RU2702288C2 - Отказоустойчивая приводная система магнитного подшипника - Google Patents

Отказоустойчивая приводная система магнитного подшипника Download PDF

Info

Publication number
RU2702288C2
RU2702288C2 RU2017115549A RU2017115549A RU2702288C2 RU 2702288 C2 RU2702288 C2 RU 2702288C2 RU 2017115549 A RU2017115549 A RU 2017115549A RU 2017115549 A RU2017115549 A RU 2017115549A RU 2702288 C2 RU2702288 C2 RU 2702288C2
Authority
RU
Russia
Prior art keywords
coil
current
magnetic bearing
mode
phase arm
Prior art date
Application number
RU2017115549A
Other languages
English (en)
Other versions
RU2017115549A (ru
RU2017115549A3 (ru
Inventor
Дун Цзян
Параг КШИРСАГАР
Original Assignee
Кэрриер Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кэрриер Корпорейшн filed Critical Кэрриер Корпорейшн
Publication of RU2017115549A publication Critical patent/RU2017115549A/ru
Publication of RU2017115549A3 publication Critical patent/RU2017115549A3/ru
Application granted granted Critical
Publication of RU2702288C2 publication Critical patent/RU2702288C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0457Details of the power supply to the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

Изобретение в целом относится к электронным защитным противоотказным системам и, более конкретно, к приводной системе магнитного подшипника, содержащей электронную структуру, защищающую от неисправностей. Электронный отказоустойчивый приводной модуль магнитного подшипника содержит первое множество переключающихся элементов (104a, 104c, 104e) и второе множество переключающихся элементов (104b, 104d, 104f) и по меньшей мере одну катушку (108a, 108b), расположенную между первым множеством элементов (104a, 104c, 104e) и вторым множеством элементов (104b, 104d, 104f). При этом оба множества элементов (104а-104f) выполнены с возможностью выборочного функционирования в первом режиме работы и втором режиме работы для генерирования электромагнитного поля. Первая катушка (108a) расположена между первой двунаправленной цепью фазового плеча (102a) и второй двунаправленной цепью фазового плеча (102b), формируя первую цепь Н-моста (103a). Вторая катушка (108b) расположена между второй цепью (102b) и третьей двунаправленной цепью фазового плеча (102c), формируя вторую цепь Н-моста (103b). Первая цепь Н-моста (103а) и вторая цепь Н-моста (103b) имеют одно общее фазовое плечо, при этом первая цепь Н-моста (103a) выполнена с возможностью управления током первой катушки (108a) через эту первую катушку (108a), а вторая цепь Н-моста (103b) выполнена с возможностью управления током второй катушки (108b) через эту вторую катушку (108b), причем током второй катушки (108b) управляют таким образом, чтобы иметь направление, противоположное направлению тока первой катушки (108a). Технический результат: создание электронного отказоустойчивого приводного модуля магнитного подшипника, который выполнен с возможностью обнаружения одного или большего количества электрических отказов, таких как обрыв цепи, например, и обеспечивает успешную поддержку левитации подшипника и осевое положение соответствующего вращающегося вала, также позволяет перезапускать систему с резервным рабочим режимом, это значительно проще, чем замена оборудования. 2 н. и 9 з.п. ф-лы, 6 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
[0001] Настоящее изобретение в целом относится к электронным защитным противоотказным системам и, более конкретно, к приводной системе магнитного подшипника, содержащей электронную структуру, защищающую от неисправностей.
УРОВЕНЬ ТЕХНИКИ
[0002] Вращающиеся механизмы воплощают бесконтактные активные магнитные подшипники в широкой области применений от безмасляных компрессоров, насосов до энергосберегающих маховиков и вращающихся валов. Сам подшипник парит бесконтактным образом под действием электромагнитного поля, генерируемого электронной цепью привода магнитного подшипника, содержащей множество силовых электронных устройств. Отказ одного или большего количества силовых электронных устройств, такой как обрыв цепи, например, может привести к потере магнитной левитации подшипника. Потеря левитации в подшипнике во время вращения вала (например, ротора) на высокой скорости может привести к тяжелым повреждениям механических компонентов.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0003] В соответствии с вариантом реализации изобретения, электронный отказоустойчивый приводной модуль магнитного подшипника содержит первое множество переключающихся элементов и второе множество переключающихся элементов. По меньшей мере одна катушка расположена между первым множеством переключающихся элементов и вторым множеством переключающихся элементов. Первые и вторые переключающиеся элементы выполнены с возможностью выборочного функционирования в первом режиме работы и втором режиме работы для генерирования электромагнитного поля. Электронный отказоустойчивый приводной модуль магнитного подшипника выполнен с возможностью обнаружения одного или большего количества отказов, включая обрыв цепи по меньшей мере одного из первого или второго переключающихся элементов.
[0004] Дополнительно к одной или более характерным особенностям, описанным выше, или в качестве альтернативного варианта дополнительные варианты реализации изобретения включают:
[0005] характерную особенность, отличающуюся тем, что диод присоединяется через каждый переключающийся элемент из первого и второго множества переключающихся элементов для формирования множества двунаправленных цепей фазовых плеч;
[0006] характерную особенность, отличающуюся тем, что первый режим работы выполнен с возможностью генерирования по меньшей мере одного тока катушки в первом направлении через указанную по меньшей мере одну катушку в ответ на получение первого выходного сигнала ШИМ, и генерирования указанного по меньшей мере одного тока катушки во втором направлении, противоположном первому направлении через указанную по меньшей мере одну катушку в ответ на получение второго выходного сигнала ШИМ;
[0007] характерную особенность, отличающуюся тем, что первая катушка расположена между первой двунаправленной цепью фазового плеча и второй двунаправленной цепью фазового плеча, формируя первую цепь Н-моста, а вторая катушка расположена между второй двунаправленной цепью фазового плеча и третьей двунаправленной цепью фазового плеча, формируя вторую цепь Н-моста;
[0008] характерную особенность, отличающуюся тем, что первая цепь Н-моста и вторая цепь Н-моста имеют одно общее фазовое плечо, при этом первая цепь Н-моста выполнена с возможностью управления током первой катушки через первую катушку, а вторая цепь Н-моста выполнена с возможностью управления током второй катушки через вторую катушку, причем ток второй катушки управляется таким образом, чтобы иметь направление, обратное по отношению к току первой катушки; и
[0009] характерную особенность, отличающуюся тем, что каждая двунаправленная цепь фазового плеча содержит первый переключающийся элемент, выполненный с возможностью проведения тока на основании первого режима работы и подавления тока на основании второго режима работы, и второй переключающийся элемент, выполненный с возможностью подавления тока на основании первого режима работы и проведения тока на основании второго режима работы.
