RU2710157C1 - Динамический энергосберегающий фасад с изменяемыми свойствами - Google Patents

Динамический энергосберегающий фасад с изменяемыми свойствами Download PDF

Info

Publication number
RU2710157C1
RU2710157C1 RU2019111584A RU2019111584A RU2710157C1 RU 2710157 C1 RU2710157 C1 RU 2710157C1 RU 2019111584 A RU2019111584 A RU 2019111584A RU 2019111584 A RU2019111584 A RU 2019111584A RU 2710157 C1 RU2710157 C1 RU 2710157C1
Authority
RU
Russia
Prior art keywords
facade
prisms
saving
face
energy
Prior art date
Application number
RU2019111584A
Other languages
English (en)
Inventor
Светлана Валерьевна Плотникова
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Брянский государственный инженерно-технологический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Брянский государственный инженерно-технологический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Брянский государственный инженерно-технологический университет"
Priority to RU2019111584A priority Critical patent/RU2710157C1/ru
Application granted granted Critical
Publication of RU2710157C1 publication Critical patent/RU2710157C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/67Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/90Passive houses; Double facade technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Building Environments (AREA)

Abstract

Изобретение относится к области строительства, а именно к конструкциям фасадов энергоэффективных зданий, и может быть использовано при возведении энергоактивных и экологически безопасных жилых и общественных зданий с высокой степенью теплозащиты. Конструкция динамического энергосберегающего фасада с изменяемыми свойствами содержит стену из традиционных стеновых материалов (монолитный бетон, кирпич, блоки из ячеистого бетона, деревянный брус и т.п.) со слоем эффективного утеплителя, например из минеральной ваты, покрытой ветрогидрозащитной мембраной, и наружный динамический слой, состоящий из установленных с возможностью синхронного поворота вокруг своих параллельно расположенных в одной плоскости вертикальных осей треугольных призм, боковые грани которых способны выстраиваться в одной плоскости или параллельных плоскостях и имеют следующие свойства: первая грань в виде вакуумированного стеклопакета толщиной 6-8 мм с вакуумом 10-3-10-4 мм рт.ст. и с селективным покрытием на внутренней поверхности стекла с излучательной способностью ε=0,10-0,20, соединенного с двумя другими гранями, имеющими на внутренних поверхностях селективное покрытие с коэффициентом поглощения α=0,80-0,95 и излучательной способностью ε=0,10-0,20; вторая грань имеет на внешней стороне покрытие с коэффициентом отражения ρ=0,85-0,90 и третья грань на внешней стороне имеет пленочную солнечную батарею. Верхние заглушки треугольных призм выходят своими полыми патрубками в горизонтально расположенный герметичный короб, имеющий перпендикулярно расположенный к нему канал с приточным клапаном, выходящим на внутреннюю грань стены. Нижние заглушки треугольных призм имеют втулки, установленные в посадочные отверстия горизонтального короба и имеющие на конце ведомую шестерню, которая взаимодействует через ведущую шестерню с механизмом поворота призм. Одним из элементов механизма поворота призм является расположенный горизонтально составной вал, соединенный через редуктор с шаговым двигателем. Двигатель может располагаться в правой или левой стойке как вертикально, так и горизонтально. Вал поворачивается на определенный угол (или проворачивается на нужное число оборотов) и задерживается в нужном положении, чтобы дать возможность выставить грани призм, обладающих одинаковыми свойствами, в одной плоскости. Работу привода регулирует блок управления. В зависимости от погодных или заданных условий и времени в соответствии с программой он устанавливает призмы в заданное положение и определяет время неподвижного состояния призм. Динамический энергосберегающий фасад работает в автоматизированном режиме и содержит блок управления двигателем, зарядное устройство и аккумулятор, которые находятся в герметичных компактных корпусах, помещенных в правой или левой боковой стойке. Внутри боковой стойки для этого предусмотрены специальные крепления. Управление двигателем и зарядным устройством происходит таким образом, чтобы оптимизировать работу двигателя по параметрам мощности, увеличивая его КПД и ресурс, сокращая потребление электроэнергии, обеспечивая быстрый заряд аккумулятора и длительное его сохранение. Электроника обеспечивает ускоренную зарядку аккумулятора от солнечных батарей или другим способом в течение 3-4 ч. 3 з.п. ф-лы, 13 ил.

