RU2701195C1 - Способ получения искусственных губок в микропробирках для проведения лабораторных исследований in vitro - Google Patents

Способ получения искусственных губок в микропробирках для проведения лабораторных исследований in vitro Download PDF

Info

Publication number
RU2701195C1
RU2701195C1 RU2018141947A RU2018141947A RU2701195C1 RU 2701195 C1 RU2701195 C1 RU 2701195C1 RU 2018141947 A RU2018141947 A RU 2018141947A RU 2018141947 A RU2018141947 A RU 2018141947A RU 2701195 C1 RU2701195 C1 RU 2701195C1
Authority
RU
Russia
Prior art keywords
temperature
minutes
pressure
sponges
μbar
Prior art date
Application number
RU2018141947A
Other languages
English (en)
Inventor
Галина Геннадьевна Белозерская
Валерий Алексеевич Кабак
Евгений Михайлович Голубев
Татьяна Ивановна Широкова
Андрей Павлович Момот
Дмитрий Евгеньевич Белозеров
Марина Владимировна Пыхтеева
Ольга Евгеньевна Неведрова
Унан Левонович Джулакян
Лариса Сергеевна Малыхина
Юлия Сергеевна Логвинова
Дмитрий Юрьевич Бычичко
Асаф Рудольфович Лемперт
Максим Сергеевич Миронов
Original Assignee
Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр гематологии" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ гематологии" Минздрава России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр гематологии" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ гематологии" Минздрава России) filed Critical Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр гематологии" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ гематологии" Минздрава России)
Priority to RU2018141947A priority Critical patent/RU2701195C1/ru
Application granted granted Critical
Publication of RU2701195C1 publication Critical patent/RU2701195C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)
  • Diabetes (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)

Abstract

Изобретение относится к медицине и касается способа получения искусственных губок в микропробирках для проведения лабораторных исследований in vitro, включающего в себя стадии приготовления композиции для получения губок, помещения навески композиции в микропробирку, высушивания композиции методом лиофилизации. При этом лиофилизацию осуществляют в следующем режиме: замораживают при атмосферном давлении при температуре +2,0°C в течение 330 мин, затем при атмосферном давлении при температуре -50,0°C в течение 255 мин; лиофилизируют при давлении 90 μбар при температуре -50,0°C в течение 60 мин, затем при давлении 90 μбар при температуре -20,0°C в течение 1850 мин, затем при давлении 90 μбар при температуре +5,0°C в течение 780 мин; досушивают полученные губки при давлении 90 μбар при температуре +35,0°C в течение 660 мин. Изобретение обеспечивает получение материалов для коагулологических, микробиологических лабораторных исследований in vitro, применение которых уменьшает погрешности при экспериментах. 1 н.п. ф-лы, 8 пр.