[0010] В соответствии с другим вариантом реализации изобретения, электронная отказоустойчивая приводная система магнитного подшипника содержит электронный отказоустойчивый приводной модуль магнитного подшипника, выполненный с возможностью выборочного функционирования в первом режиме работы в ответ на получение первого выходного сигнала ШИМ и втором режиме работы в ответ на получение второго выходного сигнала ШИМ. Электронная отказоустойчивая приводная система магнитного подшипника дополнительно содержит электронный модуль обнаружения отказа, электрически соединенный посредством связи с электронным отказоустойчивым приводным модулем магнитного подшипника. Электронный модуль обнаружения отказа выполнен с возможностью вывода управляющего сигнала об отказе в ответ на обнаружение электрического отказа электронной отказоустойчивой приводной системы магнитного подшипника, причем управляющий сигнал об отказе инициирует переход из первого режима работы во второй режим работы.
[0011] Дополнительно к одной или более характерным особенностям, описанным выше, или в качестве альтернативного варианта, дополнительные варианты реализации изобретения включают:
[0012] характерную особенность, отличающуюся тем, что электронный отказоустойчивый модуль контроллера тока выполнен с возможностью выборочного вывода первого выходного сигнала ШИМ и второго выходного сигнала ШИМ;
[0013] характерную особенность, отличающуюся тем, что в ответ на получение управляющего сигнала об отказе, электронный отказоустойчивый модуль контроллера тока прерывает первый выходной сигнал ШИМ и выводит второй выходной сигнал ШИМ для переключения электронного отказоустойчивого приводного модуля магнитного подшипника из первого режима работы во второй режим работы;
[0014] характерную особенность, отличающуюся тем, что отказоустойчивый приводной модуль магнитного подшипника содержит по меньшей мере одну катушку, выполненную с возможностью генерирования электромагнитного поля в ответ на получение тока катушки, протекающего в первом направлении;
[0015] характерную особенность, отличающуюся тем, что модуль обнаружения отказа обнаруживает отказ в виде обрыва цепи отказоустойчивого приводного модуля магнитного подшипника на основании сравнения указанного по меньшей мере тока одной катушки с пороговым значением;
[0016] характерную особенность, отличающуюся тем, что электронный отказоустойчивый приводной модуль магнитного подшипника содержит множество двунаправленных цепей фазового плеча, присоединенных к указанной по меньшей мере одной катушке для формирования по меньшей мере одной цепи Н-моста;
[0017] характерную особенность, отличающуюся тем, что двунаправленные цепи фазового плеча выполнены с возможностью генерирования тока катушки в первом направлении в ответ на получение первого выходного сигнала ШИМ, имеющего первую фазу, и генерирования тока катушки во втором направлении, противоположном указанному первому направлению в ответ на получение второго выходного сигнала ШИМ, имеющего вторую фазу, противоположную указанной первой фазе;
[0018] характерную особенность, отличающуюся тем, что множество двунаправленных цепей фазового плеча содержит первый переключающийся элемент, выполненный с возможностью генерирования тока на основании первого режима работы и подавления тока на основании второго режима работы, и второй переключающийся элемент, выполненный с возможностью подавления тока на основании первого режима работы и генерирования тока на основании второго режима работы; и
[0019] характерную особенность, отличающуюся тем, что указанный по меньшей мере один электрический отказ включает отказ в виде обрыва цепи, индуцированный в ответ на отказ первого переключающегося элемента.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0020] Предмет изобретения, рассматриваемый в настоящем изобретении, в частности, раскрыт и явно заявлен в формуле изобретения в заключительной части описания. Указанные выше и другие характерные особенности и преимущества настоящего изобретения станут очевидными из последующего подробного описания, приведенного в сочетании с прилагаемыми чертежами, на которых:
[0021] Фиг. 1А является электрической принципиальной схемой отказоустойчивого приводного модуля магнитного подшипника в соответствии с приведенным в качестве примера вариантом реализации изобретения;
[0022] Фиг. 1В является электрической принципиальной схемой отказоустойчивого приводного модуля магнитного подшипника, функционирующего в первом режиме работы в соответствии с приведенным в качестве примера вариантом реализации изобретения;
[0023] Фиг. 1С является электрической принципиальной схемой отказоустойчивого приводного модуля магнитного подшипника, функционирующего во втором режиме работы в соответствии с приведенным в качестве примера вариантом реализации изобретения;
[0024] Фиг. 2 является блок-схемой системы управления отказоустойчивым приводом магнитного подшипника в соответствии с приведенным в качестве примера вариантом реализации изобретения;
[0025] Фиг. 3 является блок-схемой последовательности, иллюстрирующей процедуру обнаружения отказа, осуществляемую отказоустойчивой приводной системой магнитного подшипника в соответствии с приведенным в качестве примера вариантом реализации изобретения; и
[0026] Фиг. 4 является блок-схемой, иллюстрирующей функционирование отказоустойчивой приводной системы магнитного подшипника в соответствии с приведенным в качестве примера вариантом реализации изобретения.
ПОДРОБНОЕ ОПИСАНИЕ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ
[0027] Последующее описание изобретения по своему характеру является исключительно иллюстративным и не предназначено ограничить собой настоящее изобретение, его приложение или использование. Следует понимать, что по всем чертежам соответствующие номера ссылок обозначают подобные или соответствующие части и характерные особенности. Используемый здесь термин модуль относится к цепи обработки, которая может содержать специализированную интегральную схему (ASIC), электронную схему, процессор (совместно используемый, выделенный или групповой) и память, которая выполняет одно или более программных или программно-аппаратных приложений, комбинационную логическую схему и/или другие подходящие компоненты, которые обеспечивают описанную функциональность.
[0028] Отказоустойчивая приводная система магнитного подшипника содержит электронный отказоустойчивый приводной модуль магнитного подшипника, выполненный с возможностью выборочного функционирования в первом режиме работы, то есть, нормальном режиме работы, и во втором режиме работы, то есть, вспомогательном режиме работы. Отказоустойчивый приводной модуль магнитного подшипника может содержать трехфазный преобразователь и множество переключающихся элементов, таких как транзисторы, например, для привода трехфазного преобразователя. При работе в нормальном режиме, первое множество переключающихся элементов активируется для генерирования тока катушки в первом направлении, которое, в свою очередь, приводит трехфазный преобразователь и генерирует электромагнитную силу, которая поддерживает подшипник вращающейся системы в состоянии левитации.
[0029] Если выбран вспомогательный режим работы (например, в ответ на обнаружение электрического отказа), первое множество переключающихся элементов деактивируется, а второе множество переключающихся элементов активируется для приведения трехфазного преобразователя. Таким образом, ток катушки генерируется во втором направлении, отличном от указанного первого направления, в то время как трехфазный преобразователь по-прежнему приводится. Поскольку электромагнитные силы определяются абсолютным значением тока катушки (то есть, вне зависимости от направления тока катушки), подобная электромагнитная сила может по-прежнему генерироваться посредством использования указанного вспомогательного режима и может поддерживаться левитация подшипника.
