RU2693281C1 - Инвертная пылегазовая призматическая топка - Google Patents

Инвертная пылегазовая призматическая топка Download PDF

Info

Publication number
RU2693281C1
RU2693281C1 RU2018137477A RU2018137477A RU2693281C1 RU 2693281 C1 RU2693281 C1 RU 2693281C1 RU 2018137477 A RU2018137477 A RU 2018137477A RU 2018137477 A RU2018137477 A RU 2018137477A RU 2693281 C1 RU2693281 C1 RU 2693281C1
Authority
RU
Russia
Prior art keywords
burners
nozzles
pulverized coal
air
gas
Prior art date
Application number
RU2018137477A
Other languages
English (en)
Inventor
Александр Михайлович Архипов
Владимир Сергеевич Киричков
Александр Анатольевич Канунников
Вадим Борисович Прохоров
Сергей Львович Чернов
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ")
Priority to RU2018137477A priority Critical patent/RU2693281C1/ru
Application granted granted Critical
Publication of RU2693281C1 publication Critical patent/RU2693281C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/12Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air gaseous and pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • F23C5/32Disposition of burners to obtain rotating flames, i.e. flames moving helically or spirally

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

Изобретение относится к области тепловой энергетики и может быть использовано на паровых котлах ТЭС. Пылегазовая призматическая топка содержит экранированные вертикальные стены, верхнее торцевое ограждение и скаты холодной воронки, пылеугольные горелки, а также воздушные сопла, установленные на двух больших стенах и направленные тангенциально к поверхностям условных тел вращения. Пылеугольные горелки, а также воздушные сопла размещены на больших ее стенах по встречно-смещенной схеме и направлены наклонно вверх, причем пылеугольные горелки, установлены под соплами вторичного воздуха - газовыми горелками и наклонены вверх на больший угол по сравнению с ними, напротив сопел вторичного воздуха - газовых горелок размещены сопла экранирующего воздуха и наклонены вверх на угол, который не меньше угла наклона сопел вторичного воздуха - газовых горелок, под соплами экранирующего воздуха, но не выше уровня установки пылеугольных горелок, размещены сопла третичного воздуха, причем продолжения их осей в пределах топки направлены на пересечение продолжения осей пылеугольных горелок противоположной стены в точках, находящихся на расстоянии не более 5d от пылеугольных горелок вдоль их осей, где d - эквивалентный диаметр пылеугольных горелок. Технический результат - устранение недожога топлива и уменьшение выброса NOх в пылеугольных энергоблоках повышенной мощности 800 МВт. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области тепловой энергетики и может быть использовано на паровых котлах ТЭС.
Известна прямоугольная пылеугольная топка, содержащая экранированные вертикальные стены, потолок и скаты холодной воронки, горелки и воздушные сопла, установленные на больших вертикальных стенах и направленные тангенциально к поверхностям условных тел вращения с наклоном вниз (аналог: авторское свидетельство SU 1206555 А, опубликовано 23.01.86 в бюллетене №3). Недостатки прямоугольной пылеугольной топки-аналога заключаются в неравномерности тепловыделения по глубине топки и невозможности использования ее отличительных признаков на котлах с инвертными топками.
Наиболее близкими техническими решениями к заявленному устройству обладает пылеугольный котел-прототип, содержащий вертикальную инвертную топку квадратного сечения, экранированные ее ограждения, пылеугольные горелки и сопла вторичного воздуха - газовые горелки с горизонтальными осями, направленными тангенциально к поверхностям условных тел вращения и установленными в угловых зонах вертикальных стен, а также двухъярусные горизонтально направленные сопла третичного воздуха, размещенные в нижерасположенной зоне на двух ее вертикальных ограждениях (см. инвертную топку пылеугольного котла-прототипа в статье Шварца А.Л. и др. «Разработка технических решений по пылеугольному котлу энергоблока 800 МВт на параметры пара 35 МПа, 700/720°С», Теплоэнергетика № 12, 2015 г., с. 56-60, рис. 1 на стр. 57). Недостаток инвертной топки пылеугольного котла-прототипа заключается в концентрированном факеле в приосевой зоне топки, неэкономичном сжигании угольной пыли, что связано с неудовлетворительным перемешиванием струй третичного воздуха, особенно нижнего яруса, с продуктами сгорания из-за горизонтальной направленности этих струй и недостаточной скорости их истечения. В результате этого возможны повышенный недожог топлива, возрастание температуры продуктов сгорания на выходе из топки, что приводит к шлакованию первой по ходу продуктов сгорания поверхности пароперегревателя. Кроме того, недостатком инвертной топки котла-прототипа является повышенный уровень образования оксидов азота, причем это вызывает необходимость использования установки селективного каталитического восстановления для снижения выбросов NOx.
Техническая задача данного изобретения состоит в устранении указанных недостатков инвертной топки пылеугольного котла-прототипа. Это достигается тем, что заявляемая инвертная пылегазовая призматическая топка, как и в прототипе, содержит экранированные вертикальные стены, торцевое ограждение и холодную воронку, пылеугольные горелки и воздушные сопла - газовые горелки, установленные на вертикальных стенах и направленные тангенциально к вертикальным поверхностям условных тел вращения. В отличие от топки котла-прототипа инвертная пылегазовая призматическая топка содержит пылеугольные горелки, воздушные сопла - газовые горелки, которые размещены по встречно-смещенной схеме на двух больших ее стенах и направлены наклонно вверх, причем пылеугольные горелки, установлены под соплами вторичного воздуха - газовыми горелками и наклонены вверх на больший угол по сравнению с ними, напротив сопл вторичного воздуха - газовых горелок размещены сопла экранирующего воздуха и наклонены вверх на угол, который не меньше угла наклона сопл вторичного воздуха - газовых горелок, сопла третичного воздуха, размещены под соплами экранирующего воздуха, не выше уровня установки пылеугольных горелок, а продолжения их осей в пределах топки направлены на пересечение продолжения осей пылеугольных горелок противоположной стены в точках, находящихся на расстоянии вдоль осей не более 5d от пылеугольных горелок, где d - эквивалентный диаметр последних.