Description

Изобретение относится к области строительства энергоэффективных и экологически безопасных зданий, в частности касается регулирования теплозащитных свойств защитной оболочки здания, солнечного отопления и обеспечения требуемого воздухообмена в зданиях для управления параметрами микроклимата внутренних помещений.
В настоящее время при возведении энергоэффективных зданий, как правило, используются конструктивные решения ограждающих конструкций с постоянными теплофизическими свойствами независимо от расположения ограждающих конструкций по высоте фасада здания и его ориентации на местности. Такие решения являются нерациональными с учетом значительного изменения режимов и условий эксплуатации зданий в зимний и летний периоды, увеличения ветровой нагрузки по высоте здания и в зависимости от ориентации здания в пространстве.
Известна конструкция фасада, включающего стену с поглощающей поверхностью из штукатурки, покрытой черной краской, прозрачную теплоизоляцию из полимерной пленки на основе триацетатцеллюлозы толщиной 0,135 м и закаленного стекла толщиной 0,006 м. Конструкция из прозрачной изоляции заключена в деревянную раму (G.M. Wallner, R. Hausner, H. Hegedys, H. Schobermayr, R.W. Lang. Application Demonstration and Performance of Cellulose Triacetate Polymer Film Based Transparent Insulation Wall Heating System. Solar Energy, Vol. 80, 1410-1416, 2006) [1]. Недостатками данной конструкции являются большая толщина, недостаточно высокий коэффициент пропускания прозрачной теплоизоляции, высокий коэффициент излучения поглощающей поверхности, отсутствие возможности изменения теплофизических свойств стены.
Известна конструкция фасада, включающего стену с прозрачной теплоизоляцией, заключенной в деревянную раму. Прозрачная изоляция состоит из поликарбоната капиллярной структуры, заключенного между двумя стеклами. На стену с внешней стороны нанесена черная краска (I.L. Wong, P.C. Eames, R.S. Perera. A Review of Transparent Insulation System and the Evaluation of Payback Period for Building Applications. Solar Energy, Vol. 81, pp. 1058-1071, 2007) [2]. Недостатками конструкции являются недостаточно высокий коэффициент пропускания, большая толщина, высокий коэффициент излучения поглощающей поверхности, отсутствие возможности изменения теплофизических свойств стены.
Наиболее близкой по технической сущности к изобретению является конструкция солнечного фасада с вакуумированным стеклопакетом (RU 2382164, МПК, Е06В 3/677, 2010 г) [3], содержащего стену с поглощающей поверхностью и вакуумированный стеклопакет толщиной 6,5 мм с вакуумом 10-3-10-4 мм рт.ст. и с селективным покрытием на внутренней поверхности стекла с излучательной способностью ε=0,1, установленный на внешней стороне стены здания, при этом поглощающая поверхность имеет селективное покрытие с коэффициентом поглощения α=0,95 и излучательной способностью ε=0,1. Недостатком известной конструкции является недостаточно высокие теплоизоляционные свойства, низкая эффективность использования подогретого воздуха для отопления помещений, отсутствие возможности автоматизированного изменения теплофизических свойств стены в процессе эксплуатации.
Задачей предлагаемого изобретения является автоматизированное регулирование теплофизических свойств стены здания в зависимости от изменения погодных и эксплуатационных условий, повышение эффективности использования солнечной энергии для воздушного отопления помещений здания, обеспечение подогрева свежего воздуха при его подаче через приточный клапан.
Вышеуказанный результат достигается тем, что предлагаемый динамический энергосберегающий фасад с изменяемыми свойствами содержит стену из традиционных стеновых материалов (монолитный бетон, кирпич, блоки из ячеистого бетона, деревянный брус и т.п.) со слоем эффективного утеплителя, например из минеральной ваты, покрытой ветро-гидрозащитной мембраной, и наружный динамический слой, состоящий из установленных с возможностью синхронного поворота вокруг своих параллельно расположенных в одной плоскости вертикальных осей треугольных призм, боковые грани которых выстраиваясь в одной плоскости образуют наружные и внутренние поверхности со следующими свойствами: первая грань в виде вакуумированного стеклопакета толщиной 6-8 мм мм с вакуумом 10-3-10-4 мм рт.ст. и с селективным покрытием на внутренней поверхности стекла с излучательной способностью ε=0,10-0,20, соединенного с двумя другими гранями, имеющими на внутренних поверхностях селективное покрытие с коэффициентом поглощения α=0,80-0,95 и излучательной способностью ε=0,10-0,20; вторая грань имеет покрытие на внешней стороне с коэффициентом отражения ρ=0,85-0,90 и третья грань на внешней стороне имеет пленочную солнечную батарею. Верхние заглушки треугольных призм выходят своими полыми патрубками в горизонтально расположенный герметичный короб, имеющий перпендикулярно расположенный к нему канал с приточным клапаном, выходящим на внутреннюю грань стены. Имеется устройство для поворота призм и блок управления, работающие в автоматическом режиме по заданной программе при изменении условий эксплуатации, а также контроллер для преобразования солнечной энергии в электрическую, аккумуляторная батарея и инвертор для преобразования постоянного электрического тока в переменный.