[0030] Обращаясь теперь к Фиг. 1А, проиллюстрирована электрическая принципиальная схема электронного отказоустойчивого приводного модуля магнитного подшипника 100. В соответствии с не ограничивающим вариантом реализации изобретения, электронный отказоустойчивый приводной модуль магнитного подшипника 100 выполнен в виде полномостового трехфазного преобразователя. Электронный отказоустойчивый приводной модуль магнитного подшипника 100 содержит первую двунаправленную цепь фазового плеча 102а, вторую двунаправленную цепь фазового плеча 102b и третью двунаправленную цепь фазового плеча 102с. Ток двух катушек (U, 1с) приводится трехфазными цепями 102а-102с, что может рассматриваться как два Н-моста 103а-103b, обладающие одним общим фазовым плечом. Каждая цепь Н-моста 103а-103b выполнена с возможностью генерирования соответствующего тока катушки (IA, IC), способного протекать в первом и втором противоположном направлениях. Хотя проиллюстрированы три двунаправленные цепи фазовых плеч 102а-102с, принимается во внимание тот факт, что могут использоваться двунаправленные цепи с более чем тремя фазовыми плечами. Например, электронный отказоустойчивый приводной модуль магнитного подшипника 100 может быть выполнен с двумя двунаправленными цепями фазовых плеч или четырьмя двунаправленными цепями фазовых плеч без изменения объема изобретения.
[0031] Первая двунаправленная цепь фазового плеча 102а содержит первый переключающийся элемент 104а и второй переключающийся элемент 104b. Вторая двунаправленная цепь фазового плеча 102b содержит третий переключающийся элемент 104 с и четвертый переключающийся элемент 104d. Третья двунаправленная цепь фазового плеча 102 с содержит пятый переключающийся элемент 104е и шестой переключающийся элемент 104f. В соответствии с неограничивающими вариантами реализации изобретения, указанные переключающиеся элементы являются биполярными транзисторами с изолированным затвором (IGBT). Однако, принимается во внимание тот факт, что могут использоваться другие полупроводниковые переключающиеся элементы, включая, среди прочего, полевые транзисторы с МОП-структурой (MOSFET). Электронный отказоустойчивый приводной модуль магнитного подшипника 100 также содержит диоды 106, соединенные через коллектор и эмиттер каждого переключающегося элемента 104a-104f. Таким образом, каждый из токов катушек IA, IC может генерироваться в направлении, противоположном первому и второму направлениям на основе фазы (то есть, положительной или отрицательной) сигнала, который приводит переключающиеся элементы 104a-104f, как более подробно описано ниже.
[0032] Каждая двунаправленная цепь фазового плеча 102а-102с является выводом со средней точки соответствующей катушки. Например, первая катушка 108а содержит первый конец и второй конец. Первый конец соединен между эмиттером первого переключающегося элемента 104а и коллектором второго переключающегося элемента 104b. Второй конец соединен с эмиттером третьего переключающегося элемента 104с и коллектором четвертого переключающегося элемента 104d. Соответственно, первая цепь Н-моста 103а сформирована посредством использования первой катушки 108а. Подобным образом, вторая катушка 108b содержит первый конец и второй конец. Первый конец соединен с эмиттером третьего переключающегося элемента 104 с и коллектором четвертого переключающегося элемента 104d. Второй конец соединен с эмиттером пятого переключающегося элемента 104е и коллектором шестого переключающегося элемента 104f. Соответственно, цепь второго Н-моста 103b сформирована посредством использования второй катушки 108b. В соответствии с вариантом реализации изобретения, две цепи Н-моста 103а-103b делят общие фазовые плечи, например, фазовое плечо 102-b.
[0033] Обращаясь теперь к Фиг. 1В, проиллюстрирован электронный отказоустойчивый приводной модуль магнитного подшипника 100, функционирующий в первом режиме работы, например, нормальном режиме работы. В соответствии с вариантом реализации изобретения, каждая двунаправленная цепь фазового плеча 102а-102с содержит по меньшей мере один активированный переключающийся элемент и по меньшей мере один деактивированный переключающийся элемент. Затемненные линии указывают на переключающиеся элементы, активированные во время нормального режима работы. В этом случае, например, первый переключающийся элемент 104а, четвертый переключающийся элемент 104d и пятый переключающийся элемент 104е являются деактивированными, в то время как второй переключающийся элемент 104b, третий переключающийся элемент 104с и шестой переключающийся элемент 104f являются активированными. Деактивированные переключающиеся элементы 104а, 104d, 104е подавляют течение тока, в то время как активированные переключающиеся элементы 104b, 104с и 104f проводят ток. Соответственно, активированный второй переключающийся элемент 104b и третий переключающийся элемент 104 с генерируют и управляют током первой катушки IA, протекающим в первом направлении через первую катушку 108а. Активированный третий переключающийся элемент 104с и шестой переключающийся элемент 104f генерируют и управляют током второй катушки IC, протекающим во втором направлении через вторую катушку 108b. Ток второй катушки IC протекает в направлении, противоположном первому направлению тока первой катушки IA . Ток первой катушки IA индуцирует первое электромагнитное поле в ответ на протекание через первую катушку 108а, и ток второй катушки IC генерирует второе электромагнитное поле в ответ на протекание через вторую катушку 108b. Первое и второе электромагнитные поля бесконтактно поддерживают один или большее количество подшипников посредством магнитной левитации.
[0034] Обращаясь теперь к Фиг. 1С, проиллюстрирован электронный отказоустойчивый приводной модуль магнитного подшипника 100, функционирующий во втором режиме работы, например, вспомогательном режиме работы. В соответствии с по меньшей мере одним вариантом реализации изобретения, электронный отказоустойчивый приводной модуль магнитного подшипника 100 переключается из нормального режима работы во вспомогательный режим работы в ответ на обнаружение одного или большего количества отказов цепей, включая, но без ограничений, обрыв цепи. Обрыв цепи может произойти, например, в случае, если один или большее количество переключающихся элементов 104b, 104с, 104f, активированных во время нормального режима работы, откажет. В соответствии с вариантом реализации изобретения, каждая двунаправленная цепь фазового плеча 102а-102с содержит по меньшей мере один активированный переключающийся элемент и по меньшей мере один деактивированный переключающийся элемент. Затемненные линии указывают на переключающиеся элементы, активированные во время вспомогательного режима работы, в то время как не затемненные линии указывают на переключающиеся элементы, которые деактивированы.
