RU2705352C1 - Способ переработки природного газа с повышенным содержанием кислых компонентов - Google Patents

Способ переработки природного газа с повышенным содержанием кислых компонентов Download PDF

Info

Publication number
RU2705352C1
RU2705352C1 RU2019119964A RU2019119964A RU2705352C1 RU 2705352 C1 RU2705352 C1 RU 2705352C1 RU 2019119964 A RU2019119964 A RU 2019119964A RU 2019119964 A RU2019119964 A RU 2019119964A RU 2705352 C1 RU2705352 C1 RU 2705352C1
Authority
RU
Russia
Prior art keywords
natural gas
stage
gases
absorbent
acidic components
Prior art date
Application number
RU2019119964A
Other languages
English (en)
Inventor
Игорь Анатольевич Мнушкин
Original Assignee
Игорь Анатольевич Мнушкин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Игорь Анатольевич Мнушкин filed Critical Игорь Анатольевич Мнушкин
Priority to RU2019119964A priority Critical patent/RU2705352C1/ru
Application granted granted Critical
Publication of RU2705352C1 publication Critical patent/RU2705352C1/ru

Links

Images

Landscapes

  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

Изобретение может быть использовано в газовой промышленности с целью снижения энергоемкости подготовки природного газа. Способ переработки природного газа с повышенным содержанием кислых компонентов включает ряд стадий. При этом содержание в сырьевом природном газе кислых компонентов в количестве 19 % мол. и более и соотношении углекислый газ:сероводород больше, чем 1,7. Стадию абсорбционной очистки отсепарированного природного газа от кислых компонентов и меркаптанов с регенерацией абсорбента и получением серосодержащих кислых газов осуществляют последовательно в две ступени. На первой стадии из отсепарированного природного газа селективно извлекают сероводород. На второй стадии извлекают углекислый газ и меркаптаны. Стадию осушки очищенного природного газа реализуют путем абсорбционной осушки или низкотемпературной сепарации природного газа с использованием стадии получения пропанового холода. На стадию термической утилизации отходов дополнительно направляют кислые газы, отпаренные из содержащего растворенный сероводород конденсата, выделенного на стадии сепарации и учета расхода сырьевого природного газа. Экспанзерные газы, кислые газы десорбции, а также газы выветривания и конденсат, образующиеся на стадии осушки, водяной пар используют в качестве теплоносителя для регенерации абсорбентов на стадиях абсорбционной очистки и осушки. Изобретение решает задачу разработки энергосберегающего способа переработки природного газа с повышенным содержанием кислых компонентов. Заявленный способ обеспечивает взаимосвязь энергетических потоков различных стадий подготовки природного газа. 6 з.п. ф-лы, 1 ил., 1 табл.

