RU2696999C1 - Способ производства литейных жаропрочных сплавов на основе никеля - Google Patents

Способ производства литейных жаропрочных сплавов на основе никеля Download PDF

Info

Publication number
RU2696999C1
RU2696999C1 RU2019104707A RU2019104707A RU2696999C1 RU 2696999 C1 RU2696999 C1 RU 2696999C1 RU 2019104707 A RU2019104707 A RU 2019104707A RU 2019104707 A RU2019104707 A RU 2019104707A RU 2696999 C1 RU2696999 C1 RU 2696999C1
Authority
RU
Russia
Prior art keywords
melt
nickel
vacuum
barium
rare
Prior art date
Application number
RU2019104707A
Other languages
English (en)
Inventor
Евгений Николаевич Каблов
Виктор Васильевич Сидоров
Павел Георгиевич Мин
Виталий Евгеньевич Вадеев
Original Assignee
Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") filed Critical Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ")
Priority to RU2019104707A priority Critical patent/RU2696999C1/ru
Application granted granted Critical
Publication of RU2696999C1 publication Critical patent/RU2696999C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на основе никеля для изготовления лопаток и других деталей горячего тракта газотурбинных двигателей и установок. Способ производства литейных жаропрочных сплавов на основе никеля включает расплавление в вакууме шихтовых материалов, присадку в расплав активных легирующих и рафинирующих добавок. В качестве рафинирующих добавок в расплав последовательно вводят барий в количестве 0,001-0,10% от массы расплава и по меньшей мере один редкоземельный металл в количестве 0,01-0,50% от массы расплава. Затем после присадки активных легирующих металлов проводят рафинирование расплава в вакууме 10-1-5⋅10-3 мм рт.ст. при температуре 1600-1700°С в течение от 5 до 40 мин, во время которого расплав перемешивают, а плавильный тигель наклоняют от одного до трех раз с возвратом в первоначальное положение после каждого наклона. Повышается жаропрочность сплавов на основе никеля за счет снижения содержания серы, кислорода и азота до 0,001-0,002% каждого. 3 з.п. ф-лы, 2 табл., 7 пр.