[0035] Во время функционирования во вспомогательном режиме, например, второй переключающийся элемент 104b, третий переключающийся элемент 104с и шестой переключающийся элемент 104f являются деактивированными, а первый переключающийся элемент 104а, четвертый переключающийся элемент 104d и пятый переключающийся элемент 104е являются активированными. В этом случае, активированные переключающиеся элементы 104а, 104d, 104е проводят ток, в то время как деактивированные переключающиеся элементы 104b, 104с и 104f подавляют протекание тока. Соответственно, активированный первый переключающийся элемент 104а и четвертый переключающийся элемент 104d генерируют и управляют током первой катушки IA', протекающим в первом направлении через первую катушку 108а. Активированный третий переключающийся элемент 104d и пятый переключающийся элемент 104е генерируют и управляют током второй катушки IC', протекающим во втором направлении через вторую катушку 108b. Ток второй катушки IC' протекает в направлении, противоположном первому направлению тока первой катушки IA. Более того, ток первой катушки IA', сгенерированный во время вспомогательного режима работы, протекает в противоположном направлении (то есть, в отрицательной фазе) относительно тока первой катушки IA, сгенерированного во время нормального режима работы. Подобным образом, ток второй катушки IC', сгенерированный во время вспомогательного режима работы, протекает в противоположном направлении (то есть, в отрицательной фазе) относительно тока второй катушки IC, сгенерированного во время нормального режима работы.
[0036] Ток первой катушки IA' индуцирует первое электромагнитное поле в ответ на протекание через первую катушку 108а, и ток второй катушки IC' генерирует второе электромагнитное поле в ответ на протекание через вторую катушку 108b. Электромагнитные поля определяются абсолютным значением тока катушки IA', IC'. Поскольку сила магнитного подшипника не зависит от направления токов катушек IA, IA', IC, и IC', и нормальный режим работы, и вспомогательный режим работы могут генерировать подобные силы левитации. Соответственно, один или большее количество подшипников могут поддерживаться в бесконтактном состоянии левитации без прерывания при переключении из нормального режима работы во вспомогательный режим работы.
[0037] Обращаясь теперь к Фиг. 2, электронная отказоустойчивая приводная система магнитного подшипника 200 проиллюстрирована в соответствии с неограничивающим вариантом реализации изобретения. Отказоустойчивая приводная система магнитного подшипника 200 воплощает электронный отказоустойчивый приводной модуль магнитного подшипника 100 и выполнена с возможностью обнаружения различных электрических отказов, включая, например, отказ в виде обрыва цепи, вызванный отказом одного или более переключающихся элементов 102a-102f. В ответ на обнаружение отказа, отказоустойчивая приводная система магнитного подшипника 200 выполнена с возможностью управления функционированием отказоустойчивого приводного модуля магнитного подшипника 100. Например, отказоустойчивая приводная система магнитного подшипника 200 выполнена с возможностью переключения отказоустойчивого приводного модуля магнитного подшипника 100 из нормального режима работы во вспомогательный режим работы в ответ на обнаружение отказа в виде обрыва цепи.
[0038] Отказоустойчивая приводная система магнитного подшипника 200 содержит электронный отказоустойчивый приводной модуль магнитного подшипника 100 и электронный модуль управления положением 202, электронный отказоустойчивый модуль контроллера тока 204 и электронный модуль обнаружения отказа 206. Отказоустойчивый приводной модуль магнитного подшипника 100 функционирует в соответствии с подробно изложенными ранее описаниями. Модуль управления положением 202 определяет ошибку положения вала, присоединенного к подшипнику, поддерживаемому посредством левитации. Таким образом, положение подшипника и, следовательно, вала обуславливает ошибку положения. На основании номинального значения магнитной силы, предварительно определяется ток смещения I_bias, и затем генерируется опорный ток первой катушки (ia_ref) и опорный ток второй катушки (ic_ref).
[0039] Отказоустойчивый модуль контроллера тока 204 находится в сигнальной связи с модулем управления положением 202 для получения сигнала опорного тока первой катушки (ia_ref) и сигнала опорного тока второй катушки (ic_ref). Отказоустойчивый модуль контроллера тока 204 также получает сигналы токов катушек от одного или большего количества датчиков тока, выполненных с возможностью определения токов катушек, протекающих через катушки в составе отказоустойчивого приводного модуля 100. Как проиллюстрировано на Фиг. 2, например, отказоустойчивый модуль контроллера тока 204 получает сигнал тока первой катушки (ia), указывающий на ток первой катушки (Iа), и сигнал тока второй катушки (ic), указывающий на ток второй катушки (Ic).
[0040] Отказоустойчивый модуль контроллера тока 204 дополнительно содержит регулирующий узел первого тока 208а, регулирующий узел второго тока 208b, первый драйвер канала широтно-импульсной модуляции (ШИМ) 210а, второй драйвер канала ШИМ 210b и микшер канал ШИМ 212. Первый драйвер тока канала ШИМ 210а генерирует первый выходной сигнал ШИМ 214а, который приводит переключающиеся элементы 104b, 104с, и 104f в активированное состояние во время нормального режима работы. Второй драйвер тока канала ШИМ 210b генерирует второй выходной сигнал ШИМ 214b, который приводит переключающиеся элементы 104а, 104d, и 104е в активированное состояние во время вспомогательного режима работы. Регулирующий узел первого тока 208а получает сигналы первого и второго опорного тока (ia_ref), (ic_ref) в положительной фазе, в то время как регулирующий узел второго тока 208b получает сигналы первого и второго опорного тока (-ia_ref), (-ic_ref) в отрицательной фазе (то есть, инверсные сигналы). На основании сравнения сигналов опорных токов (ia_ref, -ia_ref, ic_ref, -ic_ref) с сигналами тока первой и второй катушки (IA, IC), драйверы первого и второго каналов ШИМ 210а, 210b генерируют соответствующие первый и второй выходные сигналы ШИМ 214а, 214b. Первый канал ШИМ 216а находится в сигнальной связи с выводами затворов переключающихся элементов нормального режима работы 104b, 104 с и 104f, а второй канал ШИМ 216b находится в сигнальной связи с выводами затворов переключающихся элементов вспомогательного режима работы 104а, 104d и 104е. Таким образом, первый выходной сигнал ШИМ 214а управляет переключающимися элементами нормального режима работы 104b, 104с и 104f, а второй выходной сигнал ШИМ 214b управляет переключающимися элементами вспомогательного режима работы 104а, 104d 104е.
[0041] Микшер канала ШИМ 212 обрабатывает первый и второй выходные сигналы ШИМ 214s, 214b наряду с управляющим сигналом об отказе 218, сгенерированным модулем обнаружения отказа 206. Сигнал обнаружения отказа 218 управляет микшером канала ШИМ 212 для выборочного вывода либо первого выходного сигнала ШИМ 214а, либо второго выходного сигнала ШИМ 216b. Таким образом, может быть инициирован нормальный режим работы или вспомогательный режим работы отказоустойчивого приводного модуля магнитного подшипника 100, как описано более подробно далее.