Description

Способ переработки природного газа с повышенным содержанием кислых компонентов может быть использован в газовой промышленности с целью снижения энергоемкости подготовки природного газа.
Подготовка природного газа является весьма энергозатратной из-за многостадийной обработки поступающих с месторождений газовых потоков, которая требуется для удаления из природного газа примесей неорганических соединений, в основном воды, углекислого газа и сероводорода, а также углеводородов – гомологов метана. Поскольку в процессах удаления примесей в больших количествах используют адсорбенты и абсорбенты, потребляемое для их регенераци тепло составляет основную часть энергозатрат на осуществление подготовки природного газа в целом.
Известен способ очистки углеводородного газа от сероводорода в присутствии диоксида углерода, включающий его подачу на установку, содержащую технологическое оборудование – абсорбер и сепаратор, путем направления углеводородного газа в абсорбер для контактирования с абсорбентом – растворами сульфата железа и аммиака, с последующей сепарацией, при этом дополнительно углеводородный газ перед подачей в абсорбер пропускают через сепаратор и вводят в него абсорбент, контактирование осуществляют в прямоточном абсорбере, выполненном в виде вертикальной пустотелой трубы, снабженной двумя отводами в виде нижнего и верхнего колена, предельное время контакта абсорбента с углеводородным газом составляет 20 мин, а углеводородного газа с абсорбентом не превышает 2 с, причем в качестве раствора сульфата железа используют раствор сульфата двухвалентного железа, объем которого рассчитывают по специальной формуле (патент на изобретение RU 2406559 С1, МПК B01D 53/14, B01D 53/52, заявлен 01.06.2009 г., опубликован 20.12.2010 г.). Недостатками изобретения являются:
• низкая эффективность абсорбции сероводорода в пустотелом прямоточном абсорбере из-за малого времени контакта очищаемого газа с абсорбентом, при котором число теоретических тарелок не превышает 2-3;
• энергозатратность регенерации абсорбента.
Известен способ для очистки от кислых соединений и сжижения газообразного потока, содержащего углеводороды, включающий следующие стадии:
a) охлаждение газообразного потока для получения охлажденного газообразного потока, который содержит газообразные углеводороды и остаточные кислые соединения;
b) обработка охлажденного газообразного потока растворителем с целью снижения содержания остаточных кислых соединений в охлажденном газообразном потоке для получения охлажденного газообразного потока, очищенного от кислых соединений;
c) охлаждение охлажденного газообразного потока, очищенного от кислых соединений, для получения жидких углеводородов (патент на изобретение RU 2533260 С2, МПК F25J 3/02, заявлен 11.06.2010 г., опубликован 20.11.2014 г.). Недостатками изобретения являются:
• отсутствие указания типа растворителя, используемого для извлечения из газа кислых соединений, что может привести к неполной очистке газа, по крайней мере, по одному из компонентов, т.к. сероводород и углекислый газ существенно отличаются по своим физико-химическим свойствам;
• загрязнение окружающей среды при сбросе газов регенерации растворителя в атмосферу;
• энергозатратность регенерации растворителя.
Известен также производственный кластер, включающий по крайней мере два газовых и/или газоконденсатных месторождения, установку комплексной подготовки газа (УКПГ) на каждом из месторождений непосредственно или на побережье, завод по производству сжиженного природного газа (СПГ), систему магистральных трубопроводов с дожимными перекачивающими станциями, при этом на месторождениях добывают газовые и/или газоконденсатные смеси с разным содержанием кислых примесей и углеводородов С2 и выше: природный газ первого месторождения подают через магистральный трубопровод на завод по производству СПГ с дальнейшей отгрузкой потребителям или на экспорт, а природный газ второго месторождения отправляют потребителям или на экспорт по магистральному трубопроводу, во время падения добычи первого месторождения на завод по производству СПГ подают часть природного газа второго месторождения, обеспечивая соответствие требований, предъявляемых к составу поступающего на завод по производству СПГ природного газа, путем дооборудования УКПГ второго месторождения установкой очистки от кислых примесей и тяжелых углеводородов: углекислый газ сбрасывают в атмосферу и/или закачивают во второе месторождение, сероводород используют для получения элементной серы, а углеводороды С2 и выше закачивают в природный газ второго месторождения перед его отправкой потребителям и/или на экспорт по магистральному трубопроводу (патент на изобретение RU 2685099 С1, МПК B01D 53/00, заявлен 06.11.18 г., опубликован 16.04.2019 г.). Основным недостатком изобретения являются высокие энергозатраты на привод перекачивающих устройств, а также на регенерацию абсорбента в ходе очистки природного газа от углекислого газа и сероводорода.
Задачей данного изобретения является разработка энергосберегающего способа переработки природного газа с повышенным содержанием кислых компонентов, который обеспечит взаимосвязь энергетических потоков различных стадий подготовки природного газа.
Решение поставленной задачи обеспечивается за счет того, что способ переработки природного газа с повышенным содержанием кислых компонентов включает последовательно следующие стадии:
а) сепарация и учет расхода сырьевого природного газа,
б) абсорбционная очистка отсепарированного природного газа от кислых компонентов и меркаптанов с регенерацией абсорбента и получением серосодержащих кислых газов,
в) осушка очищенного природного газа,
