RU2705528C1 - Комплексная котельная установка - Google Patents

Комплексная котельная установка Download PDF

Info

Publication number
RU2705528C1
RU2705528C1 RU2019102256A RU2019102256A RU2705528C1 RU 2705528 C1 RU2705528 C1 RU 2705528C1 RU 2019102256 A RU2019102256 A RU 2019102256A RU 2019102256 A RU2019102256 A RU 2019102256A RU 2705528 C1 RU2705528 C1 RU 2705528C1
Authority
RU
Russia
Prior art keywords
steam
pipe
outlet
water
gas
Prior art date
Application number
RU2019102256A
Other languages
English (en)
Inventor
Владимир Сергеевич Ежов
Наталья Евгеньевна Семичева
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority to RU2019102256A priority Critical patent/RU2705528C1/ru
Application granted granted Critical
Publication of RU2705528C1 publication Critical patent/RU2705528C1/ru

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к теплоэнергетике. Комплексная котельная установка содержит контактный парогенератор, состоящий из корпуса топки, внутри которого по эллиптическому периметру помещены экранные трубы, соединенные с верхним эллиптическим коллектором, снабженным патрубком выхода питательной воды, и нижним эллиптическим коллектором, снабженным патрубком входа питательной воды, соединенным с питательным насосом, внутри нижнего эллиптического коллектора осесимметрично ему расположены горелки, экранные трубы и корпус топки выгнуты снизу по форме конфигурации факела пламени, образующегося в результате горения топлива в горелках, а верхняя часть экранных труб и корпуса топки направлена вертикально вверх и соединена с приемной камерой эжектора, диффузор которого соединен на выходе с циклоном, корпус которого снабжен входным тангенциальным патрубком, патрубками отвода пара, конденсата, парогазовой смеси, который соединен с пластинчатым конденсатором, выполненным из коррозионно-устойчивого материала, соединенным с корпусом дегазатора, также соединенным с вентилятором высокого давления, напорный патрубок которого снабжен коническим насадком. Изобретение направлено на получение водяного пара и нагрев сетевой воды в системах теплоснабжения. 5 ил.