Инвертная пылегазовая топка иллюстрирована фиг. 1, 2. На фиг. 1 показана компоновка горелок и сопл в одном вертикальном сечении инвертной пылегазовой призматической топки, а на фиг. 2 - разрез по А-А фиг. 1, в котором схематически показана компоновка горелок и сопл в горизонтальной проекции топки. Инвертная пылегазовая призматическая топка содержит экранированные вертикальные стены 1, верхнее торцевое ограждение 2 и скаты холодной воронки (на фиг. 1 не показаны), пылеугольные горелки 3, а также сопла вторичного воздуха 4 - газовые горелки 5, сопла экранирующего воздуха 6, сопла третичного воздуха 7, причем топочные устройства всех указанных наименований направлены тангенциально к поверхностям условных тел вращения и установлены по встречно-смещенной схеме на больших стенах 1. Пылеугольные горелки 3, установлены под соплами вторичного воздуха 4 - газовыми горелками 5 и наклонены вверх на больший угол, чем последние, в данном случае на 60° против 20°. Сопла экранирующего воздуха 6, размещены напротив сопл вторичного воздуха 4 - газовых горелок 5 и наклонены вверх на 5-10° больше них, под соплами экранирующего воздуха не выше уровня установки пылеугольных горелок 3 установлены сопла третичного воздуха 7, причем продолжения их осей в пределах топки направлены на пересечение продолжения осей пылеугольных горелок 3 противоположной стены 1 в точках 12, находящихся на расстоянии вдоль осей не более 5d от пылеугольных горелок 3, где d - эквивалентный диаметр пылеугольных горелок 3. Вентиляторы горячего дутья 13 подсоединены по всасывающей стороне к выходным коллекторам воздушных подогревателей с помощью коробов, снабженных отключающими шиберами (что на фиг. 1 не показано).
Пылегазовая топка, имеющая в данном случае габаритные размеры 11000×34000 мм и размеры топочных устройств, которые соответствуют котлу энергоблока 800 МВт, работает при сжигании угля следующим образом. Пылевоздушная смесь 9 поступает по пылепроводам в пылеугольные горелки 3 из углеразмольных мельниц (на фиг. 1 не показаны) с существенным недостатком воздуха. Недостающий для полного выгорания угольной пыли воздух подводится в факелы пылеугольных горелок 3 ступенями по ходу их движения: сначала из сопел вторичного воздуха 4 - газовых горелок 5, имеющих размеры ∅920×10 мм, затем из сопел экранирующего воздуха 6 с размерами ∅630×7 мм, струи которых защищают вертикальные стены 1 и торцевое ограждение 2 от чрезмерного локального динамического давление факела, и, наконец, из сопел третичного воздуха 7. В случае отключения мельниц и пылеугольных горелок 3 охлаждение их каналов ∅720×10 мм, осуществляется горячим воздухом 10, поступающим в топку через каналы охлаждения 8, имеющие размеры 1200×750 мм. Благодаря встречно-смещенному, тангенциально направленному и наклонному вверх истечению струй из пылеугольных горелок 3, сопел вторичного воздуха 4 - газовых горелок 5, сопел экранирующего воздуха 6 и третичного воздуха 7 осуществляется рассредоточенное в объеме верхней части топки и экономичное ступенчатое сжигание угольной пыли. Целесообразно, чтобы сопла экранирующего воздуха 6 были повернуты по горизонтали, как это показано на фиг. 2, на угол arctang 2D/B, где D - диаметр условных тел вращения, В - глубина топки, равная в данном случае 11000 мм. При этом исключается локальное шлакование экранированных стен 1, в том числе боковых стен, а также торцевого ограждения 2. За счет ступенчатого сжигания при низком избытке первичного воздуха обеспечивается подавление образования топливных и термических NOx по ходу движения отдельных факелов пылеугольных горелок 3. Глубокое подавление образования топливных NOx, составляющих превалирующую долю в суммарном выбросе NOx, обеспечивается подводом третичного воздуха в смеси с эжектированными топочными газами, содержащими продукты недожога, в корень струй пылевоздушной смеси с осевой длиной не более 5d, где d - эквивалентный диаметр пылеугольных горелок 3.
При сжигании резервного топлива - природного газа топка работает аналогично. В этом случае первичный воздух в смеси с природным газом поступает в топку с существенным недостатком воздуха из газовых горелок 5. Недостающий для полного его выгорания воздух подмешивается ступенями по ходу движения факелов газовых горелок 5 из каналов охлаждения 8 пылеугольных горелок 3, из сопел экранирующего воздуха 6 и третичного воздуха 7. При этом надежность, экономическая и экологическая эффективности ступенчатого сжигания природного газа обеспечиваются за счет встречно-смещенного, тангенциально направленного и наклоненного вверх движения соответствующих струй.
В варианте исполнения инвертная пылегазовая призматическая топка оборудована соплами третичного воздуха 7, имеющими прямоугольные и вытянутые по вертикали сечения с размерами в данном случае 1500×390 мм и снабжаемыми горячим воздухом 11 с помощью центробежных нагнетателей (вентиляторов горячего дутья) 13, соединенных по всасывающей стороне с выходными коробами воздушного подогревателя с помощью коробов, снабженных отключающими шиберами (что на фиг. 1 не показано). В этом случае прямоугольные струи третичного воздуха на выходе из сопел 7 отличаются большей устойчивостью против их выноса вниз продуктами сгорания, т.е. большей дальнобойностью, а также характеризуются повышенной эжекционной способностью из-за высоких скоростей их истечения.
Использование заявленной инвертной пылегазовой призматической топки обеспечит высокую надежность, экономичность и экологическую эффективность ступенчатого сжигания угольной пыли и природного газа.

