RU2705934C1 - Способ контроля антенно-мачтовых сооружений - Google Patents

Способ контроля антенно-мачтовых сооружений Download PDF

Info

Publication number
RU2705934C1
RU2705934C1 RU2019112493A RU2019112493A RU2705934C1 RU 2705934 C1 RU2705934 C1 RU 2705934C1 RU 2019112493 A RU2019112493 A RU 2019112493A RU 2019112493 A RU2019112493 A RU 2019112493A RU 2705934 C1 RU2705934 C1 RU 2705934C1
Authority
RU
Russia
Prior art keywords
mast
state
ams
antenna
optical
Prior art date
Application number
RU2019112493A
Other languages
English (en)
Inventor
Владимир Александрович Бурдин
Антон Олегович Нижгородов
Кирилл Рудольфович Карлов
Сергей Александрович Ракитин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный университет телекоммуникаций и информатики" (ФГБОУ ВО ПГУТИ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный университет телекоммуникаций и информатики" (ФГБОУ ВО ПГУТИ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный университет телекоммуникаций и информатики" (ФГБОУ ВО ПГУТИ)
Priority to RU2019112493A priority Critical patent/RU2705934C1/ru
Application granted granted Critical
Publication of RU2705934C1 publication Critical patent/RU2705934C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

Изобретение относится к области контроля состояния несущих конструкций антенно-мачтовых сооружений (АМС), оперативного оповещения об изменениях их состояния, предупреждения чрезвычайных ситуаций и может быть использовано в автоматизированных системах мониторинга состояния антенно-мачтовых сооружений. Сущностью предлагаемого изобретения является расширение области применения. Эта сущность достигается тем, что согласно способу контроля состояния антенно-мачтовых сооружений, заключающемуся в установке на его мачте блока с трехосным акселерометром, установке на ней, через равные расстояния, блоков с трехосными акселерометрами, установке анемометра, установке в ее заданных сечениях датчиков напряженно-деформированного состояния, установке блока с трехосным акселерометром в ее фундамент и сейсмодатчика в грунт, сборе и обработке данных измерений, при этом дополнительно вдоль мачты укладывают сенсорные оптические волокна, параллельно с которыми укладывают оптические волокна с включенными в них волоконно-оптическими решетками Брэгга, методами Бриллюэновской оптической рефлектометрии и/или иными методами оптической рефлектометрии измеряют распределения напряженно-деформированных состояний элементов конструкции АМС вдоль сенсорных оптических волокон, калибруют полученные кривые распределений напряженно-деформированных состояний по результатам обработки оптических сигналов, отраженных на волоконно-оптических решетках Брэгга, и затем в режиме online по результатам обработки данных измерений оценивают состояние АМС и причины возможных отклонений параметров состояния АМС. 1 ил.

