении потока может быть размещено смесительное устройство 21 для получения смешанного газа, состоящего из колошникового газа 7, конвертерного газа 9 и коксового газа 20.
Колошниковый газ 7, конвертерный газ 9 и коксовый газ 20 могут быть объединены друг с другом любым необходимым образом. Объединение газовых потоков 7, 9, 20, зависит от искомого синтез-газа или продукта, который производится в химической установке 12. Также в объеме притязаний настоящего изобретения в биотехнологическую установку 13 подают поток газа, состав которого отличается от состава газа, используемого в химической установке 12.
Также в случае концепции схемы, представленной на фиг. 2, первую часть потока 15.1 полезного газа подают в химическую установку 12 и используют после операции очистки газа в качестве синтез-газа для получения химических продуктов. Вторую часть потока 15.2 полезного газа используют в энергетической установке 3 для производства электроэнергии. Третью часть потока 15.3 полезного газа подают в биотехнологическую установку 13 и используют в биохимических процессах. В случае изменения потока газа, подаваемого в энергетическую установку 3, вторую часть потока 15.2 и третью часть потока 15.3 полезного газа поочередно меняют, так что химическая установка 12 может работать с частью потока 15.1 полезного газа, который подвержен в меньшей степени технологическим колебаниям, чем часть потока полезного газа 15.3, который используют в биотехнологической установке.
Первая часть потока 15.1 полезного газа, используемого в химической установке 12, также может быть обогащена водородом 22, который получают в дополнительной необязательно установленной установке для получения водорода 23.

Claims (37)