[0042] Для инициирования нормального режима работы отказоустойчивого приводного модуля магнитного подшипника 100 на соответствующие регуляторы тока 208а, 208b подаются сигналы опорного тока в положительной фазе (ia_ref, ic_ref,). Соответствующие скважности также генерируются и отправляются на соответствующие драйверы каналов ШИМ 210а, 210b. Первый выходной сигнал ШИМ 214а для приведения переключаемых элементов 104b, 104с, 104f нормального режима работы генерируется, а второй выходной сигнал ШИМ 214b для приведения переключаемых элементов 104а, 104d, 104е вспомогательного режима работы подавляется (то есть, блокируется) и не достигает второго канала ШИМ 216b. Соответственно, инициируется нормальный режим работы отказоустойчивого приводного модуля магнитного подшипника 100. Когда управляющий сигнал об отказе 218 генерируется, опорные токи в отрицательной фазе (-ia_ref, -ic_ref) выводятся на второй регулятор тока 208b. Соответствующие скважности также генерируются и отправляются на второй драйвер канала ШИМ 210b. Второй выходной сигнал ШИМ 214b для приведения переключающихся элементов 104а, 104d, 104е вспомогательного режима работы выводится на второй канал ШИМ 216, в то время как первый выходной сигнал ШИМ 214а для приведения переключающихся элементов 104b, 104с, 104f нормального режима работы подавляется и не достигает первого канала ШИМ 216а. Соответственно, инициируется вспомогательный режим работы отказоустойчивого приводного модуля магнитного подшипника 100.
[0043] Модуль обнаружения отказа 206 выполнен с возможностью обнаружения одного или большего количества электрических отказов отказоустойчивого приводного модуля магнитного подшипника 100 при функционировании в нормальном режиме работы. В соответствии с вариантом реализации изобретения, модуль обнаружения отказа 206 выполняет процедуру системного определения отказов, включающую множество операций определения, которые определяют разное в каждом цикле управления. Процедура определения далее будет подробно описана со ссылкой на Фиг. 4. Первая операция определения выполнена с возможностью обнаружения сценария защиты от перегрузки по току. Например, если какой-либо из токов катушек IA, IC достигает тока, превышающего граничное значение (I_limit1) при операции 300, обнаруживается, например, короткое замыкание, и все выходные сигналы ШИМ (то есть, 214а и 214b) блокируются при операции 302 таким образом, что вся система привода двигателя и привода магнитного подшипника 100 деактивируется.
[0044] Если токи катушек IA, IC не достигают граничного значения тока (I limit1) при операции 300, выполняется вторая операция определения для обнаружения внешнего отказа при операции 304. Обнаружение внешнего отказа основано на сигнале отказа, сгенерированном отказоустойчивым приводным модулем магнитного подшипника 100. Если отказоустойчивый приводной модуль магнитного подшипника 100 определяет отказ во время операции 304, такой как отказ устранения насыщения, обнаруженный силовым электронным устройством, активируется отказоустойчивое управление и управляющий сигнал об отказе управляет микшером канала ШИМ 212 для отключения первого выходного сигнала 214а и вывода второго выходного сигнала ШИМ 214b. Например, драйвер защиты от отказов устранения насыщения (DESAT), выполненный с возможностью защиты от перегрузки по току DESAT, может быть подключен к контроллеру таким образом, что контроллер может, следовательно, обнаруживать неисправность, не определяя величину тока, и отключать переключатель до отказа. Таким образом, переключающиеся элементы 104b, 104с, 104f нормального режима работы деактивируются, а переключающиеся элементы 104а, 104d, 104е вспомогательного режима работы активируются таким образом, чтобы отказоустойчивый приводной модуль магнитного подшипника 100 переключился из нормального режима работы во вспомогательный режим работы при операции 306.
[0045] Если отказ не обнаружен во время операции 304, третья операция выполнена с возможностью обнаружения электрического отказа на основании общего тока катушки (то есть, IA+ IC) и порогового значения (I_limit2) при операции 308. При работе в нормальном режиме, общий ток (то есть, сумма) первого и второго токов катушек (IA+IC) будет примерно двойным током смещения (то есть, 2×I_bias). Как упоминалось ранее, ток смещения (I_bias) предварительно определен. Таким образом, пороговое значение (I_limit2) может основываться на положении подшипника. То есть, I_limit2 может устанавливаться, например, равным приблизительно 1,5×I_bias. Если IA+IC меньше, чем I_limit2 при операции 308, обнаруживается отказ в виде обрыва цепи, и отказоустойчивый приводной модуль магнитного подшипника 100 переключается во вспомогательный режим при операции 310. Если все три этапа идентификации не определяют наличия отказа, отказоустойчивый приводной модуль магнитного подшипника 100 продолжает функционировать в нормальном режиме работы при операции 312.
[0046] Что касается Фиг. 4, являющейся блок-схемой, иллюстрирующей функционирование отказоустойчивой приводной системы магнитного подшипника, соответствующей неограничивающему варианту реализации изобретения. В данном примере отказоустойчивый приводной модуль магнитного подшипника 100 изначально работает в нормальном режиме работы. Сигнал Канала 1 (Ch1) указывает на то, что положение вращающегося вала, присоединенного к левитирующему подшипнику, находится в центральном положении. Сигнал Канала 2 (Ch2) указывает на операцию центрального затворного сигнала переключающегося элемента. Сигнал Канала 3 (Ch3) и сигнал Канала 4 (Ch4) отображают токи первой и второй катушек (IA, IC), соответственно, которые изначально находятся в положительной фазе. В момент времени (t1), Ch2 отключен из-за, например, отказа в виде обрыва цепи, и токи первой и второй катушек (U, IC) начинают спадать, как отображено Каналами Ch3 и Ch4.
[0047] В приблизительно t2 модуль обнаружения отказа 206 обнаруживает отказ и генерирует управляющий сигнал об отказе. Управляющий сигнал об отказе управляет микшером каналов ШИМ 212 для подавления первого выходного сигнала ШИМ 214а и вывода второго выходного сигнала ШИМ 214b, таким образом, инициируя вспомогательный режим отказоустойчивого приводного модуля магнитного подшипника 100. Соответственно, токи первой и второй катушек IA', IC' генерируются в отрицательной фазе в пределах приблизительно 1 миллисекунды (мс) с момента времени t1. Принимается во внимание тот факт, что время определения могло бы также быть меньше 1 мс. Таким образом, левитация подшипника может поддерживаться таким образом, чтобы положение оси вращающегося вала поддерживалось по центру между двумя граничными положениями с малым временем, как отображено Ch1. Следовательно, отказоустойчивая приводная система магнитного подшипника 200 может эффективно обнаруживать один или большее количество отказов, таких как обрыв цепи, например, и успешно поддерживать левитацию подшипника и осевое положение соответствующего вращающегося вала. Дополнительно, отказоустойчивая приводная система магнитного подшипника 200 позволяет перезапускать систему с резервным рабочим режимом. Это значительно проще, чем замена оборудования, и стоимость обслуживания уменьшается.
[0048] Хотя настоящее изобретение было подробно описано в связи с лишь ограниченным количеством вариантов реализации, должно быть совершенно понятно, что указанное изобретение не ограничивается подобными раскрытыми вариантами осуществления. Напротив, указанное изобретение может быть модифицировано таким образом, что оно будет включать любое количество вариантов, изменений, замен или эквивалентных механизмов, не описанных ранее, но которые соответствуют сущности и объему указанного изобретения. Кроме того, хотя были описаны различные варианты осуществления указанного изобретения, следует понимать, что аспекты указанного изобретения могут включать только некоторые из описанных вариантов реализации. Соответственно, указанное изобретение не следует рассматривать как ограниченное вышеприведенным описанием, а как ограниченное лишь объемом прилагаемой формулы изобретения.