Description

Изобретение относится к области контроля состояния несущих конструкций антенно-мачтовых сооружений (АМС), оперативного оповещения об изменениях их состояния, предупреждения чрезвычайных ситуаций и может быть использовано в автоматизированных системах мониторинга состояния антенно-мачтовых сооружений.
Известны способы мониторинга напряженно-деформированного состояния сооружений [1-4], заключающиеся в том, что в тело сооружения в заданных точках устанавливают датчики на основе волоконно-оптических решеток Брэгга, которые соединяют оптическими волокнами с интеррогатором, передают по оптическим волокнам зондирующие импульсы, в интеррогаторе принимают оптические сигналы, отраженные на волоконно-оптических решетках Брэгга, и по результатам обработки этих сигналов оценивают напряженно-деформированного состояния сооружения в точках, где установлены датчики. Однако, по результатам контроля напряженно-деформированного состояния сооружения в его отдельных точках невозможно оценивать состояние АМС в целом.
Известны способы мониторинга напряженно-деформированного состояния сооружений [3-13], заключающиеся в том, что в тело сооружения закладывают сенсорные оптические волокна, в которые подают зондирующие оптические сигналы и методами Бриллюэновской оптической рефлектометрии и/или когерентной оптической рефлектометрии и/или поляризационной оптической рефлектометрии и/или маломодовой оптической рефлектометрии и/или иными методами оптической рефлектометрии измеряют распределения напряженно-деформированного состояния сооружения вдоль сенсорных оптических волокон. Однако, контроль только распределений напряженно-деформированных состояний вдоль сооружения и его элементов не позволяет оценивать состояние АМС в целом.
Известны способы контроля вертикальности АМС, которые осуществляются средствами геодезического мониторинга в установленном порядке проведения данных работ путем проведения геодезических угловых измерений [14, 15]. Недостатком данного способа является то, что при заданной периодичности - минимум два раза в год, контроль вертикальности АМС в межповерочный период не проводится.
Известен способ контроля линейных и угловых отклонений от вертикального направления для дистанционного мониторинга антенно-мачтовых сооружений [16]. Способ заключается в установке закрепленного на АМС трехосного акселерометра, с помощью которого определяют линейные и угловые отклонения от вертикального положения АМС, и дальнейшей фиксации и обработке этих данных. При этом, регистрируют проекции линейного ускорения на три ортогональные оси акселерометра по меньшей мере для двух последовательных сеансов измерения, а линейные и угловые отклонения от вертикального положения антенно-мачтовых сооружений вычисляют по результатам выделения и анализа поступательной составляющей динамических характеристик поступательно-колебательного движения АМС, вычисленных с учетом величин упомянутых проекций линейного ускорения. Недостатками настоящего способа является отсутствие информации о причинах отклонений и колебаний АМС от вертикального положения, отсутствие данных об уровнях напряженно-деформированного состояния (НДС) элементов и металлических конструкций АМС, отсутствие информации о пространственном положении фундамента АМС.
Наиболее близким к заявляемому является известный способ контроля состояния антенно-мачтовых сооружений [17], заключающийся в установке на его мачте блока с трехосным акселерометром, установке на ней, через равные расстояния, блоков с трехосными акселерометрами, установке анемометра, установке в ее заданных сечениях датчиков напряженно-деформированного состояния, а также установке блока с трехосным акселерометром в ее фундамент и сейсмодатчика в грунт, сборе и обработке данных измерений, по результатам которой затем в режиме online оценивают состояние АМС и причины возможных отклонений мачты от вертикальности, ее геометрии, о пространственном положении фундамента и уровнях напряжений конструктивных элементов мачты. Основной недостаток данного способа заключается в том, что датчики напряженно-деформированного состояния устанавливаются в отдельных точках заданных сечений АМС. Это позволяет оценивать распределения напряженно-деформированных состояний вдоль АМС только в первом приближении. Как следствие, велика вероятность того, что рост локальных напряженно-деформированных состояний на участках между датчиками и, соответственно, локальных дефектов элементов конструкции АМС не будет своевременно выявлен и локализован. Это недопустимо в условиях повышенной коррозионной активности, сильной вибрации и больших ветровых нагрузок.
Сущностью предлагаемого изобретения является расширение области применения.
Эта сущность достигается тем, что согласно способу способ контроля состояния антенно-мачтовых сооружений, заключающемуся в установке на его мачте блока с трехосным акселерометром, установке на ней, через равные расстояния, блоков с трехосными акселерометрами, установке анемометра, установке в ее заданных сечениях датчиков напряженно-деформированного состояния, установке блока с трехосным акселерометром в ее фундамент и сейсмодатчика в грунт, сборе и обработке данных измерений, при этом дополнительно вдоль мачты укладывают сенсорные оптические волокна, параллельно с которыми укладывают оптические волокна с включенными в них волоконно-оптическими решетками Брэгга, методами Бриллюэновской оптической рефлектометрии и/или иными методами оптической рефлектометрии измеряют распределения напряженно-деформированных состояний элементов конструкции АМС вдоль сенсорных оптических волокон, калибруют полученные кривые распределений напряженно-деформированных состояний по результатам обработки оптических сигналов отраженных на волоконно-оптических решетках Брэгга, и затем в режиме online по результатам обработки данных измерений оценивают состояние АМС и причины возможных отклонений параметров состояния АМС.