Description

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано как теплогенерирующая установка для получения водяного пара и нагрева сетевой воды в системах теплоснабжения.
Известен вихревой парогенератор, содержащий топку, выполненную в виде шарообразного корпуса, снабженного патрубком выхода пара, расположенную под ним водяную рубашку, снабженную патрубком входа питательной воды, и расположенную по центральной оси корпуса горелку, получение пара в котором осуществляется путем непосредственного контакта нагретой питательной воды с продуктами сгорания топлива [А. с. СССР № №885699, МПК F 22 В 27/12, 29/06, 1981].
Недостатками известного устройства являются необходимость проведения процесса горения при давлении равном давлению пара, что обусловливает повышенные требования к конструкционным материалам, увеличивает вес устройства и не позволяет получать пар с высокими технологическими параметрами, использование в качестве теплообменной поверхности водяной рубашки, что ограничивает площадь теплообменной поверхности и не позволяет увеличить производительность по пару и выполнение топки в виде шара, что затрудняет равномерный обогрев ее поверхности и в сумме снижает эффективность парогенератора.
Более близким к предлагаемому изобретению является контактный парогенератор, содержащий топку, состоящую из корпуса, внутри которого по окружности помещены экранные трубы, соединенные с верхним кольцевым коллектором, снабженным патрубком выхода питательной воды и нижним кольцевым коллектором, снабженным патрубком входа питательной воды, осесимметично которому устроена горелка, причем экранные трубы и корпус выгнуты таким образом, что полость образованная экранными трубами повторяет конфигурацию факела пламени, образующегося в результате горения топлива в горелке, эжектор, циклон и питательный насос, при этом топка соединена своим выходным отверстием, образованным кольцом верхнего коллектора с приемной камерой эжектора, диффузор которого соединен с тангенциальным патрубком циклона, патрубок выхода обратной воды которого соединен через трубопровод обратной воды, трубопровод питательной воды и питательный насос с патрубком входа питательной воды в нижний коллектор топки, а патрубок выхода горячей воды из верхнего коллектора соединен трубопроводом с соплом эжектора [Патент РФ № №2383815, МПК F 22 В 27/00, 2010].
Основными недостатками известного контактного парогенератора являются исполнение экранного пучка труб топки в виде одиночного факела, что создает опасность перегрева верхней зоны экранного пучка, снижает надежность и ограничивает производительность, необходимость для проведения процесса горения чистого водорода и кислорода, для чего требуется наличие источников этих компонентов, получение теплоносителя только в виде водяного пара, что ограничивает диапазон его использования, значительно увеличивает стоимость полученного теплоносителя и таким образом, снижает его эффективность.
Техническим результатом предлагаемого изобретения является повышение надежности и эффективности комплексной котельной установки.
Технический результат достигается комплексной котельной установкой, содержащей контактный парогенератор, состоящий из корпуса топки, внутри которого по эллиптическому периметру помещены экранные трубы, соединенные с верхним эллиптическим коллектором, снабженным патрубком выхода питательной воды и нижним эллиптическим коллектором, снабженным патрубком входа питательной воды, соединенным с питательным насосом, внутри нижнего эллиптического коллектора осесимметрично ему расположены горелки, экранные трубы и корпус топки выгнуты таким образом, что нижняя зона полости образованная экранными трубами повторяет конфигурацию факела пламени, образующегося в результате горения топлива в горелках, а верхняя часть экранных труб и корпуса топки направлены вертикально вверх, эжектор, приемная камера которого соединенной снизу с топкой, а диффузора соединен на выходе с циклоном, корпус которого снабжен входным тангенциальным патрубком, патрубками отвода парогазовой смеси и конденсата, соответственно, внутри которого помещена центральная труба, соединенная с патрубком выхода пара, причем патрубок отвода парогазовой смеси соединен с прямоугольным корпусом пластинчатого конденсатора, состоящего, из расположенных сверху–вниз пирамидального парового коллектора, снабженного паровым патрубком, соединенного снизу с теплообменным коробом, в котором устроены вертикальные теплообменные перегородки, выполненные из коррозионно-устойчивого материала, образующие вертикальные паровые и горизонтальные водные каналы, причем паровой коллектор соединен через паровые каналы сверху–вниз с газовым коллектором и пирамидальным днищем, снабженными газовым и конденсатным патрубками, а водные каналы соединены справа и слева с пирамидальными входным и выходным водяными коллекторами, соединенными с входным и выходным патрубками сетевой воды, газовый и конденсатный патрубки соединены с корпусом дегазатора, снабженного конденсатным патрубком, патрубком входа конденсата, патрубком входа влажного газа, соединенного с перфорированным распределителем, каплеотбойником и патрубком выхода очищенных газов, соединенным с вентилятором высокого давления, напорный патрубок которого снабжен коническим насадком.
На фиг. 1 представлена принципиальная схема предлагаемой комплексной котельной установки (КоКУ), на фиг. 2 - разрез топки контактного парогенератора, на фиг. 3-5 - разрезы пластинчатого конденсатора.
КоКУ содержит контактный парогенератор 1, состоящий из корпуса топки 2, внутри которого по эллиптическому периметру помещены экранные трубы 3, соединенные с верхним эллиптическим коллектором 4, снабженным патрубком выхода питательной воды 5 и нижним эллиптическим коллектором 6, снабженным патрубком входа питательной воды 7, соединенным с питательным насосом 8, внутри нижнего эллиптического коллектора 6 осесимметрично ему расположены горелки 9, экранные трубы 3 и корпус 2 выгнуты таким образом, что нижняя зона полости образованная экранными трубами 3 повторяет конфигурацию факела пламени, образующегося в результате горения топлива в горелках 9, а верхняя зона экранных труб 3 и корпуса топки 2 направлены вертикально вверх, эжектор 10, состоящий из приемной камеры 11 с патрубком 12 и соплом 13, смесительной камеры 14 и диффузора 15, приемная камера 11 и диффузор 15 которого соединены снизу с топкой 2 и с циклоном 16, соответственно, корпус циклона 16 снабжен входным тангенциальным патрубком 17, патрубками отвода парогазовой смеси 18 и конденсата 19, соответственно, внутри которого помещена центральная труба 20, соединенная с патрубком выхода пара 21, причем патрубок отвода парогазовой смеси 18 соединен с прямоугольным корпусом пластинчатого конденсатора 22, состоящего, из расположенных