Claims (19)

1. Электронный отказоустойчивый приводной модуль магнитного подшипника, содержащий:
первое множество переключающихся элементов и второе множество переключающихся элементов; и
по меньшей мере одну катушку, расположенную между первым множеством переключающихся элементов и вторым множеством переключающихся элементов, при этом первое и второе множества переключающихся элементов выполнены с возможностью выборочного функционирования в первом режиме работы и втором режиме работы для генерирования электромагнитного поля;
причем по меньшей мере одна катушка содержит первую катушку, которая расположена между первой двунаправленной цепью фазового плеча и второй двунаправленной цепью фазового плеча, формируя первую цепь Н-моста, и вторую катушку, которая расположена между второй двунаправленной цепью фазового плеча и третьей двунаправленной цепью фазового плеча, формируя вторую цепь Н-моста; а
первая цепь Н-моста и вторая цепь Н-моста имеют одно общее фазовое плечо, при этом первая цепь Н-моста выполнена с возможностью управления током первой катушки через эту первую катушку, а вторая цепь Н-моста выполнена с возможностью управления током второй катушки через эту вторую катушку, причем током второй катушки управляют таким образом, чтобы иметь направление, противоположное направлению тока первой катушки.
2. Электронный отказоустойчивый приводной модуль магнитного подшипника по п. 1, дополнительно содержащий диод, подключенный через каждый переключающийся элемент из первого и второго множества переключающихся элементов для формирования множества двунаправленных цепей фазовых плеч.
3. Электронный отказоустойчивый приводной модуль магнитного подшипника по п. 2, отличающийся тем, что первый режим работы выполнен с возможностью генерирования по меньшей мере одного тока катушки в первом направлении через по меньшей мере одну катушку в ответ на получение первого выходного сигнала ШИМ и генерирования по меньшей мере одного тока катушки во втором направлении, противоположном первому направлению, через по меньшей мере одну катушку в ответ на получение второго выходного сигнала ШИМ.
4. Электронный отказоустойчивый приводной модуль магнитного подшипника по п. 3, отличающийся тем, что каждая двунаправленная цепь фазового плеча содержит первый переключающийся элемент, выполненный с возможностью проведения тока на основании первого режима работы и подавления тока на основании второго режима работы, и второй переключающийся элемент, выполненный с возможностью подавления тока на основании первого режима работы и проведения тока на основании второго режима работы.
5. Электронная отказоустойчивая приводная система магнитного подшипника, содержащая:
электронный отказоустойчивый приводной модуль магнитного подшипника, выполненный с возможностью выборочного функционирования в первом режиме работы в ответ на получение первого выходного сигнала ШИМ и втором режиме работы в ответ на получение второго выходного сигнала ШИМ;
электронный модуль обнаружения отказа, выполненный с возможностью вывода управляющего сигнала об отказе в ответ на обнаружение электрического отказа электронной отказоустойчивой приводной системы магнитного подшипника, причем этот управляющий сигнал об отказе инициирует переход из первого режима работы во второй режим работы;
первую катушку, расположенную между первой двунаправленной цепью фазового плеча и второй двунаправленной цепью фазового плеча, формируя первую цепь Н-моста, и вторую катушку, расположенную между второй двунаправленной цепью фазового плеча и третьей двунаправленной цепью фазового плеча, формируя вторую цепь Н-моста;
причем первая цепь Н-моста и вторая цепь Н-моста имеют одно общее фазовое плечо, при этом первая цепь Н-моста выполнена с возможностью управления током первой катушки через эту первую катушку, а вторая цепь Н-моста выполнена с возможностью управления током второй катушки через эту вторую катушку, причем током второй катушки управляют таким образом, чтобы иметь направление, противоположное направлению тока первой катушки.
6. Электронная отказоустойчивая приводная система магнитного подшипника по п. 5, дополнительно содержащая электронный отказоустойчивый модуль контроллера тока, выполненный с возможностью выборочного вывода первого выходного сигнала ШИМ и второго выходного сигнала ШИМ.
7. Электронная отказоустойчивая приводная система магнитного подшипника по п. 6, отличающаяся тем, что в ответ на получение управляющего сигнала об отказе электронный отказоустойчивый модуль контроллера тока прерывает первый выходной сигнал ШИМ и выводит второй выходной сигнал ШИМ для переключения электронного отказоустойчивого приводного модуля магнитного подшипника из первого режима работы во второй режим работы.
8. Электронная отказоустойчивая приводная система магнитного подшипника по п. 7, отличающаяся тем, что первая и вторая катушки выполнены с возможностью генерирования электромагнитного поля в ответ на получение тока по меньшей мере одной катушки, протекающего в первом направлении.
9. Электронная отказоустойчивая приводная система магнитного подшипника по п. 8, отличающаяся тем, что модуль обнаружения отказа обнаруживает отказ в виде обрыва цепи отказоустойчивого приводного модуля магнитного подшипника на основании сравнения тока указанной по меньшей мере одной катушки с пороговым значением.
10. Электронная отказоустойчивая приводная система магнитного подшипника по п. 9, отличающаяся тем, что каждая из первой и второй двунаправленных цепей фазовых плеч содержит первый переключающийся элемент, выполненный с возможностью генерирования тока на основании первого режима работы и подавления тока на основании второго режима работы, и второй переключающийся элемент, выполненный с возможностью подавления тока на основании первого режима работы и генерирования тока на основании второго режима работы.
11. Электронная отказоустойчивая приводная система магнитного подшипника по п. 10, отличающаяся тем, что по меньшей мере один электрический отказ включает отказ в виде обрыва цепи, индуцированный в ответ на отказ первого переключающегося элемента.
RU2017115549A 2014-10-28 2015-10-27 Отказоустойчивая приводная система магнитного подшипника RU2702288C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462069524P 2014-10-28 2014-10-28
US62/069,524 2014-10-28
PCT/US2015/057453 WO2016069522A1 (en) 2014-10-28 2015-10-27 Magnetic bearing fault-tolerant drive system