Description

Изобретение относится к фармацевтической промышленности и к медицине, а именно к способу получения в микропробирках гемостатических, лечебных и других губок, содержащих основу и активные вещества, для проведения коагулологических, микробиологических и других лабораторных исследований in vitro.
Известен способ лабораторного исследования, при котором на дно кюветы медицинским клеем фиксируется исследуемый хирургический материал (средства, применяемые в качестве гемостатических аппликационных имплантов, такие как губки на основе карбоксиметилцеллюлозы, коллагена) объемом 1 мм3. Обязательными условиями проведения сравнительного исследования являются стандартизация размеров исследуемых образцов, а также постановка контрольного опыта (в кювете коагулографа находится только необходимый объем нативной крови донора). Данный способ является недостаточно «чувствительным» вследствие того, что в процессе исследования имеет место интенсивное механическое воздействие со стороны измерительной ячейки электрокоагулографа на форменные элементы крови, что приводит к их деструкции, тем самым способствует выходу веществ, участвующих в процессе свертывания крови. Вместе с тем, за счет механического воздействия, вследствие разрушения нитей фибрина нарушается формирование фибриновой сети, что значительно снижает чувствительность, воспроизводимость и точность электрокоагулографии, делает невозможным выявление тонких сдвигов в сложной системе [Липатов В.А. К вопросу о методологии сравнительного изучения степени гемостатической активности аппликационных кровоостанавливающих средств / В.А. Липатов, С.В. Лазаренко, К.А. Сотников, Д.А. Северинов, М.П. Ершов // Новости хирургии - 2018. - Т. 26 - №1 - 81-95 с.].
Известна биомедицинская полисахаридная гемостатическая лечебная губка. Способ получения включает следующие стадии: во-первых, растворение полисахаридного материала карбоксиметилцеллюлозы, гиалуроновой кислоты или их смеси в щелочном растворе, достаточное перемешивание и набухание в коллоид; во-вторых, добавление сшивающего агента в коллоид, достаточное перемешивание, инкубацию в однородный гель и диализацию и очистку полученного геля; в-третьих, добавление глицерина в очищенный продукт и, наконец, проведение сублимационной сушки при низкой температуре для получения обезвоженной губки (патент CN 103480033).
Наиболее близким аналогом является патент РФ №2618896, в котором описана гемостатическая губка, содержащая основу и активное вещество, высушенные сублимационной сушкой.
К недостаткам известных технических решений является их неприспособленность для проведения скриннинговых и других исследований in vitro, такие системы изготавливаются на месте в лабораториях путем помещения навески губки, содержащей основу или основу и активные вещества в микропробирку на клеевую основу. Однако, при этом происходит повреждение структуры губки, что приводит к увеличению погрешности при проведении исследований.
Задачей, на решение которой направлено настоящее изобретение, является разработка способа получения материалов для проведения лабораторных исследований in vitro, применение которой позволяет уменьшить погрешность при проводимых экспериментах.
Поставленная задача решается путем применения способа получения исследуемых губок в микропобирках для проведения лабораторных исследований in vitro, включающего в себя стадии приготовление композиции, помещение навески композиции в микропробирку, высушивание композиции методом лиофилизации. При этом лиофилизация происходит в следующем режиме:
- замораживание при атмосферном давлении при температуре +2,0°С в течение 330 мин, затем атмосферном давлении при температуре -50,0°С в течение 255 мин;
- лиофилизация при давлении 90 μбар при температуре -50,0°С в течение 60 мин, затем при давлении 90 μбар при температуре -20,0°С в течение 1850 мин, затем при давлении 90 μбар при температуре +5,0°С в течение 780 мин;
- досушивание полученных губок при давлении 90 μбар при температуре +35,0°С в течение 660 мин.
При этом исследуемая губка включает основу и при необходимости гемостатически активные и/или лекарственные компоненты. Губка получена непосредственно в микропробирке сублимационной сушкой из растворов, гелей или золей, суспензий или дисперсных растворов, что позволяет избежать структурных повреждений губки и активных компонентов при их размещении в микропробирке. Так же в процессе сублимационной сушки происходит адгезивное сцепление поверхностей исследуемой губки и микропробирки, что фиксирует положение губки без использования медицинского клея.
Для получения губок одинакового объема, массы и пористости, помещенных в микропробирки, готовых к проведению различных лабораторных исследований in vitro, нами предложено приготовление водных растворов, золей или гелей, дисперсных растворов или суспензий, или других жидких лекарственных форм с взятыми в качестве основы альгинатом натрия или хитозаном, или каррагинаном, или целлюлозой, или другими природными или искусственными полимерными или белковыми соединениями. Состав губок может включать в качестве активных веществ белки крови, соли и соединения на основе металлов, растительные экстракты, минеральные вещества, ингибиторы фибринолиза, факторы свертывания крови, антибиотики, антисептики и другие. Значение рН итоговой смеси компонентов может варьироваться от 0,5 до 13,5. После приготовления одинаковые объемы (от 0,1 до 15,0 мл) растворов, золей или гелей, дисперсий или суспензий, с помощью микропипеток помещают в микропробирки.
