RU2709186C1 - Стабилизатор трёхфазного синусоидального напряжения со звеном повышенной частоты - Google Patents

Стабилизатор трёхфазного синусоидального напряжения со звеном повышенной частоты Download PDF

Info

Publication number
RU2709186C1
RU2709186C1 RU2019117459A RU2019117459A RU2709186C1 RU 2709186 C1 RU2709186 C1 RU 2709186C1 RU 2019117459 A RU2019117459 A RU 2019117459A RU 2019117459 A RU2019117459 A RU 2019117459A RU 2709186 C1 RU2709186 C1 RU 2709186C1
Authority
RU
Russia
Prior art keywords
voltage
bridge
inverter
phase
output
Prior art date
Application number
RU2019117459A
Other languages
English (en)
Inventor
Владимир Степанович Климаш
Андрей Михайлович Константинов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС)
Priority to RU2019117459A priority Critical patent/RU2709186C1/ru
Application granted granted Critical
Publication of RU2709186C1 publication Critical patent/RU2709186C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/24Regulating voltage or current wherein the variable actually regulated by the final control device is ac using bucking or boosting transformers as final control devices
    • G05F1/26Regulating voltage or current wherein the variable actually regulated by the final control device is ac using bucking or boosting transformers as final control devices combined with discharge tubes or semiconductor devices
    • G05F1/30Regulating voltage or current wherein the variable actually regulated by the final control device is ac using bucking or boosting transformers as final control devices combined with discharge tubes or semiconductor devices semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

Изобретение относится к преобразовательной технике. Технический результат - повышение быстродействия и энергетических показателей стабилизатора. Сущность изобретения: стабилизатор предназначен для включения на низкой стороне главного трансформатора подстанции и содержит последовательно включенные входной преобразователь частоты со звеном постоянного напряжения, высокочастотный понижающий трансформатор и выходной преобразователь частоты в виде циклоконвертора напряжения. Входной преобразователь частоты повышает частоту сети кратно частоте сети и выполнен на базе транзисторного выпрямителя и двухмостового инвертора напряжения. Выходной преобразователь частоты, представляющий собой циклоконвертор напряжения на однооперационных тиристорах преобразует пониженное высокочастотным трансформатором напряжение до частоты сети. Это выходное напряжение стабилизатора поступает во вторичную обмотку главного трансформатора подстанции. Устройство производит в зависимости от режима работы регулирование выходного напряжения стабилизатора как двухмостовым инвертором напряжения так и циклоконвертором напряжения. Стабилизация напряжения на нагрузке производится двухмостовым инвертором напряжения по отклонению напряжения сети и циклоконвертором напряжения по отклонению напряжения нагрузки. 1 ил.

