RU2708528C1 - Гибридная металлополимерная конструкция медицинского назначения - Google Patents

Гибридная металлополимерная конструкция медицинского назначения Download PDF

Info

Publication number
RU2708528C1
RU2708528C1 RU2018144661A RU2018144661A RU2708528C1 RU 2708528 C1 RU2708528 C1 RU 2708528C1 RU 2018144661 A RU2018144661 A RU 2018144661A RU 2018144661 A RU2018144661 A RU 2018144661A RU 2708528 C1 RU2708528 C1 RU 2708528C1
Authority
RU
Russia
Prior art keywords
molecular weight
weight polyethylene
ultra
high molecular
metal
Prior art date
Application number
RU2018144661A
Other languages
English (en)
Inventor
Алексей Валентинович Максимкин
Фёдор Святославович Сенатов
Сергей Дмитриевич Калошкин
Дилюс Ирекович Чуков
Алексей Игоревич Салимон
Кирилл Вячеславович Няза
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority to RU2018144661A priority Critical patent/RU2708528C1/ru
Application granted granted Critical
Publication of RU2708528C1 publication Critical patent/RU2708528C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

Изобретение относится к медицине. Гибридная металлополимерная конструкция для замещения костных дефектов трубчатых костей содержит сплошной внешний слой из сверхвысокомолекулярного полиэтилена и пористый слой из сверхвысокомолекулярного полиэтилена с размером пор 50-1000 мкм. Конструкция дополнительно содержит металлический каркас, перфорированный отверстиями, со значением жесткости на сжатие и изгиб, характерной для естественной кортикальной костной ткани. Сплошной внешний слой имеет гладкую биоинертную поверхность для контакта с мышцами и кожей. Пористый слой из сверхвысокомолекулярного полиэтилена имитирует губчатую костную ткань и имеет объемную пористость 50-90%. Изобретение обеспечивает высокие биосовместимость и репаративные свойства пористого слоя сверхвысокомолекулярного полиэтилена, а также адекватные механические свойства. 1 з.п. ф-лы, 2 пр., 5 ил.