сверху–вниз пирамидального парового коллектора 23, снабженного паровым патрубком 24, соединенного снизу с теплообменным коробом 25, в котором устроены вертикальные теплообменные перегородки 26, выполненные из коррозионно-устойчивого материала (например, из армированного малощелочного стекла), образующие вертикальные паровые 27 и горизонтальные водные каналы 28, причем паровой коллектор 23 соединен через паровые каналы 27 сверху–вниз с газовым коллектором 29 и пирамидальным днищем 30, снабженными газовым и конденсатным патрубками 31 и 32, соответственно, а водные каналы 28 соединены справа и слева с пирамидальными входным и выходным водяными коллекторами 33 и 34, соединенными с входным и выходным патрубками сетевой воды 35 и 36, соответственно, газовый и конденсатный патрубки 31 и 32 соединены с корпусом дегазатора 37, снабженного конденсатным патрубком 38, патрубком входа конденсата 39, патрубком входа влажного газа 40, соединенного с перфорированным распределителем 41, каплеотбойником 42 и патрубком выхода очищенных газов 43, соединенным с вентилятором высокого давления 44, напорный патрубок которого снабжен коническим насадком 45.
КоКУ работает следующим образом. Питательный насос 8, создающий высокое давление Р1, через патрубок 7 и нижний эллиптический коллектор 6 подает питательную воду в экранные трубы 3, которые равномерно обогреваются от факелов из горелок 9. Из экранных труб вода, нагретая до температуры кипения, поступает в верхний эллиптический коллектор 4, откуда через патрубок 5 и соединенный с ним патрубок 12 эжектора 10, из сопла 13 струя питательной воды, нагретая до температуры кипения Т1 при давлении Р1 с большой скоростью, попадает в смесительную камеру 14, создавая в приемной камере 11 разрежение. В результате созданного разрежения продукты сгорания топлива (например, полученные при сгорании природного газа или мазута: оксиды углерода, оксиды азота, пары воды) при давлении Р0 и высокой температуре ТТ из топки 2 попадают в приемную камеру 11 и далее в смесительную камеру 14. В смесительной камере 14 давление воды снижается от Р1 до Р2, а давление дымовых газов, наоборот, повышается от Р0 до Р2, питательная вода смешивается и контактирует с продуктами сгорания из топки 2, интенсивно испаряясь, в результате снижения давления до Р2 и скоростного теплообмена с продуктами сгорания, а образовавшаяся парогазовая смесь при давлении Р2 и температуре Т2 поступает в диффузор 15. В диффузоре 15 динамическое давление струи пара трансформируется в статическое, в результате чего давление паровоздушной смеси на выходе из диффузора 15 поднимается от Р2 до Р3, величина которого несколько меньше, чем Р1, но значительно больше чем Р2 и Р0 [В. В. Харитонов и др. Вторичные теплоэнергоресурсы и охрана окружающей среды. – Минск: Выш. школа, 1988, с. 68]. Полученная парогазовая смесь через тангенциальный патрубок 17 поступает в циклон 16, где в результате вращения и воздействия центробежных сил на парогазовую смесь происходит ее деление на практически чистый водяной пар, собирающийся в верхней и средней зонах полости корпуса циклона 16, парогазовую смесь, которая за счет большей плотности составляющих ее газов собирается в нижней зоне полости корпуса циклона 16 и конденсата, который стекает в поддон циклона 16. В соответствии с этим водяной пар отбирается через центральную трубу 20 из патрубка 21 подается потребителю, из конденсатного патрубка 19 отводится конденсат на ХВО, а из патрубка 18 выводится парогазовая смесь в пластинчатый конденсатор 22, выполненный из коррозионно-устойчивого материала. В конденсаторе 22 парогазовая смесь отдает тепло при конденсации водяных паров, охлаждаясь при нагреве через перегородки 26 обратной сетевой водой, которая через патрубок 34 подается потребителю. Одновременно, в конденсаторе 22 при конденсации паров воды, снижении температуры и давления парогазовой смеси от Т2 и Р3 до ТК и РК (температура ТК ниже точки росы) происходит окисление монооксидов азота до диоксидов (при сжигании бессернистого природного газа) и поглощение диоксидов азота и частично диоксида углерода образовавшимся конденсатом. При этом, несконденсировавшиеся газы из парогазовой смеси (N2, СО2 и др.), в результате своей большей плотности по сравнению с парами воды, собираются в газовом коллекторе 29, а образовавшийся конденсат, насыщенный кислыми компонентами, стекает в поддон 30, откуда влажные газы и кислый конденсат через патрубки 31 и 32 поступают в дегазатор 37. В дегазаторе 37 влажные газы из перфорированного распределителя 41, проходя через слой конденсата, в основном освобождаются от несконденсировавшихся паров воды и оставшихся вредных компонентов, которые поглощаются кислым конденсатом, далее очищаются от уносимых капель конденсата в каплеотбойнике 42 и через патрубок 43 с давлением Р4 близким к атмосферному поступают на всас вентилятора высокого давления 44, снабженного коническим насадком 45 и расположенного на верхней отметке (например, на крыше котельной). Из вентилятора 44 очищенные и охлажденные дымовые газы с давлением РВ и температурой Т4 через конический насадок 45 выбрасываются в виде факела в атмосферу.
Количество и параметры пара, получаемого в контактном парогенераторе 1, сетевой воды нагреваемой в пластинчатом конденсаторе 22, степень очистки дымовых газов после дегазатора 37 зависят от вида топлива, количества и давления воды на выходе из сопла 13, создаваемого питательным насосом 8, теплопроизводительности и количества горелок 9, площади поверхности экранных труб 2, теплового напряжения в топке 2, технологических параметров эжектора 10 и циклона 16. При этом, в результате изменения конструкции корпуса топки 2 и экранных труб 3 предотвращается перегрев их верхней части, что увеличивает надежность установки, а в результате смешения газообразных продуктов сгорания с питательной водой, в нем присутствуют пары питательной воды и пары воды, образовавшейся при сжигании топлива. Поэтому, при конденсации образовавшейся парогазовой смеси в конденсаторе 22 и дегазаторе 37 образуется количество конденсата большее, чем поступило питательной воды на величину конденсата от паров воды, образовавшейся при сжигании топлива, что обеспечивает повышение КПД, создает замкнутый цикл водоснабжения КоКУ и снижает выбросы вредных компонентов и парниковых газов в атмосферу, обеспечивая таким образом повышение эффективности установки.
Таким образом, предлагаемая КоКУ обеспечивает получение пара и горячей воды без хвостовых поверхностей и дымовой трубы с использованием технологических и конструктивных преимуществ конструкции контактного парогенератора, эжектора и циклона, с одновременной очисткой продуктов сгорания от вредных компонентов и автономной подпиткой системы водоснабжения котельной, что увеличивает ее надежность и эффективность.