г) получение элементной серы методом Клауса из серосодержащих кислых газов,
д) грануляция и хранение товарной серы,
е) учет направляемого потребителям товарного природного газа,
ж) термическая утилизация отходов,
з) получение пропанового холода,
при содержании в сырьевом природном газе кислых компонентов в количестве 19 % мол. и более и соотношении углекислый газ:сероводород больше, чем 1,7, стадию (б) осуществляют последовательно в две ступени, при этом на первой ступени из отсепарированного природного газа селективно извлекают сероводород, а на второй ступени – углекислый газ и меркаптаны, стадию (в) реализуют путем абсорбционной осушки или низкотемпературной сепарации природного газа с использованием стадии (з), на стадию (ж) дополнительно направляют кислые газы, отпаренные из содержащего растворенный сероводород конденсата, выделенного на стадии (а), экспанзерные газы первой и второй ступеней стадии (б), кислые газы десорбции, образующиеся при регенерации абсорбента на второй ступени стадии (б), а также газы выветривания и конденсат, образующиеся на стадии (в), причем водяной пар, образующийся в котлах-утилизаторах на стадии (г) и печи дожига отходящих газов на стадии (ж), используют в качестве теплоносителя для регенерации абсорбентов на стадиях (б) и (в).
При содержании в сырьевом природном газе кислых компонентов в количестве 19 % мол. и более на стадии (ж) можно получить избыток вырабатываемого водяного пара сверх необходимого для регенерации абсорбентов на стадиях (б) и (в), который можно использовать для обогрева производственных помещений или в качестве теплоносителя для стороннних потребителей.
Целесообразно на первой ступени стадии (б) в качестве абсорбента использовать водный раствор метилдиэтаноламина (МДЭА) или его аналога, чтобы обеспечить глубокую очистку природного газа от сероводорода. При этом необходимо, чтобы в абсорбенте содержалось не менее 60 % масс. воды для предотвращения загрязнения отложениями тепло- и массообменных аппаратов первой ступени стадии (б).
Целесообразно также на второй ступени стадии (б) в качестве абсорбента использовать смешанный абсорбент, состоящий из МДЭА до 40 % масс. или его аналога, сульфолана до 40 % масс., пиперазина до 5 % масс. и воды не менее 15 % масс., чтобы обеспечить селективную очистку природного газа от углекислого газа и меркаптанов.
Двухступенчатая очистка обеспечивает после стадии (б) в очищенном природном газе следующее содержание примесей: углекислый газ не более 1,5 % мол., сероводород не более 5 мг/м3, меркаптановая сера не более 15 мг/м3, что позволяет далее направлять природный газ потребителям в качестве товарного природного газа.
Полезно на стадии (в) в качестве абсорбента использовать моноэтиленгликоль или его аналог.
Целесообразно водяной пар, образующийся в котлах-утилизаторах на стадии (г) и печи дожига отходящих газов на стадии (ж) обеспечивать с параметрами не ниже следующих: температура 180 ℃, избыточное давление 0,71 МПа – для регенерации абсорбентов стадий (б) и (в).
На фигуре представлена принципиальная блок-схема завода по переработке природного газа с повышенным содержанием кислых компонентов в соответствии с одним из возможных вариантов реализации заявленного способа при использовании следующих обозначений:
1-37 – трубопровод;
100 – установка сепарации и учета сырьевого природного газа;
200 – установка очистки природного газа с двумя параллельными нитками 200/1 и 200/2;
201/1, 201/2 – блок абсорбционной очистки природного газа от кислых компонентов и меркаптанов;
202/1, 202/2 – блок отпарки кислых стоков;
300 – установка производства серы с двумя параллельными нитками 300/1 и 300/2;
301/1, 301/2 – блок получения элементной серы;
302/1, 302/2 – блок термической утилизации;
400 – установка осушки природного газа с двумя параллельными нитками 400/1 и 400/2;
500 – установка грануляции и хранения серы;
600 – узел коммерческого учета товарного природного газа;
700 – пропановая холодильная установка.
Сырьевой природный газ поступает с месторождения по трубопроводу 1 на установку сепарации и учета сырьевого природного газа 100, где отделяют конденсат, содержащий растворенный сероводород, и учет поступающего сырьевого природного газа. Отсепарированный природный газ с установки сепарации и учета сырьевого природного газа 100 подается для абсорбционной очистки отсепарированного природного газа от кислых компонентов и меркаптанов с регенерацией абсорбента и получением серосодержащих кислых газов параллельно по трубопроводам 2 и 6 на установку очистки природного газа 200, содержащую две параллельные нитки 200/1 и 200/2, каждая из которых, соответственно, включает блок абсорбционной очистки природного газа от кислых компонентов и меркаптанов 201/1 и 201/2 и блок отпарки кислых стоков 202/1 и 202/2.
В блоках абсорбционной очистки природного газа от кислых компонентов и меркаптанов 201/1 и 201/2 отсепарированный природный газ проходит последовательно две ступени очистки:
- на первой ступени селективно извлекают сероводород с применением в качестве абсорбента МДЭА или его аналога;
- на второй ступени извлекаются диоксид углерода и меркаптаны с применением смешанного абсорбента, состоящего из МДЭА (до 40 % масс.) или его аналога, сульфолана (до 40 % масс.) и пиперазина (до 5 % масс.).
Двухступенчатая очистка отсепарированного природного газа обеспечивает снижение содержания в нем примесей до следующих значений: углекислый газ 1,5 % мол., сероводород 5 мг/м3 и меркаптановая сера не более 15 мг/м3, что повышает концентрацию метана в очищенном природном газе с 81 % мол. до 98,5 % мол. и увеличивает теплотворную способность вырабатываемого газа на 10 %.