Настоящим способом получения губок предусмотрено использование микропробирок, используемых в современной лабораторной практике, изготовленных из стекла или кварцевого стекла, полистирола или полипропилена, или других синтетических полимеров, применяемых в медицине, с коническим, плоским или круглым дном, градуированных или неградуированных, с защелкивающейся или винтовой крышкой, или с пробкой, бесцветных или окрашенных, стерильных или нестерильных, объемом от 0,1 до 15,0 мл, в том числе и пробирок типа «эппендорф».
Заполненные одинаковыми объемами водных растворов или гелей, или суспензий, или других жидких лекарственных форм микропробирки помещают в лиофилизатор и подвергают оптимальному режиму заморозки с последующей вакуумной сушкой и досушиванием. В результате в микропробирках получают одинаковые по объему, массе и пористости губки, с контактной поверхностью, идентичной губкам большого размера, применяемым в экспериментах in vivo, используемые в дальнейшем для проведения коагулологических, микробиологических и других лабораторных исследований in vitro.
Важнейшими параметрами при лиофильной сушке являются давление и температура. Стандартный процесс лиофильной сушки можно разделить на три этапа: замораживание, первичную сушку и вторичную сушку. Каждый этап предъявляет конкретные требования к давлению и температуре. Первоначально продукт замораживается при температуре, достаточно низкой для того, чтобы обеспечить полную заморозку. На первичной стадии сушки должны быть созданы условия, благоприятные для лиофилизации. В то же время важным является сохранение характеристик продукта, поэтому необходимо, чтобы температура оставалась ниже определенного значения, которое называют критической температурой. При температуре выше этого значения структура продукта разрушается, что приводит к усадке и растрескиванию. В идеале лиофильная сушка проводится при температурах чуть ниже критической. Давление в сушильной камере понижают, чтобы активировать процесс сушки.
Лиофилизация вызывает образование водяного пара в сушильной камере. Если пар не удалять из системы, он насыщается и частицы льда перестают сублимироваться. Частицы пара удаляются посредством ледового конденсора. Главная задача ледового конденсора - собирать водяной пар и другие конденсируемые газы. Молекулы воды естественным образом перемещаются к ледовому конденсору, чему способствует разница значений давления пара. Температура ледового конденсора должна быть значительно ниже температуры замороженного продукта - обычно на 15°С.
Раствор, золь или гель, дисперсию или суспензию, или другие жидкие лекарственные формы на основе природных или синтетических полимеров с добавлением или без добавления активных веществ объемом 1,0 мл с помощью пипетки-дозатора помещался в микропробирки. Требуемое количество микропробирок помещалось в лиофилизатор CS 15-0.7. Затем производилось замораживание при атмосферном давлении при температуре +2,0°С в течение 330 мин, затем атмосферном давлении при температуре -50,0°С в течение 255 мин. После окончания режима замораживания производилась лиофилизация при давлении 90 μбар при температуре -50,0°С в течение 60 мин, затем при давлении 90 μбар при температуре -20,0°С в течение 1850 мин, затем при давлении 90 μбар при температуре +5,0°С в течение 780 мин. После окончания режима лиофилизации производилось досушивание полученных губок при давлении 90 μбар при температуре +35,0°С в течение 660 мин. В результате в микропробирках получали одинаковые по объему, весу и пористости губки, с контактной поверхностью, идентичной губкам большого размера, применяемым в экспериментах in vivo, используемые в дальнейшем для проведения коагулологических, микробиологических и других лабораторных методов исследования in vitro.
Пример 1.
0,1-3,0% раствор альгината натрия в дистиллированной воде объемом 0,2 мл с помощью пипетки-дозатора помещают в микропробирки объемом 0,2 см3. Требуемое для исследований количество микропробирок с 0,1-3,0% раствора альгината натрия в дистиллированной воде объемом 0,2 мл помещают в лиофилизатор CS 15-0.7. Затем производят замораживание при давлении 1 бар при температуре +2,0°С в течение 330 минут, затем при температуре -50,0°С в течение 255 минут. После окончания режима замораживания производят лиофилизацию при давлении 90 μбар при температуре -50,0°С в течение 1850 минут, затем при температуре +5,0°С в течение 780 минут. После окончания режима лиофилизации проводят досушивание полученных губок при давлении 90 μбар при температуре +35,0°С в течение 660 минут. В результате в микропробирках получены одинаковые по объему, весу и пористости губки, применяемые в дальнейшем для проведения коагулологических, микробиологических и других лабораторных методов исследований.
Пример 2.
0,1-5,0% раствор поливинилпирролидона в дистиллированной воде объемом 15,0 мл с помощью пипетки-дозатора помещают в микропробирки объемом 15,0 см3. Требуемое для исследования количество микропробирок с 0,1-5,0% раствором поливинилпирролидона в дистиллированной воде объемом 15,0 мл помещают в лиофилизатор CS 15-0.7. Затем производят замораживание при давлении 1 бар при температуре +2,0°С в течение 330 минут, затем при температуре -50,0°С в течение 255 минут. После окончания режима замораживания производят лиофилизацию при давлении 90 μбар при температуре -50,0°С в течение 1850 минут, затем при температуре +5,0°С в течение 780 минут. После окончания режима лиофилизации проводят досушивание полученных губок при давлении 90 μбар при температуре +35,0°С в течение 660 минут. В результате в микропробирках получены одинаковые по объему, весу и пористости губки, используемые в дальнейшем для проведения коагулологических, микробиологических и других лабораторных методов исследования.
Пример 3.