Claims (1)

  1. Комплексная котельная установка, содержащая контактный парогенератор, состоящий из корпуса топки, внутри которого по периметру помещены экранные трубы, соединенные с верхним коллектором, снабженным патрубком выхода питательной воды, и нижним коллектором, снабженным патрубком входа питательной воды, соединенным с питательным насосом, внутри нижнего коллектора осесимметрично ему расположены горелки, экранные трубы и корпус топки выгнуты таким образом, что нижняя зона полости, образованная экранными трубами, повторяет конфигурацию факела пламени, образующегося в результате горения топлива в горелках, эжектор, приемная камера которого соединена снизу с топкой, соединенный на выходе из диффузора с циклоном, снабженным центральной трубой, входным, конденсатным и паровым патрубками, отличающаяся тем, что корпус топки, верхний и нижний коллекторы имеют эллиптическую форму, верхняя часть экранных труб и корпуса топки направлены вертикально вверх, нижняя зона корпуса циклона снабжена патрубком отвода парогазовой смеси, соединенным с прямоугольным корпусом пластинчатого конденсатора, состоящего из расположенных сверху–вниз пирамидального парового коллектора, снабженного паровым патрубком, соединенного снизу с теплообменным коробом, в котором устроены вертикальные теплообменные перегородки, выполненные из коррозионно-устойчивого материала, образующие вертикальные паровые и горизонтальные водные каналы, причем паровой коллектор соединен через паровые каналы сверху–вниз с газовым коллектором и пирамидальным днищем, снабженными газовым и конденсатным патрубками, а водные каналы соединены справа и слева с пирамидальными входным и выходным водяными коллекторами, соединенными с входным и выходным патрубками сетевой воды, газовый и конденсатный патрубки соединены с корпусом дегазатора, внутри которого помещены перфорированный распределитель, соединенный с патрубком входа влажного газа, и каплеотбойник, патрубок выхода очищенных газов дегазатора соединен с вентилятором высокого давления, напорный патрубок которого снабжен коническим насадком.
RU2019102256A 2019-01-28 2019-01-28 Комплексная котельная установка RU2705528C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019102256A RU2705528C1 (ru) 2019-01-28 2019-01-28 Комплексная котельная установка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019102256A RU2705528C1 (ru) 2019-01-28 2019-01-28 Комплексная котельная установка

Publications (1)