Description

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на основе никеля для изготовления лопаток и других деталей горячего тракта газотурбинных двигателей и установок (ГТД и ГТУ).
Получить высококачественные лопатки ГТД с бездефектной структурой из литейных жаропрочных сплавов можно только при использовании для их отливки сплавов с пониженным содержанием в них вредных примесей кислорода, азота, серы. Это обусловлено тем, что образующиеся при содержании этих элементов в сплаве выше критического значения твердые частицы оксидов, нитридов и сульфидов являются концентраторами напряжений, инициирующими зарождение микротрещин в условиях высокотемпературной ползучести и усталостных нагрузок. Таким образом, эти неметаллические включения существенно снижают эксплуатационные свойства сплавов, прежде всего характеристики длительной прочности и усталости.
Известен способ производства литейных жаропрочных сплавов для получения отливок с направленной и монокристаллической структурой, включающий расплавление исходных компонентов, введение в расплав редкоземельных металлов (РЗМ), например, церия, лантана, иттрия и скандия, в вакууме и разливку с получением шихтовой заготовки, расплавление шихтовой заготовки, заливку в литейную форму и направленную кристаллизацию. Перед введением РЗМ проводят раскисление расплава, а РЗМ вводят в количестве, определяемом из следующего уравнения: П=K*τ/vкp, где τ - выдержка после введения РЗМ до начала разливки, мин; vкp - скорость направленной кристаллизации отливки, мм/мин; K=0,03-0,04 - эмпирический коэффициент пропорциональности (RU 2035521 С1, 20.05.1995).
Недостатком указанного способа является то, что он не позволяет получить в готовом металле низкие содержания серы, кислорода и азота ≤0,003% каждого.
Известен способ изготовления суперсплавов с ультранизким содержанием серы до ≤0,0001%, что обеспечивается за счет осуществления вакуумной плавки сплавов в тигле из оксида кальция (десульфирующий агент) (US 5922148 А, 13.07.1999).
Недостатком указанного способа является то, что оксид кальция относится к термически нестойким соединениям (в отличие от оксида магния и алюминия), и поэтому после проведения в нем нескольких плавок он начинает растрескиваться и разрушаться, при этом оксид кальция загрязняет металл.
Известен способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе, включающий расплавление в вакууме шихтовых материалов и проведение обезуглероживающего рафинирования в две стадии с введением окислителя в атмосфере инертного газа при давлении 20-150 мм рт.ст. и последующее введение в вакууме редкоземельных металлов (РЗМ), хрома и активных легирующих элементов, в котором после введения в расплав активных легирующих элементов вводят кальций в количестве 0,02-0,20% от массы расплава под давлением инертного газа 20-130 мм рт.ст., затем создают вакуум 10-2-5⋅10-4 мм рт.ст., после чего вводят лантан в количестве 0,01-0,3% от массы расплава (RU 2221067 С1, 10.01.2004).
Недостатком указанного способа является то, что он не позволяет обеспечить получение в готовом металле низкого содержания примесей кислорода, азота и серы ≤0,003% каждого. Кроме того, создание в печи давления 20-130 мм рт.ст. перед присадкой кальция и последующего создания вакуума увеличивает продолжительность плавки.
Наиболее близким аналогом является способ производства литейных жаропрочных сплавов на основе никеля, включающий расплавление в вакууме углеродсодержащих шихтовых материалов, содержащих до 70% по массе отходов литейных жаропрочных сплавов на основе никеля, введение активных легирующих элементов и рафинирующих добавок. В качестве одной из рафинирующих добавок вводят гидрид по крайне мере одного из входящих в состав металла из группы: титан, тантал, ниобий, ванадий и гафний, в количестве, определяемом содержанием водорода 0,005-0,1% от массы шихтовых материалов, при этом гидрид вводят в расплав в атмосфере инертного газа при давлении 50-200 мм рт.ст. и температуре расплава на 100-240°С выше температуры ликвидус сплава. (RU 2344186 С2, п. 2 ф.и., 20.01.2009).
Недостатком способа-прототипа является то, что он не позволяет получить в сплаве требуемое низкое содержание примесей серы, кислорода и азота - до 0,002% каждого, и не может обеспечить высокие характеристики длительной прочности.
Технической задачей предлагаемого изобретения является разработка способа производства литейных жаропрочных сплавов на никелевой основе с пониженным содержанием примесей и высокими характеристиками жаропрочности.
Техническим результатом предлагаемого изобретения является снижение содержания серы, кислорода и азота до 0,001-0,002% каждого и, как следствие, повышение жаропрочности сплавов на никелевой основе.
Технический результат достигается предложенным способом производства литейных жаропрочных сплавов на основе никеля, включающий расплавление в вакууме шихтовых материалов, присадку в расплав активных легирующих и рафинирующих металлов, при этом в качестве рафинирующих добавок в расплав последовательно вводят барий в количестве 0,001-0,10% от массы расплава и по меньшей мере один редкоземельный металл в количестве 0,01-0,50% от массы расплава, а после присадки активных легирующих металлов проводят рафинирование расплава в вакууме 10-1-5⋅10-3 мм рт.ст. при температуре 1600-1700°С в течение от 5 до 40 минут, во время которого расплав перемешивают, а плавильный тигель наклоняют от одного до трех раз с возвратом в первоначальное положение после каждого наклона.
В качестве по меньшей мере одного редкоземельного металла в расплав вводят лантан и/или церий и/или иттрий и/или скандий и/или празеодим и/или неодим в виде гранул лигатуры никель-редкоземельный металл.
В качестве шихтовых материалов можно использовать отходы литейных жаропрочных сплавов на основе никеля в количестве до 100% металлошихты.
Барий предпочтительно вводить в виде гранул лигатуры алюминий-барий.
Авторами установлено, что проведение рафинирования расплава в пониженном вакууме 10-1-5⋅10-3 мм рт.ст. позволяет сократить испарение хрома, который отличается повышенной упругостью пара. При изменении угла наклона тигля увеличивается площадь поверхности расплава и поэтому процесс удаления примесей и газов с поверхности проходит более интенсивно. Угол наклона выбирается исходя из геометрической формы тигля и уровня расплава в нем таким образом, чтобы расплав не переливался через края тигля.
Заявленный температурный и временной режим рафинирования расплава позволяет более полно осуществлять диссоциацию неметаллических включений в виде нитридов и оксидов в условиях вакуума и тем самым обеспечивать очистку расплава от кислорода и азота.
Упругость пара бария при повышенных температурах существенно ниже, чем у кальция и магния. Например, при температуре 1600°С упругость пара бария составляет 275 мм рт.ст., кальция - 1,6 атм, магния - 17,6 атм. Поскольку барий имеет пониженную упругость пара, его испарение из расплава происходит более медленно, чем у кальция и магния, и поэтому более полно происходит рафинирование расплава от примесей.
Барий предпочтительно вводить в виде гранул лигатуры алюминий-барий, которая в сравнении с чистым барием обладает большей технологичностью: она легко измельчается, не требует специальных условий хранения и за счет повышенной температуры плавления обеспечивает более полное усвоение бария и его равномерное распределение в объеме расплава жаропрочных сплавов на основе никеля.
Совместное введение бария и РЗМ позволяет дополнительно понизить в сплаве содержание серы и кислорода за счет образования тугоплавких соединений в виде сульфидов и оксидов, которые адсорбируются на поверхности керамического тигля при плавке.
Таким образом, соблюдение предлагаемых температурно-временных параметров плавки с одновременным изменением угла наклона плавильного тигля, обеспечение необходимого вакуума, использование в качестве рафинирующей добавки бария в заданных количествах совместно с РЗМ обеспечивает рафинирование металла от примеси серы, газов и неметаллических включений и позволяет получать жаропрочные никелевые сплавы с повышенной чистотой по сульфидам, оксидным пленам и нитридным кластерам. При этом повышаются жаропрочные свойства сплава.
Пример осуществления.
По предлагаемому способу осуществили выплавку литейного жаропрочного сплава на никелевой основе системы Ni-Co-Cr-Al-Ti-W-Mo-Ta-Nb. Всего было выплавлено 7 плавок. Плавки проводили в вакуумной индукционной печи в тигле вместимостью 10 кг. После расплавления шихты, состоящей из никеля, хрома, кобальта, вольфрама, молибдена, в расплав последовательно присадили активные металлы - титан, тантал, ниобий, алюминий. После этого проводили рафинирование расплава в вакууме, во время которого тигель наклоняли один-три раза с возвратом в первоначальное положение. Исходя из уровня расплава тигель наклоняли под углом 60 град относительно горизонтальной оси.
Затем на поверхность расплава последовательно присадили барий в виде алюмобариевой лигатуры и РЗМ в виде лигатур с никелем, после чего расплав залили в стальную трубу.
Технологические параметры плавок указаны в таблице 1.
Далее проводили отбор проб и измеряли концентрацию вредных примесей серы, кислорода и азота в полученном сплаве ИК-методом на газоанализаторах CS-600, ТС-600 фирмы «Leco».
Испытания на длительную прочность проводили на термически обработанных образцах на оборудовании «ZST 2/3» по ГОСТ 10145.
Полученные результаты по содержанию серы, кислорода и азота и время до разрушения при испытании на длительную прочность приведены в таблице 2.
Из таблицы 2 видно, что на плавках 1-7, полученных предлагаемым способом, получены пониженные значения содержания серы (0,001-0,002%), кислорода (0,001-0,002%) и азота (0,0015-0,002%) в сравнении с металлом, выплавленным способом-прототипом (0,003% S; 0,003% О и 0,003% N). Жаропрочные свойства сплава, полученного предлагаемым способом, повысились в 1,5-2 раза.
Предлагаемый способ позволяет получать в литейных жаропрочных сплавах на никелевой основе содержание серы, кислорода и азота ≤0,002% каждого. Тем самым устраняется вероятность образования в сплавах дефектов в виде неметаллических включений сульфидов, оксидов и нитридов и тем самым исключается образование микротрещин в условиях высокотемпературной ползучести и усталостных нагрузок. В результате повышаются эксплуатационные свойства сплавов, в том числе его жаропрочность.
Использование изобретения позволит повысить жаропрочные свойства литейных жаропрочных никелевых сплавов и тем самым повысить ресурс и надежность работы газотурбинных двигателей (ГТД) и газотурбинных установок (ГТУ).
Figure 00000001
Figure 00000002