Publications (3)

Publication Number Publication Date
RU2017115549A RU2017115549A (ru) 2018-11-29
RU2017115549A3 RU2017115549A3 (ru) 2019-04-26
RU2702288C2 true RU2702288C2 (ru) 2019-10-07

Family

ID=54478262

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017115549A RU2702288C2 (ru) 2014-10-28 2015-10-27 Отказоустойчивая приводная система магнитного подшипника

Country Status (6)

Country Link
US (1) US10578156B2 (ru)
EP (1) EP3212948B1 (ru)
CN (1) CN107148521B (ru)
ES (1) ES2778298T3 (ru)
RU (1) RU2702288C2 (ru)
WO (1) WO2016069522A1 (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107448476B (zh) * 2017-09-18 2018-12-28 华中科技大学 一种用于多轴磁悬浮轴承的电流相反的电力电子控制器
CN108123646B (zh) * 2017-11-30 2020-11-06 南京航空航天大学 电励磁双凸极电机励磁故障容错发电***及其控制方法
CN110905920A (zh) * 2018-09-18 2020-03-24 北京亚之捷环保科技有限责任公司 一种适用于磁轴承各自由度不同偏置组合的磁轴承控制装置
CN110107593B (zh) * 2019-04-19 2020-06-02 微控物理储能研究开发(深圳)有限公司 无偏置磁轴承线圈控制电路及控制方法
CN111538958B (zh) * 2020-04-22 2023-06-02 中国人民解放军国防科技大学 一种基于数据驱动的磁浮列车悬浮***故障检测方法
CN112165257B (zh) * 2020-09-02 2021-11-19 上海交通大学 一种隔离型直流变换器及故障容错控制方法
CN112196897B (zh) * 2020-10-10 2021-07-20 珠海格力电器股份有限公司 磁悬浮轴承控制***、方法、装置、设备和存储介质
JP7029096B1 (ja) * 2020-11-20 2022-03-03 ダイキン工業株式会社 電力供給回路及びそれを備えた軸受装置
CN112727923B (zh) * 2020-12-30 2021-12-03 华中科技大学 磁轴承串联绕组控制器的开关断路故障容错***及方法
CN112901658B (zh) * 2021-03-22 2021-12-03 华中科技大学 一种用于磁悬浮轴承的开关断路故障容错控制***
CN112815008B (zh) * 2021-03-22 2022-02-15 华中科技大学 一种磁悬浮两自由度径向轴承四相全桥拓扑电路
CN113107975B (zh) * 2021-04-07 2022-04-26 华中科技大学 用于磁轴承的绕组控制器断路故障定位、容错方法和***
CN114263677B (zh) * 2021-12-27 2022-12-02 华中科技大学 一种应用于磁悬浮轴承的五桥臂容错控制方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1744313A1 (ru) * 1990-01-08 1992-06-30 Институт ядерной энергетики АН БССР Устройство дл стабилизации магнитного подвеса ротора
US6005316A (en) * 1997-04-11 1999-12-21 Revolve Magnetic Bearing Inc. Current mode switching for tri-state amplifiers in magnetic bearing control systems
US6297574B1 (en) * 1998-09-24 2001-10-02 Lust Antriebstechnik Gmbh Magnetic bearing apparatus
US20060125436A1 (en) * 2002-11-25 2006-06-15 Turbocor, Inc. Power supply circuit of a high speed electric motor