Publication Number Publication Date
RU2705528C1 true RU2705528C1 (ru) 2019-11-07

Family

ID=68501105

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019102256A RU2705528C1 (ru) 2019-01-28 2019-01-28 Комплексная котельная установка

Country Status (1)

Country Link
RU (1) RU2705528C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2756150C1 (ru) * 2021-04-12 2021-09-28 Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» Комплексная теплогенерирующая установка
RU2757044C1 (ru) * 2021-02-17 2021-10-11 Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ) (RU) Тепловодородный генератор
RU2774548C1 (ru) * 2021-11-22 2022-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Комплексная теплогенерирующая установка

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1511521A1 (ru) * 1988-01-26 1989-09-30 Павлодарский Индустриальный Институт Энерготехнологический агрегат
US5590610A (en) * 1994-03-08 1997-01-07 Sanbonmatsu; Yutaka Waste burning boiler
RU2383815C1 (ru) * 2008-12-22 2010-03-10 Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" Контактный парогенератор
US20100170453A1 (en) * 2008-12-12 2010-07-08 Betzer-Zilevitch Maoz Steam generation process for enhanced oil recovery
RU142006U1 (ru) * 2014-01-24 2014-06-20 Общество с ограниченной ответственностью "Научно-исследовательский и проектно-конструкторский центр ПО "Бийскэнергомаш" (ООО НИЦ ПО "Бийскэнергомаш") Паровой котел

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1511521A1 (ru) * 1988-01-26 1989-09-30 Павлодарский Индустриальный Институт Энерготехнологический агрегат
US5590610A (en) * 1994-03-08 1997-01-07 Sanbonmatsu; Yutaka Waste burning boiler
US20100170453A1 (en) * 2008-12-12 2010-07-08 Betzer-Zilevitch Maoz Steam generation process for enhanced oil recovery
RU2383815C1 (ru) * 2008-12-22 2010-03-10 Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" Контактный парогенератор
RU142006U1 (ru) * 2014-01-24 2014-06-20 Общество с ограниченной ответственностью "Научно-исследовательский и проектно-конструкторский центр ПО "Бийскэнергомаш" (ООО НИЦ ПО "Бийскэнергомаш") Паровой котел

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757044C1 (ru) * 2021-02-17 2021-10-11 Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ) (RU) Тепловодородный генератор
RU2756150C1 (ru) * 2021-04-12 2021-09-28 Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» Комплексная теплогенерирующая установка
RU2774548C1 (ru) * 2021-11-22 2022-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Комплексная теплогенерирующая установка

Similar Documents

Publication Publication Date Title
CN109289430B (zh) 一种干湿耦合一体化烟气消白及除尘装置
RU2435102C1 (ru) Система утилизации мокрых углеродсодержащих отходов
CN101986025B (zh) 低碳微排放节能减排锅炉一体化***
RU2705528C1 (ru) Комплексная котельная установка
RU2383815C1 (ru) Контактный парогенератор
CN2426571Y (zh) 有机废液热管蒸发浓缩燃烧锅炉
CN210399512U (zh) 一种回水分开式水循环锅炉***
CN211782894U (zh) 一种具有消烟功能的电厂高温烟气余热回收装置
EP3828464B1 (en) Heat recovery boiler and plant comprising said heat recovery boiler
CN111623334B (zh) 角管式生物质燃料锅炉
CN205388316U (zh) 蒸汽锅炉余热利用***
RU2774548C1 (ru) Комплексная теплогенерирующая установка
CN210267180U (zh) 全预混低氮冷凝蒸汽发生器
CN210278527U (zh) 一种机械旋转扰流装置
RU2756150C1 (ru) Комплексная теплогенерирующая установка
CN206669692U (zh) 用于生物质燃料燃烧的锅炉
RU2448761C1 (ru) Шахтная мультиблочная установка для очистки и утилизации газообразных выбросов теплогенераторов
CN106488969A (zh) 生物质的半碳化及异物去除装置
CN110068244A (zh) 自然通风湿式排烟冷却塔及其分散式排烟装置
RU195711U1 (ru) Водотрубный котёл
CN215336284U (zh) 一种纯氧燃烧碳捕集炉
RU57426U1 (ru) Система водоподогрева автономной когенерационной установки
CN110207091A (zh) 全预混低氮冷凝蒸汽发生器
CN217031193U (zh) 一种焦炉煤气回收处理***
CN101709890B (zh) 负压立式红外冷凝燃气炉

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210129