Description

Изобретение представляет собой многослойную гибридную конструкцию, состоящую из комбинации слоев биосовместимого сверхвысокомолекулярного полиэтилена с различной структурой, армированных металлическим каркасом, обеспечивающим полное соответствие механических свойств гибридной конструкции, свойствам замещаемого участка костной ткани. Гибридная металлополимерная конструкция предназначена для изготовления имплантатов для замещения костных дефектов человека и животных. Областью применения заявляемого изобретения являются реконструктивная хирургия, ортопедия, онкология, трансплантологии и травматология.
Известно изобретение ИМПЛАНТАТ ДЛЯ ЗАМЕЩЕНИЯ КОСТНЫХ ФРАГМЕНТОВ (RU 2157151 A61F 2/28, опублик. 10.06.2009) содержащий опорный каркас и скрепленные с ним элементы связи, отличающийся тем, что опорный каркас представляет собой проволочную сетку, проволоки которой имеют преимущественное направление, совпадающее с направлением максимальных нагрузок со стороны окружающей ткани, при этом в приосевой области установлен скрепленный с опорным каркасом и элементом связи стержень из титана или титанового сплава, а элементы связи выполнены из пористой кальций фосфатной керамики.
К недостаткам изобретения можно отнести использование хрупкой кальций фосфатной керамики в виде пористого покрытия металлических стержней.
Известно изобретение ИМПЛАНТАТ ДЛЯ ЗАМЕЩЕНИЯ ПРОТЯЖЕННЫХ КОСТНЫХ ФРАГМЕНТОВ СЛОЖНОЙ ФОРМЫ (RU 2265417 A61F 2/28, опублик. 10.12.2005) из сверхэластичного сплава на основе никелида титана, содержащий формоизменяемый опорный базис и скрепленный с ним элемент связи с окружающей тканью, отличающийся тем, что опорный базис выполнен в виде цилиндрической проволочной спирали, укрытой по всей длине проволочной сеткой, просвет цилиндрической спирали заполнен гранулами пористого проницаемого никелида титана в качестве элемента связи с окружающей тканью.
К недостаткам изобретения можно отнести использование гранул пористого проницаемого никелида титана в качестве элемента связи с окружающей костной тканью. Использование пористых гранул никелида титана снижает биосовместимость всего имплантата.
Известно изобретение КОМБИНИРОВАННЫЙ ИМПЛАНТАТ-ФИКСАТОР (RU 2349288 A61F 2/28, опублик. 20.03.2009) выполненный из каркаса с полостью. Каркас выполнен из трубчатой депротеинизированной компактной аллокости и соответствует размерам дефекта кости. Полость каркаса заполняют костно-пластическим материалом, трансплантатом или тканеинженерной конструкцией.
К недостаткам данного изобретения можно отнести использование аллокости, из которой изготавливают каркас имплантата-фиксатора. Использование аллокости от донора несет в себе опасность возникновения тканевой несовместимости, что может привести к отторжению имплантата. К тому же, перед использованием аллотрансплантаты подвергаются различным обработкам, что значительно ухудшает их механические свойства.
Прототипом заявляемого изобретения является ГИБРИДНАЯ ПОРИСТАЯ КОНСТРУКЦИЯ ДЛЯ ЗАМЕЩЕНИЯ КОСТНО-ХРЯЩЕВЫХ ДЕФЕКТОВ (RU 2632785 A61F 2/30, A61F 2/28 опублик. 9.10.2017) выполненная из сверхвысокомолекулярного полиэтилена с различной структурой: пористой и сплошной. Пористый слой имеет открытые сообщающиеся поры (% об.) от 50 до 90, диаметром от 50 мкм до 1000 мкм. Пористый слой обеспечивает активацию репаративных процессов образования новой косной или хрящевой тканей, васкуляризацию и удаление отходов. Сплошной слой сверхвысокомолекулярного полиэтилена обеспечивает механическую прочность гибридной конструкции. Гибридная конструкция выполняется в форме, обеспечивающей ее конгруэнтность относительно замещаемого дефекта кости или хряща.
К недостаткам гибридной пористой конструкции можно отнести невозможность ее применения для замещения костных дефектов больших размеров, в виду невозможности обеспечения сплошным слоем сверхвысокомолекулярного полиэтилена адекватных механических свойств. Гибридная пористая конструкция больше подходит для замещения хрящей и малых костных дефектов. Сверхвысокомолекулярный полиэтилен обладает пределом прочности на сжатие 80 МПа при деформации 40%, тогда как предел прочности костной ткани может варьироваться от 60 до 150 МПа, при деформации не более 5%.
Технический результат заявляемого изобретения заключается в создании гибридной металлополимерной конструкции для замещения обширных костных дефектов за счет комбинации слоев пористого сверхвысокомолекулярного полиэтилена, сплошного сверхвысокомолекулярного полиэтилена и металлического каркаса, характеризующейся:
- высокой биосовместимостью;
- высокими репаративными свойствами пористого слоя сверхвысокомолекулярного полиэтилена;
- адекватными механическими свойствами за счет использования металлического каркаса с перфорированной структурой:
- возможностью изготовить гибридную конструкцию в полном соответствии с замещаемым костным дефектом;
Технический результат достигается за счет создания гибридной металлополимерной конструкции для замещения костных дефектов трубчатых костей, содержащей сплошной внешний слой из сверхвысокомолекулярного полиэтилена и пористый слой из сверхвысокомолекулярного полиэтилена с размером пор 50-1000 мкм, отличающаяся тем, что дополнительно содержит металлический каркас, перфорированный отверстиями, со значением жесткости на сжатие и изгиб характерной для естественной кортикальной костной ткани, при этом сплошной внешний слой имеет гладкую биоинертную поверхность для контакта с мышцами и кожей, а пористый слой из сверхвысокомолекулярного полиэтилена, имитирует губчатую костную ткань и имеет объемную пористость 50-90%.
Металлический каркас выполнен из медицинского титанового сплава.
Пористый сверхвысокомолекулярный полиэтилен по своей структуре имитирует губчатую костную ткань и имеет открытые сообщающиеся поры в диапазоне от 50 мкм до 1000 мкм. Пористая структура сверхвысокомолекулярного полиэтилена обеспечивает высокие репаративные свойства: интеграцию имплантата в прилегающие ткани, процессы васкуляризации и замещение костного дефекта. Металлический каркас гибридной металлополимерной конструкции может быть выполнен из медицинского титана. Обеспечение соответствия механических свойств, в частности жесткости на сжатие и изгиб, металлического каркаса свойствам замещаемого участка костной ткани обеспечивается за счет расчетного снижения момента инерции сечения металлического каркаса путем перфорирования его стенок в определенных позициях. Форма отверстий, их размер, расположение и количество рассчитывается с использованием метода конечных элементов и оптимизируется для приведения в соответствие со значением жесткости на сжатие и изгиб для естественной кортикальной костной ткани. 3D печать металлического каркаса позволяет изготавливать гибридную конструкцию в полном соответствии с геометрическими размерами замещаемого костного дефекта. Сплошной слой сверхвысокомолекулярного полиэтилена формирует гладкую биоинертную поверхность для контакта с мышцами и кожей. Гладкая биоинертная поверхность сверхвысокомолекулярного полиэтилена снижает вероятность травмирования прилегающих мышц и кожи. Также сплошной слой сверхвысокомолекулярного полиэтилена может быть насыщен антибактериальным препаратом для снижения риска возникновения послеоперационных воспалительных реакций.