3,0-10,0% гель на основе альгината натрия объемом 0,2 мл с помощью пипетки-дозатора помещают в микропробирки. Требуемое количество микропробирок с 3,0-10,0% гелем на основе альгината натрия объемом 0,2 мл помещают в лиофилизатор CS 15-0.7. Затем производят замораживание при давлении 1 бар при температуре +2,0°С в течение 330 минут, затем при температуре -50,0°С в течение 255 минут. После окончания режима замораживания производят лиофилизацию при давлении 90 μбар при температуре -50,0°С в течение 1850 минут, затем при температуре +5,0°С в течение 780 минут. После окончания режима лиофилизации проводят досушивание полученных губок при давлении 90 μбар при температуре +35,0°С в течение 660 минут. В результате в микропробирках получены одинаковые по объему, весу и пористости губки, используемые в дальнейшем для проведения коагулологических, микробиологических и других лабораторных методов исследования.
Пример 4.
10,0-30,0% гель на основе поливинилпирролидона объемом 15,0 мл с помощью пипетки-дозатора помещают в микропробирки. Требуемое количество микропробирок с 10,0-30,0% гелем на основе поливинилпирролидона объемом 15,0 мл помещают в лиофилизатор CS 15-0.7. Затем производят замораживание при давлении 1 бар при температуре +2,0°С в течение 330 минут, затем при температуре -50,0°С в течение 255 минут. После окончания режима замораживания производят лиофилизацию при давлении 90 μбар при температуре -50,0°С в течение 1850 минут, затем при температуре +5,0°С в течение 780 минут. После окончания режима лиофилизации проводят досушивание полученных губок при давлении 90 μбар при температуре +35,0°С в течение 660 минут. В результате в микропробирках получены одинаковые по объему, весу и пористости губки, используемые в дальнейшем для проведения коагулологических, микробиологических и других лабораторных методов исследования.
Пример 5.
В 3,0% растворе каррагинана в дистиллированной воде растворяют гемостатические средства: эпсилон-аминокапроновую кислоту, минеральные вещества с гемостатическим действием, пластификаторы при температуре 20°С и постоянном перемешивании на шейкере в течение 60 мин до получения однородной массы. Затем 0,2 мл полученной однородной массы с помощью пипетки-дозатора помещают в микропробирки. Требуемое для исследования количество микропробирок с полученной однородной массой природных полимеров и активных веществ объемом 0,2 мл помещают в лиофилизатор CS 15-0.7. Затем производят замораживание при давлении 1 бар при температуре +2,0°С в течение 330 минут, затем при температуре -50,0°С в течение 255 минут. После окончания режима замораживания производят лиофилизацию при давлении 90 μбар при температуре -50,0°С в течение 1850 минут, затем при температуре +5,0°С в течение 780 минут. После окончания режима лиофилизации проводят досушивание полученных губок при давлении 90 μбар при температуре +35,0°С в течение 660 минут. В результате в микропробирках получены одинаковые по объему, весу и пористости губки, используемые в дальнейшем для проведения сравнительных коагулологических, микробиологических и других лабораторных методов исследования.
Пример 6.
В 10,0% геле на основе целлюлозы растворяют антибиотики, антимикробные средства и металлические соли при температуре 75°С и постоянном перемешивании на шейкере в течение 60 мин до получения однородной массы. Затем 15 мл полученной однородной массы с помощью пипетки-дозатора помещают в микропробирки. Требуемое для исследования количество микропробирок с полученной однородной массой природных полимеров и активных веществ объемом 15 мл помещают в лиофилизатор CS 15-0.7. Затем производят замораживание при давлении 1 бар при температуре +2,0°С в течение 330 минут, затем при температуре -50,0°С в течение 255 минут. После окончания режима замораживания производят лиофилизацию при давлении 90 μбар при температуре -50,0°С в течение 1850 минут, затем при температуре +5,0°С в течение 780 минут. После окончания режима лиофилизации проводят досушивание полученных губок при давлении 90 μбар при температуре +35,0°С в течение 660 минут. В результате в микропробирках получены одинаковые по объему, весу и пористости губки, используемые в дальнейшем для проведения лабораторных методов исследования.
Пример 7.
Изучение влияния раневого покрытия на остановку кровотечений проводили в лабораторных условиях на кроликах породы «Шиншилла» обоего пола массой 3,0-4,5 кг со средним значением темпа кровотечения 1 г/мин согласно методике, описанной в «Руководстве по проведению доклинических исследований лекарственных средств», Часть первая, М: Гриф и К, 2012. Эксперимент выполнялся с введения животного в состояние тиопенталового наркоза. Затем выполнялась тотальная срединная лапаротомия, в образовавшуюся рану выводилась передняя поверхность печени. При помощи пластмассового ограничителя производилась резекция лезвием выступившей части печени. В результате образовывалась равномерно кровоточащая рана. В каждом опыте размер и форма срезанного сегмента оставались неизменными. Для сравнительной оценки гемостатических свойств исследуемого раневого покрытия опытного образца губки, полученной в микропробирке и образца контроля (размером 2 см × 2 см) на доле печени одновременно производились два вышеописанных среза. В качестве контроля использовался образец губки, используемый в экспериментах in vivo.
Пример 8.
Остановка капиллярно-паренхиматозного кровотечения выполнялась путем одномоментного нанесения на раны образца губки, полученной в микропробирке, и образца губки, используемого в экспериментах in vivo. Губки хорошо адгезировали к ранам, обладали высокой гигроскопичностью, и полностью останавливали кровотечение за 69±4 с и 62±5 с соответственно.