Claims (4)

1. Способ производства литейных жаропрочных сплавов на основе никеля, включающий расплавление в вакууме шихтовых материалов, присадку в расплав активных легирующих и рафинирующих добавок, отличающийся тем, что в качестве рафинирующих добавок в расплав последовательно вводят барий в количестве 0,001-0,10% от массы расплава и по меньшей мере один редкоземельный металл в количестве 0,01-0,50% от массы расплава, а после присадки активных легирующих металлов проводят рафинирование расплава в вакууме 10-1-5⋅10-3 мм рт.ст. при температуре 1600-1700°С в течение от 5 до 40 мин, во время которого расплав перемешивают, а плавильный тигель наклоняют от одного до трех раз с возвратом в первоначальное положение после каждого наклона.
2. Способ по п. 1, отличающийся тем, что в качестве по меньшей мере одного редкоземельного металла в расплав вводят лантан, церий, иттрий, скандий, празеодим и неодим в виде гранул лигатуры никель-редкоземельный металл.
3. Способ по п. 1, отличающийся тем, что в качестве шихтовых материалов используют отходы литейных жаропрочных сплавов на основе никеля в количестве до 100% металлошихты.
4. Способ по п. 1, отличающийся тем, что барий вводят в виде гранул лигатуры алюминий-барий.
RU2019104707A 2019-02-20 2019-02-20 Способ производства литейных жаропрочных сплавов на основе никеля RU2696999C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019104707A RU2696999C1 (ru) 2019-02-20 2019-02-20 Способ производства литейных жаропрочных сплавов на основе никеля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019104707A RU2696999C1 (ru) 2019-02-20 2019-02-20 Способ производства литейных жаропрочных сплавов на основе никеля