Полученный на установках очистки природного газа 200/1 и 200/2 очищенный от кислых компонентов и меркаптанов природный газ направляют по трубопроводам 3 и 7 на установки осушки природного газа 400/1 и 400/2, соответственно. Осушка очищенного природного газа осуществляется путем охлаждения его холодом пропанового холодильного цикла. Сжиженный пропан поступает на установки осушки природного газа 400/1 и 400/2 с пропановой холодильной установки 700 по трубопроводам 31 и 30, соответственно, и после отработки выводится в паровой фазе по трубопроводам 33 и 32 обратно. Для предотвращения гидратообразования в захолаживаемый поток очищенного от кислых компонентов и меркаптанов природного газа подается моноэтиленгликоль или его аналог (на фигуре не показано).
Очищенный и осушенный природный газ поступает для учета направляемого потребителям товарного природного газа по трубопроводам 4 и 8 на узел коммерческого учета товарного природного газа 600 с последующей отправкой по трубопроводу 5.
Выделенный конденсат, содержащий растворенный сероводород, с установки сепарации и учета сырьевого природного газа 100 поступает по трубопроводам 34 и 35 на блоки отпарки кислых стоков 202/1 и 202/2 установок очистки природного газа 200/1 и 200/2, соответственно.
Полученные на блоках абсорбционной очистки природного газа от кислых компонентов и меркаптанов 201/1 и 201/2 в ходе регенерации абсорбента кислые газы с повышенным содержанием сероводорода направляются для получения элементной серы методом Клауса из серосодержащих кислых газов на блоки получения элементной серы 301/1 и 301/2 установок получения серы 300/1 и 300/2 по трубопроводам 9 и 12, соответственно.
Жидкая сера из блоков получения серы 301/1 и 301/2 установок получения серы 300/1 и 300/2 объединяется по трубопроводам 10 и 13, соответственно, перед установкой грануляции и хранения серы 500. После получения из жидкой серы гранул определенной формы, их затвердевания и охлаждения осуществляется их отгрузка по трубопроводу 11. Непрореагировавшие газы из блоков получения серы 301/1 и 301/2 направляют для термической утилизации отходов в котлах-утилизаторах и печах дожига отходящих газов по трубопроводам 36 и 37 на блоки термической утилизации 302/1 и 302/2 установок получения серы 300/1 и 300/2, соответственно.
На блоки термической утилизации 302/1 и 302/2 установок получения серы 300/1 и 300/2 дополнительно направляют полученные на блоках абсорбционной очистки природного газа от кислых компонентов и меркаптанов 201/1 и 201/2 установок очистки природного газа 200/1 и 200/2 экспанзерные газы по трубопроводам 15 и 19, отделенные от конденсата на блоках отпарки кислых стоков 202/1 и 202/2 установок очистки природного газа 200/1 и 200/2 кислые газы по трубопроводам 14 и 18, газы выветривания по трубопроводам 17 и 21 и конденсат по трубопроводам 16 и 20 с установок осушки природного газа 400/1 и 400/2, соответственно.
Технология, используемая на установках получения серы 300/1 и 300/2, полностью обеспечивает потребность водяного пара для регенерции абсорбентов на блоках абсорбционной очистки природного газа от кислых компонентов и меркаптанов 201/1 и 201/2, а также для регенерации гликоля на установках осушки природного газа 400/1 и 400/2. Полученный водяной пар при этом направляется с блоков получения серы 301/1 и 301/2 и блоков термической утилизации 302/1 и 302/2 установок получения серы 300/1 и 300/2 по трубопроводам 22, 24 и 26, 28 на блоки абсорбционной очистки природного газа от кислых компонентов и меркаптанов 201/1 и 201/2 установок очистки природного газа 200/1 и 200/2, а также по трубопроводам 23, 25 и 27, 29 на установки осушки природного газа 400/1 и 400/2, соответственно. Подпитка водяного пара со стороны при этом необходима только в пусковой период завода по переработке природного газа с повышенным содержанием кислых компонентов.
Выполнен расчет расхода потоков в основных трубопроводах представленного в виде блок-схемы завода по переработке природного газа с повышенным содержанием кислых компонентов мощностью 5 млрд м3/год, результаты данного расчета представлены в таблице 1.
Как следует из таблицы 1, в ходе очистки природного газа с повышенным содержанием кислых компонентов образуется почти 146 т/ч отходов, поступающих на блоки термической утилизации 302/1 и 302/2 установок получения серы 300/1 и 300/2 по трубопроводам 14, 15, 16, 17, 36 и 18, 19, 20, 21, 37, для получения водяного пара. Дальнейшие расчеты показали, что выработка водяного пара с температурой 180 ℃ и избыточным давлением 0,71 МПа составляет 260 т/ч, из которых 87,1 т/ч формируется в блоках термической утилизации 302/1 и 302/2. При этом количество водяного пара, необходимого для регенерации поглотителей на блоках абсорбционной очистки природного газа от кислых компонентов и меркаптанов 201/1 202/2 установок очистки природного газа 200/1 и 200/2 и на установках осушки природного газа 400/1 и 400/2, составляет 177 т/ч. Следовательно, при использовании тепловой энергии окисляемых примесей и побочных потоков можно не только вырабатывать водяной пар в количествах, необходимых для обеспечения непосредственной производственной деятельности завода по переработке природного газа с повышенным содержанием кислых компонентов, но и использовать избыток водяного пара в количестве 83 т/ч для обогрева производственных помещений и в качестве теплоносителя для сторонних потребителей.
Таким образом, заявляемое изобретение решает задачу разработки энергосберегающего способа переработки природного газа с повышенным содержанием кислых компонентов, который обеспечивает взаимосвязь энергетических потоков различных стадий подготовки природного газа.