Изобретение поясняется чертежом, где на Фиг. 1 представлена модель гибридной металлополимерной конструкции медицинского назначения, адаптированной для замещения дефектов трубчатых костей, где 1 - пористый слой из сверхвысокомолекулярного полиэтилена, имитирующий губчатую костную ткань, 2 - металлический каркас, обеспечивающий полное механическое соответствие гибридной металлополимерной конструкции, в соответствии с механическим поведением замещаемого участка костной ткани, 3 - сплошной слой с гладкой биоинертной поверхностью из сверхвысокомолекулярного полиэтилена.
Возможность промышленного применения предлагаемой гибридной металлополимерной конструкции медицинского назначения подтверждается следующими примерами:
Пример 1.
В качестве металлического каркаса гибридной металлополимерной конструкции был использован медицинский титановый сплав. Геометрические размеры металлического каркаса и перфорация стенок были рассчитаны с использованием метода конечных элементов. При моделировании свойств каркаса был применен метод оптимизации размеров и геометрии отдельных отверстий и каркаса в целом с целью обеспечения соответствия значения эффективной инженерной жесткости на сжатие и изгиб для металлического каркаса со значением эффективной инженерной жесткости на сжатие и изгиб для естественной кортикальной костной ткани. Исходными данными для оптимизации механических свойств являлись характеристики, необходимые после имплантации гибридной металлополимерной конструкции. Во время оптимизации также учитывались ограничения, наложенные последующей 3D-печатью. Результатом примененного алгоритма оптимизации толщина стенки каркаса, размер и геометрия перфорации, необходимость введения скруглений и так далее. Методом конечных элементов были смоделированы испытания на усталость, по которым для металлического каркаса были оценены значения нагрузки разрушения, эффективной инженерной жесткости и нагрузки текучести. Для определения усталостных характеристик использовалось испытание на мало и многоцикловую усталость. Фиг. 2 демонстрирует построенную модель металлического каркаса для гибридной металлополимерной конструкции медицинского назначения. Разработанная модель имеет жесткость на сжатие и изгиб соответствующую замещаемому участку костной ткани.
Металлический каркас изготавливается по построенной модели методом 3D печати. Использование метода 3D печати позволяет изготовить гибридную конструкцию в полном соответствии с замещаемым костным дефектом. Пористый и сплошной слои гибридной металлополимерной конструкции медицинского назначения выполнены из медицинского сверхвысокомолекулярного полиэтилена. Пористый слой состоит из пор со средним размером 500 мкм (полный диапазон 50-1000 мкм) и объемной пористостью 90%, который обеспечивает высокие репаративные свойства. Фиг. 3 демонстрирует гибридную металлополимерную конструкцию медицинского назначения, выполненную в виде имплантата трубчатой кости, где 1 - пористый слой сверхвысокомолекулярного полиэтилена, 2 - металлический каркас с перфорированной структурой, 3 - сплошной слой с гладкой биоинертной поверхностью из сверхвысокомолекулярного полиэтилена.
Гибридная металлополимерная конструкция имеет предел прочности на сжатие 200 МПа и модуль упругости при сжатии 15 ГПа.
Пример 2.
В качестве металлического каркаса гибридной металлополимерной конструкции был использован медицинский титановый сплав. Геометрические размеры металлического каркаса и перфорация стенок были рассчитаны с использованием метода конечных элементов. При моделировании свойств каркаса был применен метод оптимизации размеров и геометрии отдельных отверстий и каркаса в целом с целью обеспечения соответствия значения эффективной инженерной жесткости на сжатие и изгиб для металлического каркаса со значением эффективной инженерной жесткости на сжатие и изгиб для естественной кортикальной костной ткани. Исходными данными для оптимизации механических свойств являлись характеристики, необходимые после имплантации гибридной металлополимерной конструкции. Во время оптимизации также учитывались ограничения, наложенные последующей 3D-печатью. Результатом примененного алгоритма оптимизации толщина стенки каркаса, размер и геометрия перфорации, необходимость введения скруглений и так далее. Методом конечных элементов были смоделированы испытания на усталость, по которым для металлического каркаса были оценены значения нагрузки разрушения, эффективной инженерной жесткости и нагрузки текучести. Для определения усталостных характеристик использовалось испытание на мало и многоцикловую усталость. Фиг. 4 демонстрирует построенную модель металлического каркаса для гибридной металлополимерной конструкции медицинского назначения. Разработанная модель имеет жесткость на сжатие и изгиб соответствующую замещаемому участку костной ткани.
Металлический каркас изготавливается по построенной модели методом 3D печати. Использование метода 3D печати позволяет изготовить гибридную конструкцию в полном соответствии с замещаемым костным дефектом. Пористый и сплошной слои гибридной металлополимерной конструкции медицинского назначения выполнены из медицинского сверхвысокомолекулярного полиэтилена. Пористый слой состоит из пор со средним размером 500 мкм (полный диапазон 50-1000 мкм) и объемной пористостью 90%, который обеспечивает высокие репаративные свойства. Фиг. 5 демонстрирует гибридную металлополимерную конструкцию медицинского назначения, выполненную в виде имплантата трубчатой кости, где 1 - пористый слой сверхвысокомолекулярного полиэтилена, 2 - металлический каркас с перфорированной структурой, 3 - сплошной слой с гладкой биоинертной поверхностью из сверхвысокомолекулярного полиэтилена. Отличительной чертой гибридной металлополимерной конструкции является то, что пористый слой сверхвысокомолекулярного полиэтилена находится только по краям. Центральная часть гибридной металлополимерной конструкции заполнена сплошным сверхвысокомолекулярным полиэтиленом. Гибридная металлополимерная конструкция имеет предел прочности на сжатие 500 МПа и модуль упругости при сжатии 25 ГПа.