В результате использования предлагаемого изобретения снижаются тепловые потери здания, затраты на отопление, вентиляцию и охлаждение помещений благодаря использованию поворотных призм с гранями, наружные и внутренние поверхности которых обладают различными свойствами излучательной способности, коэффициентами поглощения и отражения, а также содержат пленочные солнечные батареи.
Технический результат: обеспечение высоких теплозащитных характеристик наружных стен зданий с возможностью их регулирования при изменении условий эксплуатации с одновременным снижением затрат на отопление, вентиляцию и поддержание требуемых параметров микроклимата внутренних помещений.
Сущность предлагаемого изобретения поясняется фигурами. На фиг. 1, фиг. 2 и фиг. 3 представлен общий вид динамического энергосберегающего фасада здания с изменяемыми свойствами, работающего соответственно в режиме 1, режиме 2 и режиме 3; на фиг. 4 - общая схема конструктивного решения стены с динамическим энергосберегающим фасадом с изменяемыми свойствами; на фиг. 5 - вертикальный разрез стены с динамическим энергосберегающим фасадом с изменяемыми свойствами в месте прохождения приточного клапана; на фиг. 6 - горизонтальный разрез 1-1 стены с динамическим энергосберегающим фасадом с изменяемыми свойствами; на фиг. 7, фиг. 8, фиг. 9, фиг. 10, фиг. 11 - расположение призм в плане при работе динамического фасада с изменяемыми свойствами соответственно в режиме 1, режиме 2, режиме 3, режиме 4, режиме 5; на фиг. 12 - общий вид поворотного механизма с вертикальным расположением двигателя; на фиг. 13 - общий вид поворотного механизма с горизонтальным расположением двигателя.
Динамический энергосберегающий фасад с изменяемыми свойствами содержит стену с внутренним слоем из традиционных стеновых материалов 1 (фиг. 4, фиг. 5 и фиг. 6), эффективный утеплитель, например из минеральной ваты 2 (фиг. 4, фиг. 5 и фиг. 6), ветро-гидрозащитную мембрану 3 (фиг. 4, фиг. 5 и фиг. 6), воздушный зазор 4 между наружным динамическим слоем 5 и эффективным утеплителем 2 (фиг. 4, фиг. 5 и фиг. 6). Наружный динамический слой 5 состоит из установленных с возможностью синхронного поворота вокруг своих параллельно расположенных в одной плоскости вертикальных осей треугольных поворотных призм 6, боковые грани которых 7, 8 и 9 способны выстраиваться в одной плоскости или параллельных плоскостях и имеют следующие свойства: первая грань 7 в виде вакуумированного стеклопакета толщиной 6-8 мм мм с вакуумом 10-3-10-4 мм рт.ст. и с селективным покрытием на внутренней поверхности стекла с излучательной способностью ε=0,10-0,20, соединенного с двумя другими гранями 8 и 9, имеющими на внутренних поверхностях селективное покрытие с коэффициентом поглощения α=0,80-0,95 и излучательной способностью ε=0,10-0,20; при этом вторая грань 8 на внешней стороне имеет покрытие с коэффициентом отражения ρ=0,85-0,90, а третья грань 9 на внешней стороне имеет пленочную солнечную батарею 10. Треугольная поворотная призма 6 имеет нижние и верхние заглушки соответственно 11 и 12 (фиг. 5). Нижние заглушки 11 треугольных поворотных призм 6 имеют втулки 13, установленные в посадочные отверстия 14 нижнего горизонтального короба 15 и имеющие на конце ведомую шестерню 16, которая взаимодействует с ведущей шестерней 17 механизма поворота призм (фиг. 4, фиг. 5, фиг. 6, фиг. 12, фиг. 13). В механизм поворота призм входит расположенный горизонтально составной вал 18, соединенный через редуктор 19 с шаговым двигателем 20 (фиг. 4, фиг. 12, фиг. 13). Двигатель 20 может располагаться в правой или левой стойках 21 как вертикально, так и горизонтально. Вал 18 поворачивается на определенный угол (или проворачивается на нужное число оборотов) и задерживается в нужном положении, чтобы дать возможность выставить грани призм 6, обладающих одинаковыми свойствами, в одной плоскости. Работу механизма поворота призм регулирует блок управления (условно не показан). В зависимости от погодных или заданных условий и времени в соответствии с программой он устанавливает призмы 6 в заданное положение и определяет время их неподвижного состояния. Верхние заглушки 12 треугольных призм 6 выходят своими полыми патрубками 22 в герметичный горизонтально расположенный верхний короб 23 для сбора нагреваемого воздуха, имеющий перпендикулярно расположенный к нему канал с приточным клапаном 24, выходящим на внутреннюю грань стены 1. Воздух в призмы поступает через отверстия 25 (фиг. 5, фиг. 6), находящиеся в нижних заглушках 11 призм 6, нагревается и попадает через полые патрубки 22 верхних заглушек 12 в герметичный верхний короб 23 и через приточный клапан 24 попадает в помещение. Устройство для поворота призм и блок управления (условно не показан) работают в автоматическом режиме по заданной программе при изменении условий эксплуатации. Для работы динамического фасада в автономном режиме используется контроллер 25 для преобразования солнечной энергии в электрическую, аккумуляторная батарея 26 и инвертор 27 для преобразования постоянного электрического тока в переменный (фиг. 4).