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330970A (en) * 1964-08-07 1967-07-11 Whirlpool Co Proportional control circuit with bi-directional output
US4234838A (en) * 1979-01-11 1980-11-18 Kollmorgen Technologies Corporation Incremental motion motor controller
US4997237A (en) * 1989-09-22 1991-03-05 General Motors Corporation Bi-modal DC motor control for a motor driven anti-lock brake system
US5216339A (en) * 1991-09-30 1993-06-01 Dmytro Skybyk Lateral electric motor
US5304882A (en) * 1992-05-11 1994-04-19 Electric Power Research Institute, Inc. Variable reluctance motors with permanent magnet excitation
US5287046A (en) * 1992-05-13 1994-02-15 International Business Machines Corporation Method and system for actuator control for direct access storage devices
US5347191A (en) * 1992-06-26 1994-09-13 Altor, Inc. Dynamic transformer power supply
JPH0746895A (ja) * 1993-07-29 1995-02-14 Canon Inc ステッピングモータ駆動回路
JP3519771B2 (ja) * 1994-02-28 2004-04-19 Ntn株式会社 磁気軸受装置
EP0819330B1 (de) * 1995-04-03 2001-06-06 Levitronix LLC Rotationsmaschine mit elektromagnetischem drehantrieb
US5663605A (en) * 1995-05-03 1997-09-02 Ford Motor Company Rotating electrical machine with electromagnetic and permanent magnet excitation
EP0845083B1 (de) * 1995-08-18 2004-02-18 LUST ANTRIEBSTECHNIK GmbH Magnetische lagervorrichtung und verfahren zum betrieb derselben
US5973431A (en) * 1996-06-10 1999-10-26 Emerson Electric Co. Reluctance machine with permanent magnet rotor excitations
US5889347A (en) * 1996-07-09 1999-03-30 Emerson Electric Co. Reluctance machine with fractional pitch winding and drive therefore
US6118241A (en) * 1997-11-25 2000-09-12 Kollmorgen Corporation Dynamic braking system for electric motors
JPH11257352A (ja) * 1998-03-13 1999-09-21 Hitachi Ltd 磁気軸受及びそれを搭載した回転機械並びに回転機械の運転方法
DE59915016D1 (de) * 1998-08-24 2009-06-18 Levitronix Llc Verfahren zum Bestimmen der radialen Position eines permanentmagnetischen Rotors und elektromagnetischer Drehantrieb
US6900657B2 (en) * 2003-09-24 2005-05-31 Saia-Burgess Automotive, Inc. Stall detection circuit and method
CN103425052B (zh) * 2013-08-21 2016-05-25 江苏大学 一种径向主动磁轴承控制器的构造方法
CN103490690B (zh) * 2013-09-16 2015-09-30 江苏大学 一种交流磁轴承容错解耦控制器的构造方法
WO2015067309A1 (en) * 2013-11-06 2015-05-14 Abb Technology Ltd Magnetic bearing arrangement and method of operating a magnetic bearing arrangement
CN103684191B (zh) * 2013-12-03 2016-02-03 陈奚平 一种基于反激式控制模式的控制器以及采用该控制器的电机控制方法
US10333355B2 (en) * 2017-07-21 2019-06-25 Witricity Corporation Wireless charging magnetic parameter determination

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1744313A1 (ru) * 1990-01-08 1992-06-30 Институт ядерной энергетики АН БССР Устройство дл стабилизации магнитного подвеса ротора
US6005316A (en) * 1997-04-11 1999-12-21 Revolve Magnetic Bearing Inc. Current mode switching for tri-state amplifiers in magnetic bearing control systems
US6297574B1 (en) * 1998-09-24 2001-10-02 Lust Antriebstechnik Gmbh Magnetic bearing apparatus
US20060125436A1 (en) * 2002-11-25 2006-06-15 Turbocor, Inc. Power supply circuit of a high speed electric motor

Also Published As

Publication number Publication date
ES2778298T3 (es) 2020-08-10
CN107148521A (zh) 2017-09-08
US10578156B2 (en) 2020-03-03
RU2017115549A (ru) 2018-11-29
CN107148521B (zh) 2019-05-03
WO2016069522A1 (en) 2016-05-06
US20170307012A1 (en) 2017-10-26
EP3212948B1 (en) 2020-03-04
RU2017115549A3 (ru) 2019-04-26
EP3212948A1 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
RU2702288C2 (ru) Отказоустойчивая приводная система магнитного подшипника
KR101662480B1 (ko) 전동 모터의 제어 장치 및 제어 방법
KR101698302B1 (ko) 모터 제어 장치 및 모터의 제어 방법
JP6150757B2 (ja) 負荷駆動装置
US10320183B2 (en) Control strategy of a dual lane fault tolerant permanent magnet motor to reduce drag torque under fault condition
US20130345804A1 (en) Auxiliary artificial heart pump drive device and auxiliary artificial heart system
US20160173020A1 (en) Power conversion device, electric power steering system, electric vehicle, electronic control throttle, and electric brake
US10836423B2 (en) Electric power steering device and control method of electric power steering device
JP4772104B2 (ja) 電力変換装置
US20190252970A1 (en) Power conversion apparatus and logic circuit
US10476415B2 (en) Motor drive control device and motor drive control method
JP2009027872A (ja) 半導体電力変換装置
CN109557462B (zh) 用于切换信号的方法和切换设备及其应用
US10833614B2 (en) Motor drive device and electric power steering device
JP6405978B2 (ja) インバータ装置
JPWO2018180238A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
US20210044239A1 (en) Solid state phase isolation of multi-phase motors
JP6879188B2 (ja) 駆動装置の異常判定装置
JP6437122B2 (ja) インバータ制御装置
US20240128911A1 (en) Motor winding neutral switching
JP2019041522A (ja) モータ駆動制御装置及びモータの駆動制御方法
JP2019165551A (ja) モータ装置及びモータの駆動制御方法
WO2022158052A1 (ja) ゲート駆動回路および電力変換装置
JP2018129900A (ja) モータ制御装置およびモータシステム
JP2015142458A (ja) モータ駆動制御装置及びモータ駆動制御装置の制御方法