Description

Изобретение относится к электронике, в частности к преобразовательной технике, и может быть использовано для стабилизации трехфазного напряжения на низкой стороне трансформаторной подстанции.
Известен стабилизатор напряжения трансформаторной подстанции со звеном повышенной частоты [патент РФ №2071633 МПК Н02М 5/45, G05F 1/30, 1997], который включается на низкой стороне главного трансформатора трансформаторной подстанции и содержит управляемый реверсивный выпрямитель с системой управления, инвертор напряжения с системой управления и нулевой циклоконвертор с системой управления, а также понижающий высокочастотный трансформатор, предназначенный для понижения уровня выходного напряжения инвертора. Стабилизация напряжения производится при одновременном воздействии на системы управления выпрямителем, инвертором и циклоконвертором сигнала отклонения напряжения нагрузки от заданного уровня.
Основной недостаток этого устройства низкое быстродействие в процессе стабилизации напряжения на нагрузке при амплитудном регулировании добавочного напряжения стабилизатора посредством реверсивного тиристорного выпрямителя с наличием на его выходе реактивных элементов, а также применением усложненного алгоритма для одновременного управления всеми преобразователями стабилизатора, особенно при переходе из режима вольтоприбавления к режиму вольтовычетания и наоборот.
Кроме этого, низкие энергетические показатели обусловлены тем, что стабилизатор при формировании добавочного напряжения искажает форму выходного тока циклоконвертора, что снижает коэффициенты мощности и КПД главного трансформатора, а искажения напряжения на нагрузке, вызванные несогласованностью в регулировании длительностей проводящих состояний тиристоров инвертора и нулевого циклоконвертора приводят к снижению КПД потребителей.
Также известен стабилизатор трехфазного синусоидального напряжения со звеном повышенной частоты [патент РФ №2146387 МПК Н02М 5/45, G05F 1/30, 1998], который принят за прототип. Он по сравнению с предыдущим аналогом имеет улучшенные быстродействие и энергетические показатели. Стабилизатор включен в цепь нагрузки главного трансформатора подстанции и содержит два преобразователя частоты, один из которых повышает частоту напряжения и выполнен на основе управляемого реверсивного выпрямителя и инвертора напряжения, а другой понижает частоту до частоты сети и представляет собой нулевой циклоконвертор, и включенный между ними понижающий высокочастотный трансформатор. Стабилизация напряжения на нагрузке производится реверсивным выпрямителем по отклонению напряжения сети и нулевым циклоконвертором по отклонению напряжения нагрузки.
Недостатками прототипа являются низкое быстродействие и энергетические показатели главного и высокочастотного трансформаторов, в связи с тем, что реверсивный тиристорный выпрямитель потребляет прямоугольный ток, который в процессе регулирования напряжения в функции отклонения напряжения сети увеличивает фазу тока во вторичной цепи главного трансформатора. Кроме этого одномостовой инвертор напряжения со 180-градусным алгоритмом управления формирует двухступенчатую форму добавочного напряжения, которая отражается на несинусоидальности напряжения у потребителей. Следует отметить также, что между реверсивным выпрямителем и инвертором напряжения включен инерционный LC-фильтр, который при регулировании добавочного напряжения выпрямителем снижает быстродействие всего стабилизатора.
Задачей изобретения является повышение быстродействия и энергетических показателей стабилизатора трехфазного синусоидального напряжения со звеном повышенной частоты для трансформаторной подстанции.
Указанный технический результат достигается тем, что в известном стабилизаторе трехфазного синусоидального напряжения со звеном повышенной частоты вместо реверсивного выпрямителя применен одномостовой транзисторный выпрямитель, выполненный на IGBT-транзисторах с обратными диодами, причем на входе его выпрямительного моста введен L-фильтр, а система управления транзисторного выпрямителя выполнена с возможностью широтно-импульсной модуляции выходного напряжения и опережающим формированием синусоидального входного тока, кроме этого инвертор напряжения выполнен двухмостовым, а его система управления выполнена с возможностью регулирования выходными напряжениями первого и второго транзисторных мостов, причем управляющий вход системы управления двухмостового инвертора напряжения подключен к выходу датчика отклонения напряжения сети, вход которого через измерительно-синхронизирующий блок подключен к фазным вторичным обмоткам главного трансформатора подстанции, вместе с этим первый управляющий выход системы управления двухмостового инвертора напряжения подключен к первому транзисторному мосту двухмостового инвертора напряжения, а второй управляющий выход системы управления инвертора подключен ко второму транзисторному мосту двухмостового инвертора напряжения, понижающий высокочастотный трансформатор выполнен трехфазно-шестифазным, причем его магнитопровод может быть исполнен Ш-образным, либо пространственным, либо торроидальным с круговым вращающимся магнитным полем, вторичная обмотка которого соединена в шестифазную звезду с изолированной нейтралью, а первичная обмотка одними концами пофазно присоединена к первым фазным выходам двухмостового инвертора напряжения и другими концами ко вторым фазным выходам двухмостового инвертора напряжения, а первые входы первого и второго транзисторного мостов двухмостового инвертора напряжения объединены и подключены к первому выходу LC-фильтра, вторые входы первого и второго транзисторного мостов двухмостового инвертора напряжения также объединены и подключены ко второму выходу LC-фильтра, при этом циклоконвертор напряжения выполнен шестифазно-трехфазным.
На чертеже представлена схема стабилизатора для трансформаторной подстанции.
Устройство содержит главный трансформатор 1 с первичной и вторичной обмотками 2 и 3, понижающий высокочастотный трансформатор 4 с первичной 5 и вторичными 6 обмотками, транзисторный выпрямитель 7 с L-фильтром 8 и выпрямительным мостом 9, а также системой управления 10, LC-фильтр 11, двухмостовой инвертор напряжения 12 с первым 13 и вторым 14 транзисторными мостами и системой управления 15, циклоконвертор напряжения 16 с системой управления 17, датчик отклонения напряжения сети 18 и датчик отклонения напряжения нагрузки 19, измерительно-синхронизирующий блок 20, нагрузку 21.
Элементы устройства соединены следующим образом.