Динамический энергосберегающий фасад с изменяемыми свойствами работает в различных режимах.
Режим 1 (фиг. 1, фиг. 5, фиг. 6, фиг. 7). Наружные грани призм 6 создают плоскость динамического энергосберегающего фасада 5 из вакуумированных стеклопакетов 7. В данном режиме динамический энергосберегающий фасад работает как солнечный воздушный коллектор, обеспечивающий воздушное отопление в солнечный день и подачу подогретого свежего воздуха в помещения. Солнечные излучение проходит через вакуумированные стеклопакеты 7 и попадает на внутренние поверхности граней 8 и 9 призм с коэффициентом поглощения α=0,80-0,95 и излучательной способностью ε=0,1-0,2, нагревает их, от которых, в свою очередь, нагревается воздух в призмах 6. Потери тепла снижаются за счет вакуумированного стеклопакета 7 с вакуумом 10-3-10-4 мм рт.ст. со стеклокерамическими фиксаторами 28, имеющего сопротивление теплопередаче R=0,8-0,9 (м2⋅К)/Вт. В вакуумном зазоре стеклопакетов 7 конвекция и теплопроводность разреженного газа незначительны, а теплопотери за счет излучения значительно снижаются благодаря селективному покрытию с излучательной способностью ε=0,10-0,20, нанесенному на внутреннюю поверхность стекла. Воздух поступает через отверстия 25, находящихся в нижних заглушках 11 призм 6, нагревается и попадает через полые патрубки 22 верхних заглушек 12 в верхний герметичный короб 23 и через приточный клапан 24 попадает в помещение. Приточный клапан 24 имеет фильтр и заслонку для регулирования проходного отверстия.
Режим 2 (фиг. 2, фиг. 4, фиг. 8). Наружные грани 9 призм 6, покрытые пленочными солнечными панелями 10 создают на фасаде плоскую поверхность, работающую как солнечная батарея. Солнечная энергия с помощью контроллера 25 преобразуется в электрическую и заряжает аккумуляторную батарею 26. Постоянный ток с помощью инвертора 27 преобразуется в переменный и используется для работы всей системы. Динамический фасад может работать в автономном режиме по заданной программе. Блок управления при использовании датчиков времени и датчиков, реагирующих на яркость света, автоматически устанавливает заданный режим.
Режим 3 (фиг. 3, фиг. 9). Наружные грани 8 призм 6 создают плоскость динамического энергосберегающего фасада с коэффициентом отражения
ρ=0,85-0,90. В этом режиме динамический энергосберегающий фасад отражает солнечное излучение в жаркий день и этим охлаждает стену 1. При этом положении грань призмы 7 из вакуумированного стеклопакета также будет препятствовать нагреву стены.
Режим 4 (фиг. 10). В данном режиме между призмами создается зазор для удаления в летний период накопленной в зимний период влаги из стены и эффективного утеплителя. В данном режиме расположение призм может иметь три варианта и наряду с сушкой утеплителя может работать и в режиме, например, солнечных батарей.
Режим 5 (фиг. 11). В жаркий день грани призм из вакуумированных стеклопакетов 7, располагаясь параллельно эффективному утеплителю, создают сплошную плоскость, препятствующую проникновению теплого наружного воздуха с улицы. При этом грани 8 призм 6 отражают солнечное излучение на поверхность солнечных батарей 10, способствуя охлаждению стены и обеспечивая работу солнечных батарей.
Следует к преимуществам динамического фасада отнести возможность замены слоя эффективного утеплителя при капитальном ремонте здания путем предварительного снятия призм, что невозможно осуществить в других случаях при расположении утеплителя внутри стены.
Библиографический список
1. G.M. Wallner, R. Hausner, H. Hegedys, H. Schobermayr, R.W. Lang. Application Demonstration and Performance of Cellulose Triacetate Polymer Film Based Transparent Insulation Wall Heating System. Solar Energy, Vol. 80, 1410-1416, 2006.
2. I.L. Wong, P.C. Eames, R.S. Perera. A Review of Transparent Insulation System and the Evaluation of Payback Period for Building Applications. Solar Energy, Vol. 81, pp. 1058-1071, 2007.
3. Патент 2382164 Российская Федерация. Солнечный фасад с вакуумированным стеклопакетом / Стребков Д.С., Митина И.В.; заявитель и патентообладатель: Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) - №2008148711/03; Заявл. 11.12.2008; опубл. 20.02.2010, Бюл. №15 - 5 с.