1. Комплекс для производства стали, содержащий
доменную печь (1) для производства чугуна,
конвертер (2) для производства нерафинированной стали,
газоотводящую систему для газов, образующихся при производстве чугуна и/или нерафинированной стали, и
энергетическую установку (3) для производства электроэнергии,
при этом энергетическая установка (3) конструктивно выполнена в виде газотурбинной энергетической установки или газотурбинной и паротурбинной энергетической установки и работает на газе, включающем в себя по меньшей мере часть колошникового газа (7), возникающего при производстве чугуна в доменной печи, и/или часть конвертерного газа (9), возникающего в конвертере для производства стали (2), отличающийся тем, что он содержит химическую установку (12) для производства химических продуктов и биотехнологическую установку (13) для биохимических процессов, связанные с газоотводящей системой, при этом энергетическая установка (3), химическая установка (12) и биотехнологическая установка (13) соединены параллельно относительно подачи газа, причем газоотводящая система содержит функционально контролируемое газораспределительное устройство (14) для разделения потоков газа, подаваемых в энергетическую установку (3), химическую установку (12) и биотехнологическую установку (13).
2. Комплекс по п. 1, отличающийся тем, что газоотводящая система имеет в направлении по потоку перед газораспределительным устройством (14) смесительное устройство (21) для получения смешанного газа, состоящего из колошникового газа (7) и/или конвертерного газа (9).
3. Комплекс по п. 1 или 2, отличающийся тем, что он дополнительно имеет установку (23) для получения водорода, соединенную с газоотводной системой посредством линии передачи водорода (22).
4. Комплекс для производства стали, содержащий
доменную печь (1) для производства чугуна,
конвертер (2) для производства нерафинированной стали,
коксовую батарею (18) для производства кокса,
газоотводящую систему для газов, образующихся при производстве чугуна, и/или нерафинированной стали, и/или кокса, и
энергетическую установку (3) для производства электроэнергии,
при этом энергетическая установка (3) конструктивно выполнена в виде газотурбинной энергетической установки или газотурбинной и паротурбинной энергетической установки и работает на газе, включающем в себя по меньшей мере часть колошникового газа (7), возникающего при производстве чугуна в доменной печи, и/или часть конвертерного газа (9), возникающего в конвертере для производства стали (2), и/или часть коксового газа, возникающего в процессе коксования в коксовой батарее (18), отличающийся тем, что он содержит химическую установку (12) для производства химических продуктов и биотехнологическую установку (13) для биохимических процессов, связанные с газоотводящей системой, при этом энергетическая установка (3), химическая установка (12) и биотехнологическая установка (13) соединены параллельно относительно подачи газа, причем газоотводящая система содержит функционально контролируемое газораспределительное устройство (14) для разделения потоков газа, подаваемых в энергетическую установку (3), химическую установку (12) и биотехнологическую установку (13).
5. Комплекс по п. 4, отличающийся тем, что газоотводящая система имеет в направлении по потоку перед газораспределительным устройством (14) смесительное устройство (21) для получения смешанного газа, состоящего из колошникового газа (7), и/или конвертерного газа (9), и/или коксового газа (20).
6. Комплекс по п.4 или 5, характеризующийся тем, что он дополнительно имеет установку (23) для получения водорода, соединенную с газоотводной системой посредством линии передачи водорода (22).
7. Способ производства стали на комплексе для производства стали, имеющем по меньшей мере одну доменную печь (1) для производства чугуна, конвертер для производства стали (2), энергетическую установку (3), химическую установку (12) для производства химических продуктов и биотехнологическую установку (13) для биохимических процессов, включающий в себя следующие далее этапы:
а) по меньшей мере часть колошникового газа (7), возникающего при производстве чугуна в доменной печи (1), и/или часть конвертерного газа (9), возникающего при производстве нерафинированной стали, используют в качестве полезного газа для работы энергетической установки (3), химической установки (12) и биотехнологической установки (13),
б) первую часть потока (15.1) полезного газа подают в химическую установку (12) и используют после операции кондиционирования газа в качестве синтез-газа для производства химических продуктов,
в) вторую часть потока (15.2) полезного газа используют в энергетической установке (3) для производства электроэнергии,
г) третью часть потока (15,3) полезного газа подают в биотехнологическую установку (13) и используют для биохимических процессов,
д) в случае изменения потока газа, подаваемого в энергетическую установку (3), вторую часть потока (15,2) и третью часть потока (15.3) полезного газа попеременно меняют так, что химическая установка (12) может работать с частью потока (15.1) полезного газа, который подвержен в меньшей степени технологическим колебаниям, чем часть потока полезного газа (15.3), который используют в биотехнологической установке (13).
8. Способ по п. 7, отличающийся тем, что третью часть потока полезного газа регулируют так, что первая часть потока полезного газа (15.1), используемого в химической установке (12), подаётся постоянно с диапазоном колебания ±20%.
9. Способ по п.7 или 8, отличающийся тем, что указанный комплекс дополнительно содержит коксовую батарею (18), при этом по меньшей мере часть коксового газа (20), возникающего в коксовой батарее (18), смешивают с указанным полезным газом, используемым для работы энергетической установки (3), химической установки (12) и биотехнологической установки (13).
10. Способ по п.7, отличающийся тем, что указанный комплекс дополнительно содержит коксовую батарею (18), при этом первая часть потока (15.1) полезного газа образована колошниковым газом (7) и конвертерным газом (9), причем к получаемому синтез-газу или к очищенной первой части потока (15.1) полезного газа добавляют кондиционированный коксовый газ (20), получаемый в коксовой батарее (18).
11. Способ по п.7, отличающийся тем, что указанный комплекс дополнительно содержит коксовую батарею (18), при этом первая часть потока (15.1) полезного газа образована только колошниковым газом (7), причем к получаемому синтез-газу или к очищенной первой части потока (15.1) полезного газа добавляют кондиционированный коксовый газ (20), получаемый в коксовой батарее (18).
12. Способ по п.7, отличающийся тем, что указанный комплекс дополнительно содержит коксовую батарею (18), при этом первая часть потока (15.1) полезного газа образована только конвертерным газом (9), причем к получаемому синтез-газу или к очищенной первой части потока (15.1) полезного газа добавляют кондиционированный коксовый газ (20), получаемый в коксовой батарее (18).
13. Способ по любому из пп. 7, 8, 10-12, отличающийся тем, что потребность в электроэнергии покрывают полученной из внешних источников электроэнергии (16) и с помощью энергетической установки для производства электроэнергии (17), производимой энергетической установкой (3) указанного комплекса, при этом мощность энергетической установки (3) изменяют в зависимости от полученной от внешних источников электроэнергии (16) и соответственно контролируют второй поток полезного газа (15.2), подаваемого в энергетическую установку (3).
14. Способ по п.9, отличающийся тем, что потребность в электроэнергии покрывают полученной из внешних источников электроэнергии (16) и с помощью энергетической установки для производства электроэнергии (17), производимой энергетической установкой (3) указанного комплекса, при этом мощность энергетической установки (3) изменяют в зависимости от полученной от внешних источников электроэнергии (16) и соответственно контролируют второй поток полезного газа (15.2), подаваемого в энергетическую установку (3).
15. Способ по п.13, отличающийся тем, что получаемую от внешних источников электроэнергию (16) берут полностью или по меньшей мере частично из возобновляемых источников энергии.
16. Способ по п.14, отличающийся тем, что получаемую от внешних источников электроэнергию (16) берут полностью или по меньшей мере частично из возобновляемых источников энергии.
17. Способ по любому из пп. 7, 8, 10-12, 14-16, отличающийся тем, что первая часть потока (15.1) полезного газа, используемого в химической установке (12), обогащена водородом.
18. Способ по п.9, отличающийся тем, что первая часть потока (15.1) полезного газа, используемого в химической установке (12), обогащена водородом.
19. Способ по п.13, отличающийся тем, что первая часть потока (15.1) полезного газа, используемого в химической установке (12), обогащена водородом.
20. Применение комплекса для производства стали по п. 1 или 4 для получения газа, который используют в качестве полезного газа в энергетической установке, и/или химической установке, и/или биотехнологической установке комплекса.
21. Применение по п.20, в котором по меньшей мере часть потоков (15.3, 15.2) полезного газа, поступающих в биотехнологическую установку (13) и энергетическую установку (3), можно контролировать раздельно.
RU2016128061A 2013-12-12 2014-12-11 Производственный сталелитейный комплекс и способ эксплуатации производственного комплекса RU2710492C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013113958.2 2013-12-12
DE102013113958.2A DE102013113958A1 (de) 2013-12-12 2013-12-12 Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
PCT/EP2014/003316 WO2015086150A1 (de) 2013-12-12 2014-12-11 Anlagenverbund zur stahlerzeugung und verfahren zum betreiben des anlagenverbundes