Claims (4)

  1. Способ получения искусственных губок в микропробирках для проведения лабораторных исследований in vitro, включающий в себя стадии приготовления композиции для получения губок, помещения навески композиции в микропробирку, высушивания композиции методом лиофилизации, отличающийся тем, что лиофилизацию осуществляют в следующем режиме:
  2. - замораживают при атмосферном давлении при температуре +2,0°C в течение 330 мин, затем при атмосферном давлении при температуре -50,0°C в течение 255 мин;
  3. - лиофилизируют при давлении 90 μбар при температуре -50,0°C в течение 60 мин, затем при давлении 90 μбар при температуре -20,0°C в течение 1850 мин, затем при давлении 90 μбар при температуре +5,0°C в течение 780 мин;
  4. - досушивают полученные губки при давлении 90 μбар при температуре +35,0°C в течение 660 мин.
RU2018141947A 2018-11-28 2018-11-28 Способ получения искусственных губок в микропробирках для проведения лабораторных исследований in vitro RU2701195C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018141947A RU2701195C1 (ru) 2018-11-28 2018-11-28 Способ получения искусственных губок в микропробирках для проведения лабораторных исследований in vitro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018141947A RU2701195C1 (ru) 2018-11-28 2018-11-28 Способ получения искусственных губок в микропробирках для проведения лабораторных исследований in vitro

Publications (1)

Publication Number Publication Date
RU2701195C1 true RU2701195C1 (ru) 2019-09-25

Family

ID=68063299

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018141947A RU2701195C1 (ru) 2018-11-28 2018-11-28 Способ получения искусственных губок в микропробирках для проведения лабораторных исследований in vitro

Country Status (1)

Country Link
RU (1) RU2701195C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2744955C1 (ru) * 2020-09-16 2021-03-17 Государственное казенное учреждение Ямало-Ненецкого автономного округа «Научный центр изучения Арктики» Соус на основе растительной пищевой добавки и способ его приготовления