Claims (4)

1. Динамический энергосберегающий фасад с изменяемыми свойствами, содержащий стену с эффективным утеплителем и наружный слой, отличающийся тем, что наружный слой состоит из установленных с возможностью синхронного поворота вокруг своих параллельно расположенных в одной плоскости вертикальных осей треугольных призм, боковые грани которых способны выстраиваться в одной плоскости или параллельных плоскостях и имеют следующие свойства: первая грань в виде вакуумированного стеклопакета толщиной 6-8 мм с вакуумом 10-3-10-4 мм рт.ст. и с селективным покрытием на внутренней поверхности стекла с излучательной способностью ε=0,10-0,20, соединенного с двумя другими гранями, имеющими на внутренних поверхностях селективное покрытие с коэффициентом поглощения α=0,80-0,95 и излучательной способностью ε=0,10-0,20; вторая грань имеет на внешней стороне покрытие с коэффициентом отражения ρ=0,85-0,90, и третья грань на внешней стороне имеет пленочную солнечную батарею.
2. Динамический энергосберегающий фасад с изменяемыми свойствами по п. 1, отличающийся тем, что верхние заглушки треугольных призм своими полыми патрубками выходят в горизонтально расположенный герметичный короб, имеющий перпендикулярно расположенный к нему канал с приточным клапаном, выходящим на внутреннюю грань стены.
3. Динамический энергосберегающий фасад с изменяемыми свойствами по п. 1, отличающийся тем, что имеет устройство для поворота призм и блок управления, работающие в автоматическом режиме по заданной программе при изменении условий эксплуатации.
4. Динамический энергосберегающий фасад с изменяемыми свойствами по п. 1, отличающийся тем, что для работы в автономном режиме имеет контроллер для преобразования солнечной энергии в электрическую, аккумуляторную батарею и инвертор для преобразования постоянного электрического тока в переменный.
RU2019111584A 2019-04-16 2019-04-16 Динамический энергосберегающий фасад с изменяемыми свойствами RU2710157C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019111584A RU2710157C1 (ru) 2019-04-16 2019-04-16 Динамический энергосберегающий фасад с изменяемыми свойствами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019111584A RU2710157C1 (ru) 2019-04-16 2019-04-16 Динамический энергосберегающий фасад с изменяемыми свойствами

Publications (1)