Publications (1)

Publication Number Publication Date
RU2710492C1 true RU2710492C1 (ru) 2019-12-26

Family

ID=52134104

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016128061A RU2710492C1 (ru) 2013-12-12 2014-12-11 Производственный сталелитейный комплекс и способ эксплуатации производственного комплекса

Country Status (15)

Country Link
US (1) US10697031B2 (ru)
EP (1) EP3080306B1 (ru)
KR (1) KR102226641B1 (ru)
CN (2) CN105980582A (ru)
AU (2) AU2014361205A1 (ru)
BR (1) BR112016012581B1 (ru)
CA (1) CA2930451C (ru)
DE (1) DE102013113958A1 (ru)
ES (1) ES2706765T3 (ru)
MX (1) MX2016006970A (ru)
PL (1) PL3080306T3 (ru)
RU (1) RU2710492C1 (ru)
TW (1) TWI641691B (ru)
UA (1) UA119340C2 (ru)
WO (1) WO2015086150A1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013113913A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113958A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113933A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Verfahren zur Erzeugung von Synthesegas im Verbund mit einem Hüttenwerk
DE102013113921A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113950A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
HUE057873T2 (hu) 2017-07-03 2022-06-28 Air Liquide Eljárás vas- vagy acélmû mûködtetésére
DE102018209042A1 (de) * 2018-06-07 2019-12-12 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung sowie ein Verfahren zum Betreiben des Anlagenverbundes.
DE102018212015A1 (de) * 2018-07-19 2020-01-23 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung sowie ein Verfahren zum Betreiben des Anlagenverbundes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2125613C1 (ru) * 1995-10-10 1999-01-27 Фоест-Альпине Индустрианлагенбау ГмбХ Способ получения жидкого чугуна или жидких стальных полупродуктов и установка для его осуществления
WO2000005421A1 (en) * 1998-07-24 2000-02-03 Improved Converters, Inc. Blast furnace with narrowed top section and method of using
US20060027043A1 (en) * 2004-08-03 2006-02-09 Hylsa S.A. De C.V. Method and apparatus for producing clean reducing gases from coke oven gas
JP2011225969A (ja) * 2010-03-29 2011-11-10 Jfe Steel Corp 高炉又は製鉄所の操業方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2420568A1 (fr) 1978-03-24 1979-10-19 Texaco Development Corp Procede pour produire un gaz de synthese nettoye et purifie et un gaz riche en co
DE3515250A1 (de) 1985-04-27 1986-10-30 Hoesch Ag, 4600 Dortmund Verfahren zur herstellung von chemierohstoffen aus koksofengas und huettengasen
ATE51032T1 (de) * 1986-05-07 1990-03-15 Voest Alpine Ind Anlagen Integriertes huettenwerk.
US5454853A (en) 1994-06-10 1995-10-03 Borealis Technical Incorporated Limited Method for the production of steel
WO2004101829A2 (en) * 2003-05-15 2004-11-25 Hylsa, S.A. De C.V. Method and apparatus for improved use of primary energy sources in integrated steel plants
AT504863B1 (de) * 2007-01-15 2012-07-15 Siemens Vai Metals Tech Gmbh Verfahren und anlage zur erzeugung von elektrischer energie in einem gas- und dampfturbinen (gud) - kraftwerk
NZ560757A (en) 2007-10-28 2010-07-30 Lanzatech New Zealand Ltd Improved carbon capture in microbial fermentation of industrial gases to ethanol
ES2616604T3 (es) 2009-01-29 2017-06-13 Lanzatech New Zealand Limited Método para mejorar la eficacia de la fermentación microbiana
DE102009022509B4 (de) 2009-05-25 2015-03-12 Thyssenkrupp Industrial Solutions Ag Verfahren zur Herstellung von Synthesegas
PL2464617T3 (pl) 2009-08-13 2014-09-30 Silicon Fire Ag Sposób i instalacja do dostarczania nośnika energii opartego na węglowodorze, które wykorzystują udział metanolu wytworzony regeneracyjnie i udział metanolu, który jest wytworzony poprzez bezpośrednie utlenianie, lub poprzez częściowe utlenianie, lub poprzez reforming
WO2011108546A1 (ja) 2010-03-02 2011-09-09 Jfeスチール株式会社 高炉の操業方法、製鉄所の操業方法、および酸化炭素含有ガスの利用方法
WO2011116141A2 (en) * 2010-03-18 2011-09-22 Sun Hydrogen, Inc. Clean steel production process using carbon-free renewable energy source
US20110266726A1 (en) * 2010-05-03 2011-11-03 General Electric Company Gas turbine exhaust as hot blast for a blast furnace
WO2012145910A1 (zh) 2011-04-28 2012-11-01 四川达兴能源股份有限公司 生产甲醇的方法和设备
US20140131622A1 (en) 2011-06-16 2014-05-15 Maverick Biofuels, Inc. Methods and apparatus for cooling syngas from biomass gasification
DE102011077819A1 (de) 2011-06-20 2012-12-20 Siemens Aktiengesellschaft Kohlendioxidreduktion in Stahlwerken
EP2756249B1 (de) * 2011-09-15 2015-09-16 Linde Aktiengesellschaft Verfahren zur gewinnung von olefinen aus ofengasen von stahlwerken
KR101321823B1 (ko) * 2011-12-28 2013-10-23 주식회사 포스코 일산화탄소 및 수소를 포함하는 합성가스 제조장치 및 제조방법
DE102013113921A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113950A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113980A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Verfahren zur Herstellung von Ammoniakgas und CO2 für eine Harnstoffsynthese
DE102013113933A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Verfahren zur Erzeugung von Synthesegas im Verbund mit einem Hüttenwerk
DE102013113958A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113942A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Verfahren zur Reduzierung von CO2-Emissionen beim Betrieb eines Hüttenwerks
DE102013113913A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2125613C1 (ru) * 1995-10-10 1999-01-27 Фоест-Альпине Индустрианлагенбау ГмбХ Способ получения жидкого чугуна или жидких стальных полупродуктов и установка для его осуществления
WO2000005421A1 (en) * 1998-07-24 2000-02-03 Improved Converters, Inc. Blast furnace with narrowed top section and method of using
US20060027043A1 (en) * 2004-08-03 2006-02-09 Hylsa S.A. De C.V. Method and apparatus for producing clean reducing gases from coke oven gas
JP2011225969A (ja) * 2010-03-29 2011-11-10 Jfe Steel Corp 高炉又は製鉄所の操業方法