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6649162B1 (en) * 1996-04-04 2003-11-18 Baxter Aktiengesellschaft Hemostatic sponge based on collagen
CN103480033A (zh) * 2013-10-08 2014-01-01 江苏昌吉永生物科技有限公司 一种医用生物多糖止血愈合海绵及其制备方法
RU2618896C1 (ru) * 2016-06-30 2017-05-11 Федеральное государственное бюджетное учреждение Гематологический научный центр Министерства здравоохранения Российской Федерации (ФГБУ ГНЦ Минздрава России) Губка гемостатическая и способ ее получения

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6649162B1 (en) * 1996-04-04 2003-11-18 Baxter Aktiengesellschaft Hemostatic sponge based on collagen
CN103480033A (zh) * 2013-10-08 2014-01-01 江苏昌吉永生物科技有限公司 一种医用生物多糖止血愈合海绵及其制备方法
RU2618896C1 (ru) * 2016-06-30 2017-05-11 Федеральное государственное бюджетное учреждение Гематологический научный центр Министерства здравоохранения Российской Федерации (ФГБУ ГНЦ Минздрава России) Губка гемостатическая и способ ее получения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIELAFF M. et al. Early experience with a novel gelatine-based sponge for local haemostasis in thyroid surgery.In Vivo. 2014 Mar-Apr;28(2):255-8. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2744955C1 (ru) * 2020-09-16 2021-03-17 Государственное казенное учреждение Ямало-Ненецкого автономного округа «Научный центр изучения Арктики» Соус на основе растительной пищевой добавки и способ его приготовления

Similar Documents

Publication Publication Date Title
Liu et al. Preparation and characterization of chitosan–collagen peptide/oxidized konjac glucomannan hydrogel
CN106983905B (zh) 一种可注射型自愈合止血材料及其制备方法和应用
Zhang et al. Hydroxybutyl chitosan/diatom-biosilica composite sponge for hemorrhage control
JP6050320B2 (ja) 止血組成物
Barnes et al. Platelet aggregation by basement membrane-associated collagens
JPH11502431A (ja) 手術後の癒着を防止するための架橋化フィブリンの自己支持シート様材料
PT2019123259B (pt) Hidrógeis produzidos a partir de componentes do plasma sanguíneo, processos e suas aplicações
Huang et al. Bioinspired self-assembling peptide hydrogel with proteoglycan-assisted growth factor delivery for therapeutic angiogenesis
Haghniaz et al. Tissue adhesive hemostatic microneedle arrays for rapid hemorrhage treatment
BG108123A (bg) Суспензия, съдържаща фибриноген, тромбин и алкохол, метод за изготвяне на тази суспензия, метод за покриване на носител с тази суспензия, метод за изсушаване на покритието на носителя и покрита колагенова пореста маса
US20060051731A1 (en) Processes for preparing lyophilized platelets
KR102465366B1 (ko) 파우더형 지혈제 제조방법 및 그에 따른 파우더형 지혈제
RU2701195C1 (ru) Способ получения искусственных губок в микропробирках для проведения лабораторных исследований in vitro
Karahaliloğlu et al. Active nano/microbilayer hemostatic agents for diabetic rat bleeding model
TW201442747A (zh) 白蛋白組織支架
RU2594427C1 (ru) Композиция для формирования макропористого носителя, используемого при трехмерном культивировании клеток животных или человека, и способ получения указанного носителя
RU2618896C1 (ru) Губка гемостатическая и способ ее получения
JP5937070B2 (ja) 3d細胞培養に用いる改良された架橋ヒアルロナンヒドロゲル
Wang et al. A contact-polymerizable hemostatic powder for rapid hemostasis
US20160121017A1 (en) SINGLE SOLUTION of Gel-LIKE FIBRIN HEMOSTAT
Tan et al. Dynamic hydrogel with environment-adaptive autonomous wound-compressing ability enables rapid hemostasis and inflammation amelioration for hemorrhagic wound healing
Huang et al. A self-gelling starch-based sponge for hemostasis
WO2020223778A1 (pt) Matriz 3d de nanocelulose para cultura de células humanas e animais in vitro
JP2022533544A (ja) 創傷治療のための新規な多糖類をベースとしたヒドロゲルスキャフォールド
RU2740191C2 (ru) Гемостатическая композиция, включающая матрицу на основе сшитого производного гиалуроновой кислоты