На фиг. 1 представлена схема реализации способа контроля состояния антенно-мачтовых сооружений. Схема включает мачту АМС – 1, блок трехосевых акселерометров – 2, анемометр – 3, фундамент АМС – 4, первый кабель – 5, блок сбора, обработки и передачи данных - 6, датчик НДС – 7, второй кабель – 8, сейсмодатчик – 9, диспетчерский пункт – 10, сенсорные оптические волокна -11, оптические волокна с волоконно-оптическими решетками Брэгга – 12, оптический рефлектометр – 13, интеррогатор – 14. При этом, на мачте АМС 1 установлены блоки трехосных акселерометров 2 (через равные расстояния) и анемометр 3. В фундамент АМС 4 установлен один блок трехосных акселерометров 2. Вышеуказанные элементы соединены первым кабелем 5 и с его помощью подключены к блоку сбора, обработки и передачи данных 6, который оборудован вблизи АМС. По периметру заданных сечений мачты АМС 1 установлены датчики НДС 7, которые соединены вторым кабелем 8 друг с другом и с блоком сбора, обработки и передачи данных 6. В грунте, рядом с фундаментом АМС 4, установлен сейсмодатчик 9, который подключен к блоку сбора, обработки и передачи данных 6. При этом, вдоль мачты уложены сенсорные оптические волокна 11, параллельно с которыми уложены оптические волокна с включенными в них волоконно-оптическими решетками Брэгга 12. Сенсорные оптические волокна 11 подключены к оптическому рефлектометру 13, а оптические волокна с включенными в них волоконно-оптическими решетками Брэгга 12 подключены к интеррогатору 14. Причем оптический рефлектометр 13 и интеррогатор 14 подключены к блоку сбора, обработки и передачи данных 6.
Способ осуществляется следующим образом. Под действием ветровой нагрузки или сейсмических колебаний грунта мачта АМС 1 отклоняется от вертикали. Блоки трехосевых акселерометров 2 дают информацию об ориентации в пространстве участков мачты АМС 1 в местах их установки. Минимальное количество блоков трехосевых акселерометров 2 не менее трех. Блок трехосевых акселерометров 2, установленный в фундаменте АМС 4, дает информацию о пространственном положении фундамента АМС 4. Программное обеспечение блока сбора, обработки и передачи данных 6 преобразует в режиме реального времени информацию с блоков трехосевых акселерометров 2 об их положении в пространстве в реальную геометрию мачты АМС 1 и ее фундамента АМС 4 в формате 3-D, возникающую под воздействием ветровой нагрузки или сейсмических колебаний. Полноту контроля состояния АМС обеспечивает информация об уровнях НДС в элементах конструкции мачты АМС 1 при ее критических отклонениях от вертикали. Эту информацию обеспечивают установленные по периметру заданных сечений мачты АМС 1 датчики НДС 7, сенсорные оптические волокна 11 с оптическим рефлектометром 13 и оптическими волокнами с включенными в них волоконно-оптическими решетками Брэгга 12 с интеррогатором 14. Сравнивая показания анемометра 3 о направлении и скорости ветра с величиной и направлением изгиба мачты АМС 1, полученных с блоков трехосевых акселерометров 2, оператор диспетчерского пункта 10 может оценить ситуацию, является она штатной или аварийной. Таким же образом оператор оценивает колебания мачты с учетом информации от сейсмодатчика 9. При этом по распределениям НДС, полученным с помощью сенсорных оптических волокон 11 и откалиброванных с помощью оптических волокон с включенными в них волоконно-оптическими решетками Брэгга 12 выявляют и локализуют аварийные элементы конструкции АМС 1. Таким образом, реализуется универсальный, комплексный способ контроля состояния антенно-мачтовых сооружений, предназначенный для определения как отклонений от вертикальности, так и причин отклонений с информацией об уровнях НДС конструкций в режиме реального времени.
В отличие от известного способа, которым является прототип, заявляемым способом за счет применения сенсорных оптических волокон и Бриллюэновской оптической рефлектометрии и/или иных методов оптической рефлектометрии НДС контролируют не в отдельных сечениях АМС, а вдоль всей мачты и получают кривые распределения НДС вдоль мачты, что обеспечивает более полную картину для определения состояния АМС и позволяет своевременно выявлять и локализовать дефекты и авариные элементы конструкции АМС, в частности, аварийные металлические элементы в условиях повышенной коррозии, вибрации и ветровой нагрузки. Как следствие, это обеспечивает расширение области применения способа контроля состояния антенно-мачтовых сооружений.
ЛИТЕРАТУРА
1. Патент RU 2005133274.
2. Патент RU 2377497.
3. Inaudi D. Overview of fibre optic sensing to structural health monitoring applications// ISISS'2005, International Symposium on Innovation & Sustainability of Structures in Civil Engineering, 2005, p.p. 1-16.
4. López-Higuera J.M., Rodriguez L., Quintela A., Cobo A., Madruga F.J., Conde O.M., Lomer M., Quintela M.A., Mirapeix J. Fiber optics in structural health monitoring// Proc. of SPIE, v.7853, 2016, p.p. 78530D-1.
5. Патент EP2897310.
6. Патент US20030174924.
7. Hotate K. Brillouin Optical Correlation-Domain Technologies Based on Synthesis of Optical Coherence Function as Fiber Optic Nerve Systems for Structural Health Monitoring// Appl. Sci., v. 9(187), 2019, p.p. 1-48.
8. Liehr S., Munzenberger S., Krebber K. Wavelength-scanning coherent OTDR for dynamic high strain resolution sensing// Optics Express, v. 26(8), 2018, pp.10573-10588.
9. Патент RU2287131.
10. Патент RU2562689.
11. Патент RU2672794.
12. Liu X., Jin B., Bai Q., Wang Y., Wang D., Wang Y. Distributed Fiber-Optic Sensors for Vibration Detection// Sensors, v. 16(1164), 2016, pp. 1-31.
13. Weng Y., Wang T., Pan Z. Multi-functional fiber optic sensors based on mode division multiplexing// Optical Materials, v.7(6), 2017, pp. 1917-1933.
14. Инструкция по эксплуатации антенных сооружений радиорелейных линий связи/ Министерство связи СССР // ГЛАВСВЯЗЬПРОЕКТ. Государственный Союзный Проектный Институт. Утверждена Министерством связи СССР 14 января 1980 г.
15. СТ-011-3 Приложение 4. Требования к проведению геодезического контроля антенных опор / ОАО «Мобильные телесистемы».
16. Патент RU 2477454.
17. Патент RU 2626069.