Publications (1)

Publication Number Publication Date
RU2696999C1 true RU2696999C1 (ru) 2019-08-08

Family

ID=67586733

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019104707A RU2696999C1 (ru) 2019-02-20 2019-02-20 Способ производства литейных жаропрочных сплавов на основе никеля

Country Status (1)

Country Link
RU (1) RU2696999C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998663A (en) * 1974-01-30 1976-12-21 Vereinigte Deutsche Metallwerke Ag Workable nickel material and process for making same
RU2190680C1 (ru) * 2001-07-12 2002-10-10 Государственное предприятие Всероссийский научно-исследовательский институт авиационных материалов Способ получения литейных жаропрочных сплавов на никелевой основе
RU2274671C1 (ru) * 2004-10-05 2006-04-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля
RU2344186C2 (ru) * 2007-01-17 2009-01-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ производства литейных жаропрочных сплавов на основе никеля (варианты)
RU2541330C1 (ru) * 2013-10-03 2015-02-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ производства литейных жаропрочных сплавов на основе никеля (варианты)
RU2572117C1 (ru) * 2014-10-07 2015-12-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения суперсплавов на основе никеля, легированных редкоземельными металлами
CN104357710B (zh) * 2014-11-26 2016-08-17 张立红 一种镍合金及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998663A (en) * 1974-01-30 1976-12-21 Vereinigte Deutsche Metallwerke Ag Workable nickel material and process for making same
RU2190680C1 (ru) * 2001-07-12 2002-10-10 Государственное предприятие Всероссийский научно-исследовательский институт авиационных материалов Способ получения литейных жаропрочных сплавов на никелевой основе
RU2274671C1 (ru) * 2004-10-05 2006-04-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля
RU2344186C2 (ru) * 2007-01-17 2009-01-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ производства литейных жаропрочных сплавов на основе никеля (варианты)
RU2541330C1 (ru) * 2013-10-03 2015-02-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ производства литейных жаропрочных сплавов на основе никеля (варианты)
RU2572117C1 (ru) * 2014-10-07 2015-12-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ получения суперсплавов на основе никеля, легированных редкоземельными металлами
CN104357710B (zh) * 2014-11-26 2016-08-17 张立红 一种镍合金及其制备方法

Similar Documents

Publication Publication Date Title
KR102616983B1 (ko) 저질소, 본질적으로 질화물을 함유하지 않는 크롬 및 크롬과 니오븀-함유 니켈계 합금의 제조 방법 및 수득된 크롬 및 니켈계 합금
Li et al. Mechanisms of reactive element Y on the purification of K4169 superalloy during vacuum induction melting
RU2572117C1 (ru) Способ получения суперсплавов на основе никеля, легированных редкоземельными металлами
RU2618038C2 (ru) Способ получения жаропрочного сплава на основе ниобия
EP2980233B1 (en) Method for refining ti-based inclusions in maraging steel by vacuum arc remelting
Sidorov et al. Removal of a sulfur impurity from complex nickel melts in vacuum
RU2541330C1 (ru) Способ производства литейных жаропрочных сплавов на основе никеля (варианты)
RU2696999C1 (ru) Способ производства литейных жаропрочных сплавов на основе никеля
Sidorov et al. Refining a complex nickel alloy to remove a sulfur impurity during vacuum induction melting: Part II
RU2682266C1 (ru) Способ производства жаропрочных сплавов на основе никеля (варианты)
EP3190196A1 (en) METHOD FOR DEOXIDIZING Ti-Al ALLOY
CN113637860A (zh) 一种gh690合金的制备工艺
NO773167L (no) Legering for behandling av smeltet metall, saerlig for tilsetning av sjeldne jordartsmetaller
CN111763869A (zh) 钨钴镍合金及其制备方法和应用
RU2353688C1 (ru) Способ выплавки безуглеродистых литейных жаропрочных сплавов на никелевой основе
Kablov et al. Resource-saving technologies of making advanced cast and deformable superalloys with allowance for processing all types of wastes
CN103710645B (zh) 易切削3Cr17NiMo模具钢及其制造方法
RU2392338C1 (ru) Способ получения литейных жаропрочных сплавов на никелевой основе
RU2344186C2 (ru) Способ производства литейных жаропрочных сплавов на основе никеля (варианты)
Sinha et al. Effect of residual elements on high performance nickel base superalloys for gas turbines and strategies for manufacture
RU2563403C1 (ru) Способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля
JP3821368B2 (ja) 高清浄マルエージング鋼の製造方法
RU2274671C1 (ru) Способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля
RU2639190C2 (ru) Способ производства высокопрочной мартенситностареющей стали
JP6544638B2 (ja) Ti含有マルエージング鋼の製造方法及びそのプリフォームの製造方法