Вторичная обмотка 3 главного трансформатора включена между выходом циклоконвертора напряжения 16 и нагрузкой 21. Первичная обмотка 5 понижающего высокочастотного трансформатора 4 одними концами пофазно присоединена к фазным выходам первого транзисторного моста 13 двухмостового инвертора напряжения 12, а другими концами также пофазно присоединена к фазным выходам второго транзисторного моста 14 двухмостового инвертора напряжения 12 и через последовательно соединенные двухмостовой инвертор напряжения 12, LC-фильтр 11, выпрямительный мост 9 и L-фильтр 8 транзисторного выпрямителя 7 подключена к нагрузке 21, при этом первый вход транзисторного моста 13 двухмостового инвертора напряжения 12 и первый вход транзисторного моста 14 двухмостового инвертора напряжения 12 объединены и подключены к первому выходу LC-фильтра 11, вместе в этим второй вход транзисторного моста 13 двухмостового инвертора напряжения 12 и второй вход транзисторного моста 14 двухмостового инвертора напряжения 12 объединены и подключены ко второму выходу LC-фильтра 11, а вторичная обмотка 6 понижающего высокочастотного трансформатора 4 соединена в шестифазную звезду и подключена к входу циклоконвертора напряжения 16, первичная обмотка 2 главного трансформатора 1 подключена к сети. Первый управляющий вход системы управления 17 циклоконвертором напряжения 16 подключен к выходу датчика отклонения напряжения нагрузки 19, вход которого подключен пофазно между вторичной обмоткой 3 главного трансформатора 1 и нагрузкой 21. Управляющий выход системы управления 17 циклоконвертором напряжения 16 подключен к управляющему входу циклоконвертора напряжения 16. Управляющий выход системы управления 10 транзисторного выпрямителя подключен к управляющему входу выпрямительного моста 9 транзисторного выпрямителя 7. Управляющие входы системы управления 10 транзисторным выпрямителем 7, первые управляющие входы системы управления 15 двухмостовым транзисторным инвертором напряжения 12, вторые управляющие входы системы управления 17 циклоконвертором напряжения 16, а также вход датчика отклонения напряжения сети 18 подключены к выходам измерительно-синхронизирующего блока 20, входы которого подключены к вторичным фазным обмоткам 3 главного трансформатора 1, а выход датчика отклонения напряжения сети 18 подключен ко второму управляющему входу системы управления 15 двухмостовым транзисторным инвертором напряжения, при этом первый выход системы управления 15 двухмостовым транзисторным инвертором напряжения подключен к управляющему входу первого транзисторного моста 13 двухмостового инвертора напряжения 12, а второй выход системы управления 15 двухмостовым транзисторным инвертором напряжения подключен к управляющему входу второго транзисторного моста 14 двухмостового инвертора напряжения 12.
Устройство работает следующим образом.
В режиме вольтодобавки дополнительный поток электрической энергии направлен из сети в нагрузку 21 через главный трансформатор 1, транзисторный выпрямитель 7, с его L-фильтром и выпрямительным мостом 9, LC-фильтр 11, двухмостовой транзисторный инвертор напряжения 12, понижающий высокочастотный трансформатор 4 и циклоконвертор напряжения 16, а в режиме вольтовычета из нагрузки 21 в сеть в обратом направлении.
Пофазный перевод устройства из режима вольтодобавки в режим вольтовычета производится увеличением угла задержки включения тиристоров соответствующих фазных анодных и катодных групп циклоконвертора напряжения 16 на величину, которая больше половины полупериода высокочастотного напряжения.
Стабилизация напряжения на нагрузке производится как посредством регулирования углами включения тиристоров циклоконвертора напряжения 16, так и посредством двухмостового транзисторного инвертора напряжения 12, в котором для каждого из мостов применен 180-градусный алгоритм управления проводящим состоянием транзисторов.
В процессе формирования добавочного напряжения участвует понижающий высокочастотный трансформатор 4, который определяет требуемый диапазон стабилизации напряжения и может быть выполнен на Ш-образном, либо пространственном, либо торроидальном магнитопроводе с круговым вращающимся магнитным полем, а также транзисторный выпрямитель 7, LC-фильтр 8, двухмостовой транзисторный инвертор напряжения 12 и циклоконвертор напряжения 16.
Двухмостовой инвертор напряжения 12 формирует трехфазное напряжение повышенной частоты трехступенчатой формы в течении каждого положительного и отрицательного полупериода, кратное частоте сети, например 450 Гц. Такая трехступенчатая форма выходного напряжения двухмостового инвертора 12 обеспечивается управлением транзисторами его первого моста 13 двухмостового транзисторного инвертора напряжения 12 с углами регулирования α, а транзисторами второго моста 14 двухмостового транзисторного инвертора напряжения 12 с углами регулирования π-α. Это напряжение преобразуется в понижающем высокочастотном трансформаторе 4 и подается на вход циклоконвертора напряжения 16, выполненного на трех анодных и трех катодных группах однооперационных тиристоров.
Внутри каждой группы управляемых тиристоров циклоконвертора напряжения 16 коммутация происходит естественным путем в выпрямительном и инверторных режимах при питании тиристорных групп периодически изменяющимся высокочастотным напряжением, поступающего на вторичную обмотку 6 понижающего высокочастотного трансформатора 4, а формирование синхронизированной с сетью вольтодобавки производится циклоконвертором напряжения 16 в зависимости от рассогласования фазных напряжений нагрузки при помощи фазных каналов системы управления 17.
Транзисторный выпрямитель 7 выполнен на IGBT-транзисторах с обратными диодами и возможностью двухстороннего обмена электроэнергией и в процессе стабилизации напряжения формирует ток, опережающий по фазе ток во вторичной обмотке 3 главного трансформатора 1, тем самым обеспечивая частичную компенсацию реактивной мощности, при этом главный трансформатор 1 выполняет функцию вольтодобавочного трансформатора, суммируя добавочное напряжение с напряжением его вторичной обмотки 3.
Технический результат заключается в повышении быстродействия стабилизатора посредством безинерционного регулирования добавочного напряжения, а также в улучшении формы добавочного напряжения и напряжения у потребителей за счет согласования длительности трехступенчатого напряжения двухмостового инвертора напряжения, равными 15 градусов с интервалами работы шестифазно-трехфазного циклоконвертора, равными также 15 градусов, что повышает коэффициент полезного действия и при этом не изменяется форма тока в силовом трансформаторе и сети, и обеспечивается частичная компенсация реактивной мощности во вторичной цепи силового трансформатора за счет опережающего формирования синусоидального тока на входе транзисторного выпрямителя с широтно-импульсной модуляцией.