Claims (16)

1. Способ переработки природного газа с повышенным содержанием кислых компонентов, последовательно включающий следующие стадии:
а) сепарация и учет расхода сырьевого природного газа,
б) абсорбционная очистка отсепарированного природного газа от кислых компонентов и меркаптанов с регенерацией абсорбента и получением серосодержащих кислых газов,
в) осушка очищенного природного газа,
г) получение элементной серы методом Клауса из серосодержащих кислых газов,
д) грануляция и хранение товарной серы,
е) учет направляемого потребителям товарного природного газа,
ж) термическая утилизация отходов,
з) получение пропанового холода,
отличающийся тем, что при содержании в сырьевом природном газе кислых компонентов в количестве 19 % мол. и более и соотношении углекислый газ:сероводород больше, чем 1,7 стадию (б) осуществляют последовательно в две ступени, при этом на первой ступени из отсепарированного природного газа селективно извлекают сероводород, а на второй ступени – углекислый газ и меркаптаны, стадию (в) реализуют путем абсорбционной осушки или низкотемпературной сепарации природного газа с использованием стадии (з), на стадию (ж) дополнительно направляют кислые газы, отпаренные из содержащего растворенный сероводород конденсата, выделенного на стадии (а), экспанзерные газы первой и второй ступеней стадии (б), кислые газы десорбции, образующиеся при регенерации абсорбента на второй ступени стадии (б), а также газы выветривания и конденсат, образующиеся на стадии (в), причем водяной пар, образующийся в котлах-утилизаторах на стадии (г) и печи дожига отходящих газов на стадии (ж), используют в качестве теплоносителя для регенерации абсорбентов на стадиях (б) и (в).
2. Способ по п. 1, отличающийся тем, что на первой ступени стадии (б) в качестве абсорбента используют водный раствор метилдиэтаноламина (МДЭА) или его аналога.
3. Способ по п. 2, отличающийся тем, что в абсорбенте обеспечивают содержание воды не менее 60 % масс.
4. Способ по п. 1, отличающийся тем, что на второй ступени стадии (б) в качестве абсорбента используют смешанный абсорбент, состоящий из МДЭА до 40 % масс. или его аналога, сульфолана до 40 % масс., пиперазина до 5 % масс. и воды не менее 15 % масс.
5. Способ по п. 1, отличающийся тем, что после стадии (б) в очищенном природном газе обеспечивают следующее содержание примесей: углекислый газ не более 1,5 % мол., сероводород не более 5 мг/м3, меркаптановая сера не более 15 мг/м3.
6. Способ по п. 1, отличающийся тем, что на стадии (в) в качестве абсорбента используют моноэтиленгликоль или его аналог.
7. Способ по п. 1, отличающийся тем, что водяной пар, образующийся в котлах-утилизаторах на стадии (г) и печи дожига отходящих газов на стадии (ж), обеспечивают с параметрами не ниже следующих: температура 180 ℃, избыточное давление 0,71 МПа.
RU2019119964A 2019-06-26 2019-06-26 Способ переработки природного газа с повышенным содержанием кислых компонентов RU2705352C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019119964A RU2705352C1 (ru) 2019-06-26 2019-06-26 Способ переработки природного газа с повышенным содержанием кислых компонентов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019119964A RU2705352C1 (ru) 2019-06-26 2019-06-26 Способ переработки природного газа с повышенным содержанием кислых компонентов