Claims (1)

  1. Способ контроля состояния антенно-мачтовых сооружений, заключающийся в установке на его мачте блока с трехосным акселерометром, установке на ней, через равные расстояния, блоков с трехосными акселерометрами, установке анемометра, установке в ее заданных сечениях датчиков напряженно-деформированного состояния, установке блока с трехосным акселерометром в ее фундамент и сейсмодатчика в грунт, сборе и обработке данных измерений, отличающийся тем, что дополнительно вдоль мачты укладывают сенсорные оптические волокна, параллельно с которыми укладывают оптические волокна с включенными в них волоконно-оптическими решетками Брэгга, методами Бриллюэновской оптической рефлектометрии и/или иными методами оптической рефлектометрии измеряют распределения напряженно-деформированных состояний элементов конструкции АМС вдоль сенсорных оптических волокон, калибруют полученные кривые распределений напряженно-деформированных состояний по результатам обработки оптических сигналов, отраженных на волоконно-оптических решетках Брэгга, и затем в режиме online по результатам обработки данных измерений оценивают состояние АМС и причины возможных отклонений параметров состояния АМС.
RU2019112493A 2019-04-24 2019-04-24 Способ контроля антенно-мачтовых сооружений RU2705934C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019112493A RU2705934C1 (ru) 2019-04-24 2019-04-24 Способ контроля антенно-мачтовых сооружений

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019112493A RU2705934C1 (ru) 2019-04-24 2019-04-24 Способ контроля антенно-мачтовых сооружений

Publications (1)

Publication Number Publication Date
RU2705934C1 true RU2705934C1 (ru) 2019-11-12

Family

ID=68579690

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019112493A RU2705934C1 (ru) 2019-04-24 2019-04-24 Способ контроля антенно-мачтовых сооружений

Country Status (1)

Country Link
RU (1) RU2705934C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2775403C1 (ru) * 2021-07-30 2022-06-30 Публичное акционерное общество "МРСК Центра и Приволжья" Устройство дистанционного мониторинга фундаментов опор воздушных линий электропередач