Claims (1)

  1. Стабилизатор трехфазного синусоидального напряжения со звеном повышенной частоты, включенный на низкой стороне главного трансформатора подстанции и содержащий понижающий высокочастотный трансформатор, датчик отклонения напряжения нагрузки, датчик отклонения напряжения сети, реверсивный выпрямитель и инвертор напряжения с входным LC-фильтром, а также циклоконвертор напряжения с естественной коммутацией, системы управления которых синхронизированы с сетью, отличающийся тем, что вместо реверсивного выпрямителя применен одномостовой транзисторный выпрямитель, выполненный на IGBT-транзисторах с обратными диодами, причем на входе его выпрямительного моста введен L-фильтр, а система управления транзисторного выпрямителя выполнена с возможностью широтно-импульсной модуляции выходного напряжения и опережающим формированием синусоидального входного тока, кроме этого инвертор напряжения выполнен двухмостовым, а его система управления выполнена с возможностью регулирования выходными напряжениями первого и второго транзисторных мостов, причем управляющий вход системы управления двухмостового инвертора напряжения подключен к выходу датчика отклонения напряжения сети, вход которого через измерительно-синхронизирующий блок подключен к фазным вторичным обмоткам главного трансформатора подстанции, вместе с этим первый управляющий выход системы управления двухмостового инвертора напряжения подключен к первому транзисторному мосту двухмостового инвертора напряжения, а второй управляющий выход системы управления инвертора подключен ко второму транзисторному мосту двухмостового инвертора напряжения, понижающий высокочастотный трансформатор выполнен трехфазно-шестифазным, причем его магнитопровод может быть исполнен Ш-образным, либо пространственным, либо торроидальным с круговым вращающимся магнитным полем, вторичная обмотка которого соединена в шестифазную звезду с изолированной нейтралью, а первичная обмотка одними концами пофазно присоединена к первым фазным выходам двухмостового инвертора напряжения и другими концами ко вторым фазным выходам двухмостового инвертора напряжения, а первые входы первого и второго транзисторного мостов двухмостового инвертора напряжения объединены и подключены к первому выходу LC-фильтра, вторые входы первого и второго транзисторного мостов двухмостового инвертора напряжения также объединены и подключены ко второму выходу LC-фильтра, при этом циклоконвертор напряжения выполнен шестифазно-трехфазным.
RU2019117459A 2019-06-04 2019-06-04 Стабилизатор трёхфазного синусоидального напряжения со звеном повышенной частоты RU2709186C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019117459A RU2709186C1 (ru) 2019-06-04 2019-06-04 Стабилизатор трёхфазного синусоидального напряжения со звеном повышенной частоты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019117459A RU2709186C1 (ru) 2019-06-04 2019-06-04 Стабилизатор трёхфазного синусоидального напряжения со звеном повышенной частоты