Claims (2)

1. Гибридная металлополимерная конструкция для замещения костных дефектов трубчатых костей, содержащая сплошной внешний слой из сверхвысокомолекулярного полиэтилена и пористый слой из сверхвысокомолекулярного полиэтилена с размером пор 50-1000 мкм, отличающаяся тем, что дополнительно содержит металлический каркас, перфорированный отверстиями, со значением жесткости на сжатие и изгиб, характерной для естественной кортикальной костной ткани, при этом сплошной внешний слой имеет гладкую биоинертную поверхность для контакта с мышцами и кожей, а пористый слой из сверхвысокомолекулярного полиэтилена имитирует губчатую костную ткань и имеет объемную пористость 50-90%.
2. Гибридная конструкция по п. 1, отличающаяся тем, что металлический каркас выполнен из медицинского титанового сплава.
RU2018144661A 2018-12-17 2018-12-17 Гибридная металлополимерная конструкция медицинского назначения RU2708528C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018144661A RU2708528C1 (ru) 2018-12-17 2018-12-17 Гибридная металлополимерная конструкция медицинского назначения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018144661A RU2708528C1 (ru) 2018-12-17 2018-12-17 Гибридная металлополимерная конструкция медицинского назначения

Publications (1)

Publication Number Publication Date
RU2708528C1 true RU2708528C1 (ru) 2019-12-09

Family

ID=68836764

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018144661A RU2708528C1 (ru) 2018-12-17 2018-12-17 Гибридная металлополимерная конструкция медицинского назначения

Country Status (1)

Country Link
RU (1) RU2708528C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2743108C1 (ru) * 2019-12-25 2021-02-15 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Гибридная пластина для краниопластики