Publications (1)

Publication Number Publication Date
RU2705352C1 true RU2705352C1 (ru) 2019-11-06

Family

ID=68501027

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019119964A RU2705352C1 (ru) 2019-06-26 2019-06-26 Способ переработки природного газа с повышенным содержанием кислых компонентов

Country Status (1)

Country Link
RU (1) RU2705352C1 (ru)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1635361A1 (ru) * 1989-09-18 1999-04-10 Северо-Кавказский научно-исследовательский институт природных газов Способ очистки природного газа от сероводорода
DE10352878A1 (de) * 2003-11-10 2005-06-16 Basf Ag Verfahren zur Gewinnung eines unter hohem Druck stehenden Sauergasstroms durch Entfernung der Sauergase aus einem Fluidstrom
US20050217479A1 (en) * 2004-04-02 2005-10-06 Membrane Technology And Research, Inc. Helium recovery from gas streams
WO2008095258A1 (en) * 2007-02-09 2008-08-14 Cool Energy Limited Process and apparatus for depleting carbon dioxide content in a natural gas feedstream containing ethane and c3+ hydrocarbons
RU2406559C1 (ru) * 2009-06-01 2010-12-20 Открытое акционерное общество "Газпром" Способ очистки углеводородного газа от сероводорода в присутствии диоксида углерода
RU2533260C2 (ru) * 2009-06-12 2014-11-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ для очистки от кислых соединений и сжижения газообразного потока и устройство для его осуществления
RU2545273C2 (ru) * 2010-03-29 2015-03-27 ТюссенКрупп Уде ГмбХ Способ и устройство для обработки обогащенного диоксидом углерода кислого газа в процессе клауса
RU2647301C9 (ru) * 2017-05-25 2018-07-04 Игорь Анатольевич Мнушкин Газохимический кластер