Publications (1)

Publication Number Publication Date
RU2709186C1 true RU2709186C1 (ru) 2019-12-17

Family

ID=69006928

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019117459A RU2709186C1 (ru) 2019-06-04 2019-06-04 Стабилизатор трёхфазного синусоидального напряжения со звеном повышенной частоты

Country Status (1)

Country Link
RU (1) RU2709186C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2740490C1 (ru) * 2020-07-31 2021-01-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС) Устройство для стабилизации трехфазного синусоидального напряжения со звеном повышенной частоты

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2146387C1 (ru) * 1998-10-01 2000-03-10 Комсомольский-на-Амуре государственный технический университет Стабилизатор трехфазного синусоидального напряжения со звеном повышенной частоты
RU2156024C1 (ru) * 1999-03-30 2000-09-10 Комсомольский-на-Амуре государственный технический университет Стабилизатор трехфазного синусоидального напряжения со звеном повышенной частоты
CN203206128U (zh) * 2012-12-18 2013-09-18 河北工业大学 一种三相变换单相交流电装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2146387C1 (ru) * 1998-10-01 2000-03-10 Комсомольский-на-Амуре государственный технический университет Стабилизатор трехфазного синусоидального напряжения со звеном повышенной частоты
RU2156024C1 (ru) * 1999-03-30 2000-09-10 Комсомольский-на-Амуре государственный технический университет Стабилизатор трехфазного синусоидального напряжения со звеном повышенной частоты
CN203206128U (zh) * 2012-12-18 2013-09-18 河北工业大学 一种三相变换单相交流电装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2740490C1 (ru) * 2020-07-31 2021-01-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС) Устройство для стабилизации трехфазного синусоидального напряжения со звеном повышенной частоты

Similar Documents

Publication Publication Date Title
US20190115840A1 (en) Modulation method for dc to dc converters
EP3371880B1 (en) Pulse width modulation (pwm) for multi-level power inverters
GB2294821A (en) Multilevel converter
US11223297B2 (en) Modular multipoint power converter and method of operating it
WO2012037964A1 (en) Series - connected dc / dc converter for controlling the power flow in a hvdc power transmission system
US20150062991A1 (en) Method and system for power conversion
CN112436741B (zh) 基于双开关电力电子移相变压器的精简型多脉波整流器
Foureaux et al. Command generation for wide-range operation of hysteresis-controlled Vienna rectifiers
Shu et al. Diode-clamped three-level multi-module cascaded converter based power electronic traction transformer
US20230074022A1 (en) Power converter topologies with power factor correction circuits controlled using adjustable deadtime
RU2709186C1 (ru) Стабилизатор трёхфазного синусоидального напряжения со звеном повышенной частоты
Brando et al. Power electronic transformer application to grid connected photovoltaic systems
Lopez-Santos et al. Hysteresis control methods
Shigeuchi et al. A new modulation method for a bidirectional isolated three-phase AC/DC dual-active-bridge converter to realize higher efficiency in wide output voltage range
Sayed et al. Modeling and control of bidirectional isolated battery charging and discharging converter based high-frequency link transformer
Deepthi et al. Study of variation of THD in a Diode clamped multilevel inverter with respect to modulation index and control strategy
Rashid Three-Phase Controlled Rectifiers
RU2156024C1 (ru) Стабилизатор трехфазного синусоидального напряжения со звеном повышенной частоты
US20230071003A1 (en) Power factor correction circuits controlled using adjustable deadtime
US20230076369A1 (en) Unidirectional power converters with power factor correction circuits controlled using adjustable deadtime
RU2740490C1 (ru) Устройство для стабилизации трехфазного синусоидального напряжения со звеном повышенной частоты
Ahmad et al. Analysis of three-phase grid-tied thyristor based inverter for solar PV applications
Sarkar et al. Performance Improved Multi-Level OEIM Drive With Voltage Boost Through Unequal Levels
RU2660131C1 (ru) Многоуровневый выпрямитель напряжения
CN112003493A (zh) 一种低共模电压的非隔离双向dc/ac变流器及其控制方法