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000030569A1 (de) * 1998-11-26 2000-06-02 Eska Implants Gmbh & Co. Armierungsendoprothese
RU25996U1 (ru) * 2002-03-25 2002-11-10 Зум Инвестмент Лимитед Инк. Имплантат для контурной пластики, восстановления, коррекции, устранения или замещения дефектов, повреждений или деформаций костной или хрящевой ткани
RU2349288C2 (ru) * 2007-04-24 2009-03-20 ФГУ Новосибирский научно-исследовательский институт травматологии и ортопедии (ФГУ ННИИТО Росздрава) Комбинированный имплантат-фиксатор
RU2357702C1 (ru) * 2007-11-26 2009-06-10 Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" Имплантат для замещения костных фрагментов
US7781526B2 (en) * 2003-09-19 2010-08-24 Depuy Products, Inc. Medical implant or medical implant part comprising porous UHMWPE and process for producing the same
RU165598U1 (ru) * 2016-02-29 2016-10-27 государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ГБОУ ВПО ОмГМУ Минздрава России) Имплант наноуглеродный для замещения сегментарных дефектов длинных костей с антибиотикнесущими вставками из костного цемента
RU2632785C1 (ru) * 2016-06-28 2017-10-09 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Гибридная пористая конструкция для замещения костно-хрящевых дефектов

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000030569A1 (de) * 1998-11-26 2000-06-02 Eska Implants Gmbh & Co. Armierungsendoprothese
RU25996U1 (ru) * 2002-03-25 2002-11-10 Зум Инвестмент Лимитед Инк. Имплантат для контурной пластики, восстановления, коррекции, устранения или замещения дефектов, повреждений или деформаций костной или хрящевой ткани
US7781526B2 (en) * 2003-09-19 2010-08-24 Depuy Products, Inc. Medical implant or medical implant part comprising porous UHMWPE and process for producing the same
RU2349288C2 (ru) * 2007-04-24 2009-03-20 ФГУ Новосибирский научно-исследовательский институт травматологии и ортопедии (ФГУ ННИИТО Росздрава) Комбинированный имплантат-фиксатор
RU2357702C1 (ru) * 2007-11-26 2009-06-10 Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" Имплантат для замещения костных фрагментов
RU165598U1 (ru) * 2016-02-29 2016-10-27 государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ГБОУ ВПО ОмГМУ Минздрава России) Имплант наноуглеродный для замещения сегментарных дефектов длинных костей с антибиотикнесущими вставками из костного цемента
RU2632785C1 (ru) * 2016-06-28 2017-10-09 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Гибридная пористая конструкция для замещения костно-хрящевых дефектов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2743108C1 (ru) * 2019-12-25 2021-02-15 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Гибридная пластина для краниопластики

Similar Documents

Publication Publication Date Title
Li et al. Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models
Raut et al. Biocompatibility of biomaterials for tissue regeneration or replacement
Yang et al. Bone healing response to a synthetic calcium sulfate/β‐tricalcium phosphate graft material in a sheep vertebral body defect model
San Cheong et al. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants
EP3481446B1 (en) Tissue matrices incorporating multiple tissue types
US20110076316A1 (en) Scalable matrix for the in vivo cultivation of bone and cartilage
CN102764888B (zh) 一种复合多孔β-TCP的钛合金人距骨支撑棒及其制备方法
US10631987B2 (en) 3D printed trans-modular scaffolds for grafting applications in segmental bone defects
Masaeli et al. Challenges in three-dimensional printing of bone substitutes
Xuan et al. A specific groove design for individualized healing in a canine partial sternal defect model by a polycaprolactone/hydroxyapatite scaffold coated with bone marrow stromal cells
RU152119U1 (ru) Эластичный сетчатый титановый имплантат для реконструктивной хирургии
JP6062150B2 (ja) 骨欠損部充填材料
Zia et al. Structural design and mechanical performance of composite vascular grafts
RU2708528C1 (ru) Гибридная металлополимерная конструкция медицинского назначения
Zhao et al. Application of biomaterials for the repair and treatment of osteonecrosis of the femoral head
EA028683B1 (ru) Материал для имплантации (варианты), зубной имплантат, сосудистый имплантат и тканевый имплантат для заместительной пластики мягких тканей
RU171823U1 (ru) Ячеистый цилиндрический биоактивный имплантат для замещения циркулярных дефектов трубчатых костей
Datta et al. Role and challenges of bioprinting in bone tissue engineering
CN104688390A (zh) 一种网状支撑器
Liang et al. Fabrication of porous tantalum with low elastic modulus and tunable pore size for bone repair
CN204723219U (zh) 一种网状支撑器
Bakhtiari et al. Fatigue behaviour of load-bearing polymeric bone scaffolds: A review
US11554196B2 (en) Biomaterial
Karuppudaiyan et al. Finite element analysis of scaffold for large defect in femur bone
RU2632785C1 (ru) Гибридная пористая конструкция для замещения костно-хрящевых дефектов

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20200415

Effective date: 20200415