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1635361A1 (ru) * 1989-09-18 1999-04-10 Северо-Кавказский научно-исследовательский институт природных газов Способ очистки природного газа от сероводорода
DE10352878A1 (de) * 2003-11-10 2005-06-16 Basf Ag Verfahren zur Gewinnung eines unter hohem Druck stehenden Sauergasstroms durch Entfernung der Sauergase aus einem Fluidstrom
US20050217479A1 (en) * 2004-04-02 2005-10-06 Membrane Technology And Research, Inc. Helium recovery from gas streams
WO2008095258A1 (en) * 2007-02-09 2008-08-14 Cool Energy Limited Process and apparatus for depleting carbon dioxide content in a natural gas feedstream containing ethane and c3+ hydrocarbons
RU2406559C1 (ru) * 2009-06-01 2010-12-20 Открытое акционерное общество "Газпром" Способ очистки углеводородного газа от сероводорода в присутствии диоксида углерода
RU2533260C2 (ru) * 2009-06-12 2014-11-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ для очистки от кислых соединений и сжижения газообразного потока и устройство для его осуществления
RU2545273C2 (ru) * 2010-03-29 2015-03-27 ТюссенКрупп Уде ГмбХ Способ и устройство для обработки обогащенного диоксидом углерода кислого газа в процессе клауса
RU2647301C9 (ru) * 2017-05-25 2018-07-04 Игорь Анатольевич Мнушкин Газохимический кластер

Similar Documents

Publication Publication Date Title
CN101874967B (zh) 采用低温甲醇溶液脱除酸性气体的工艺方法
KR101329149B1 (ko) 탄소 포집 시스템 및 프로세스
RU2597081C2 (ru) Способ комплексного извлечения ценных примесей из природного гелийсодержащего углеводородного газа с повышенным содержанием азота
CN106039960A (zh) 一种梯级利用烟气余热的二氧化碳捕集液化工艺
WO2013053235A1 (zh) 一种利用烟道气余热脱除其酸性气体的工艺
EA016189B1 (ru) Способ выделения высокочистого диоксида углерода
CA3002782A1 (en) Configurations and methods for processing high pressure acid gases with zero emissions
EA029381B1 (ru) Регенеративное извлечение загрязняющих веществ из отходящих газов
CN107148398A (zh) 从气态混合物中分离产物气体的方法
CN105664671B (zh) 一种零碳排放工艺气净化方法及装置
WO2023138706A1 (zh) 一种含有可燃烧气体的混合气的脱碳脱硫方法
CN103589462A (zh) 一种焦炉煤气净化及化学产品回收的工艺方法
CN109810740A (zh) 一种用于含硫天然气开发综合利用***及工艺
CN109943375A (zh) 一种用于含硫天然气单井脱硫制酸的装置及其工艺
CN106276812A (zh) 一种高温含硫废气制备液态二氧化硫装置
CN103525492A (zh) 一种天然气加工利用工艺
RU2705352C1 (ru) Способ переработки природного газа с повышенным содержанием кислых компонентов
CN112210407A (zh) 一种荒煤气带压净化***及工艺
CN116839310A (zh) 利用lng工厂脱碳排放气制取食品级液体二氧化碳的工艺方法
RU2385180C1 (ru) Способ очистки углеводородных газов
RU2275231C2 (ru) Способ выделения диоксида углерода из газов
RU2070423C1 (ru) Установка для комплексной очистки нефтяного и природного газов
CN215138333U (zh) 一种二氧化硫富集气制液体二氧化硫的生产***
CN213446997U (zh) 一种荒煤气带压净化***
CN220317713U (zh) 用于地面油气工程的天然气脱酸脱水脱汞脱烃撬装化装置