Publication Number Publication Date
RU2710157C1 true RU2710157C1 (ru) 2019-12-24

Family

ID=69022925

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019111584A RU2710157C1 (ru) 2019-04-16 2019-04-16 Динамический энергосберегающий фасад с изменяемыми свойствами

Country Status (1)

Country Link
RU (1) RU2710157C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111997185A (zh) * 2020-08-25 2020-11-27 华创建筑设计有限公司 一种绿色节能生态建筑结构
RU217624U1 (ru) * 2022-10-06 2023-04-07 Виктория Андреевна Муратова Панель динамического энергоэффективного фасада

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014356A1 (en) * 1998-09-08 2000-03-16 Dickory Rudduck Reinforced building elements
US20080184660A1 (en) * 2007-02-02 2008-08-07 The Scuderi Group, Llc. Basement wall and floor system
RU2382164C1 (ru) * 2008-12-11 2010-02-20 Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) Солнечный фасад с вакуумированным стеклопакетом
WO2013117479A1 (en) * 2012-02-08 2013-08-15 Rockwool International A/S Building facade with lock element and lock element
RU179762U1 (ru) * 2018-03-14 2018-05-23 Хомик Юрий Ростиславович Кинетический фасад
US20180334800A1 (en) * 2017-05-18 2018-11-22 Robert Swank Structural masonry assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014356A1 (en) * 1998-09-08 2000-03-16 Dickory Rudduck Reinforced building elements
US20080184660A1 (en) * 2007-02-02 2008-08-07 The Scuderi Group, Llc. Basement wall and floor system
RU2382164C1 (ru) * 2008-12-11 2010-02-20 Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) Солнечный фасад с вакуумированным стеклопакетом
WO2013117479A1 (en) * 2012-02-08 2013-08-15 Rockwool International A/S Building facade with lock element and lock element
US20180334800A1 (en) * 2017-05-18 2018-11-22 Robert Swank Structural masonry assembly
RU179762U1 (ru) * 2018-03-14 2018-05-23 Хомик Юрий Ростиславович Кинетический фасад

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111997185A (zh) * 2020-08-25 2020-11-27 华创建筑设计有限公司 一种绿色节能生态建筑结构
RU217624U1 (ru) * 2022-10-06 2023-04-07 Виктория Андреевна Муратова Панель динамического энергоэффективного фасада

Similar Documents

Publication Publication Date Title
CN101994478B (zh) 一种隐形智能全自动外遮阳***
RU2710157C1 (ru) Динамический энергосберегающий фасад с изменяемыми свойствами
JPH11107547A (ja) 太陽熱利用の建物
CN201874169U (zh) 一种新型太阳能集热围护结构
Feng et al. An experimental study on the performance of new glass curtain wall system in different seasons
WO2023056861A1 (zh) 被动式相变蓄能阳光间与空气源热泵耦合供热***
CN105910300A (zh) 夹角型太阳能电池板集热幕墙与屋面及通风空调***
CN214333081U (zh) 用于太阳房的集热装置
CN107119923A (zh) 一种具有取暖、降温和防雨雪功能的观景台
CN211143520U (zh) 屋顶防水保温结构
CN111877803A (zh) 一种建筑式节能房屋
CN110952909A (zh) 一种静电吸附式弥散粉尘反射遮阳节能窗及其使用方法
CN110924561A (zh) 一种双排百叶帘片集热墙装置及使用方法
Boeri et al. Eco-technologies for energy efficient buildings in Italy
CN102312497A (zh) 太阳能与建筑一体化幕墙***及其安装施工方法
Glinskienė Active and passive solar building design
Wachenfeldt et al. Building Integrated Energy Systems in Smart Energy Efficient Buildings–A state-of-the-art
Fisch et al. International solar centre, berlin-a comprehensive energy design
Suhas et al. Theoretical Investigation on Transient Heat Transfer through Building for PV-powered Solar Summer Air Conditioning
Timusk et al. A systems approach to extend the limit of envelope performance.
Conn et al. A low capital and running cost dwelling built by unskilled labour
SU976000A1 (ru) Панель ограждения здания с солнечным обогревом 1
Givoni Integrated—Passive Systems for Heating of Buildings by Solar Energy
CN115142622A (zh) 一种基于太阳能发电的绿色建筑用节能型屋顶结构
JPS6078253A (ja) パツシブ型ソ−ラ装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210417