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420666B2 (en) * 2003-03-14 2008-09-02 Fujitsu Limited Measurement method by OTDR and terminal station apparatus
RU90901U1 (ru) * 2009-10-05 2010-01-20 Государственное образовательное учреждение высшего профессионального образования "Томский государственный архитектурно-строительный университет" (ГОУВПО "ТГАСУ") Стенд для испытания железобетонных элементов на действие изгибающих моментов, продольных и поперечных сил при кратковременном динамическом нагружении
RU100255U1 (ru) * 2010-04-23 2010-12-10 Государственное образовательное учреждение высшего профессионального образования "Томский государственный архитектурно-строительный университет" (ГОУВПО "ТГАСУ") Стенд для испытания железобетонных элементов на поперечный изгиб при статическом нагружении
RU150207U1 (ru) * 2013-12-30 2015-02-10 Общество с ограниченной ответственностью "ОПТЭН" Терминал контроля технического состояния опор воздушной линии электропередачи
CN103270400B (zh) * 2011-01-20 2015-04-29 奥姆尼森股份公司 应变传感器设备和应变传感方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420666B2 (en) * 2003-03-14 2008-09-02 Fujitsu Limited Measurement method by OTDR and terminal station apparatus
RU90901U1 (ru) * 2009-10-05 2010-01-20 Государственное образовательное учреждение высшего профессионального образования "Томский государственный архитектурно-строительный университет" (ГОУВПО "ТГАСУ") Стенд для испытания железобетонных элементов на действие изгибающих моментов, продольных и поперечных сил при кратковременном динамическом нагружении
RU100255U1 (ru) * 2010-04-23 2010-12-10 Государственное образовательное учреждение высшего профессионального образования "Томский государственный архитектурно-строительный университет" (ГОУВПО "ТГАСУ") Стенд для испытания железобетонных элементов на поперечный изгиб при статическом нагружении
CN103270400B (zh) * 2011-01-20 2015-04-29 奥姆尼森股份公司 应变传感器设备和应变传感方法
RU150207U1 (ru) * 2013-12-30 2015-02-10 Общество с ограниченной ответственностью "ОПТЭН" Терминал контроля технического состояния опор воздушной линии электропередачи

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2775403C1 (ru) * 2021-07-30 2022-06-30 Публичное акционерное общество "МРСК Центра и Приволжья" Устройство дистанционного мониторинга фундаментов опор воздушных линий электропередач

Similar Documents

Publication Publication Date Title
US10627219B2 (en) Apparatus and methods for monitoring movement of physical structures by laser deflection
US6012337A (en) Structural monitoring sensor system
US4812645A (en) Structural monitoring system using fiber optics
US6647161B1 (en) Structural monitoring sensor system
US6181841B1 (en) Structural monitoring sensor system
CN104976983B (zh) 一种采用分布式监测装置监测滑坡的方法
Xu et al. Deflection estimation of bending beam structures using fiber bragg grating strain sensors
CN105928453B (zh) 基于自适应标距的边坡变形失稳监测***和方法
KR20080021300A (ko) 라이다를 이용한 구조물 건전성 진단방법
EP3312556A1 (en) Mechanical strain amplifying transducer
Minardo et al. Fiber optic based inclinometer for remote monitoring of landslides: on site comparison with traditional inclinometers
CN105783863A (zh) 一种基于光纤传感技术的地基沉降测量***及方法
Marković et al. Application of fiber-optic curvature sensor in deformation measurement process
Wu et al. Development of a monitoring and warning system based on optical fiber sensing technology for masonry retaining walls and trees
JP3635270B2 (ja) 地盤変動計測システム
KR101584963B1 (ko) Gps를 사용한 경사면의 붕괴 조짐을 예측하는 장치 및 방법
RU2705934C1 (ru) Способ контроля антенно-мачтовых сооружений
CN115389066B (zh) 一种基于分布式光纤光栅感测的桥梁健康监测***
Nawrot et al. Mechanical strain-amplifying transducer for fiber Bragg grating sensors with applications in structural health monitoring
KR100991867B1 (ko) 광섬유센서를 이용한 교량 세굴 측정 방법
EP0278143B1 (en) Structural monitoring system using fiber optics
KR100270347B1 (ko) 지피에스반송파를이용한구조물의거동측정시스템
CN203798427U (zh) 基于光纤光栅传感器的重量测量***
RU2767263C1 (ru) Способ комплексной оценки показателей, определяющих техническое состояние трубопроводных систем, и система мониторинга для его реализации
Gustafsson et al. Health monitoring of timber bridges