Also Published As

Publication number Publication date
AU2019203801A1 (en) 2019-06-20
DE102013113958A1 (de) 2015-06-18
TW201527539A (zh) 2015-07-16
KR102226641B1 (ko) 2021-03-11
KR20160097211A (ko) 2016-08-17
TWI641691B (zh) 2018-11-21
BR112016012581B1 (pt) 2021-03-16
EP3080306A1 (de) 2016-10-19
ES2706765T3 (es) 2019-04-01
US20160326605A1 (en) 2016-11-10
MX2016006970A (es) 2017-01-20
US10697031B2 (en) 2020-06-30
CN113073161A (zh) 2021-07-06
CN105980582A (zh) 2016-09-28
AU2019203801B2 (en) 2020-09-03
CA2930451A1 (en) 2015-06-18
CA2930451C (en) 2021-08-03
PL3080306T3 (pl) 2019-03-29
AU2014361205A1 (en) 2016-06-09
UA119340C2 (uk) 2019-06-10
WO2015086150A1 (de) 2015-06-18
EP3080306B1 (de) 2018-10-31

Similar Documents

Publication Publication Date Title
RU2710492C1 (ru) Производственный сталелитейный комплекс и способ эксплуатации производственного комплекса
RU2709323C1 (ru) Комплекс установок для производства стали и способ эксплуатации комплекса установок
AU2019202471B2 (en) Plant complex for steel production and method for operating the plant complex
RU2670513C1 (ru) Комплекс установок для производства стали и способ эксплуатации комплекса установок
RU2661688C1 (ru) Способ производства синтез-газа в цикле работы металлургического завода