Claims (2)

1. Инвертная пылегазовая призматическая топка, содержащая экранированные вертикальные стены, верхнее торцевое ограждение и скаты холодной воронки, пылеугольные горелки, а также воздушные сопла, установленные на двух больших стенах и направленные тангенциально к поверхностям условных тел вращения, отличающаяся тем, что пылеугольные горелки, а также воздушные сопла размещены на больших ее стенах по встречно-смещенной схеме и направлены наклонно вверх, причем пылеугольные горелки, установлены под соплами вторичного воздуха - газовыми горелками и наклонены вверх на больший угол по сравнению с ними, напротив сопел вторичного воздуха - газовых горелок размещены сопла экранирующего воздуха и наклонены вверх на угол, который не меньше угла наклона сопл вторичного воздуха - газовых горелок, под соплами экранирующего воздуха, но не выше уровня установки пылеугольных горелок, размещены сопла третичного воздуха, причем продолжения их осей в пределах топки направлены на пересечение продолжения осей пылеугольных горелок противоположной стены в точках, находящихся на расстоянии не более 5d от пылеугольных горелок вдоль их осей, где d - эквивалентный диаметр пылеугольных горелок.
2. Инвертная пылегазовая призматическая топка по п. 1, отличающаяся тем, что сопла третичного воздуха выполнены прямоугольного вытянутого по вертикали сечения и снабжены подводящими воздуховодами от напорных коллекторов вентиляторов горячего дутья, которые подключены по всасывающей стороне к выходным коллекторам воздушных подогревателей с помощью коробов, снабженных отключающими шиберами.
RU2018137477A 2018-10-24 2018-10-24 Инвертная пылегазовая призматическая топка RU2693281C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018137477A RU2693281C1 (ru) 2018-10-24 2018-10-24 Инвертная пылегазовая призматическая топка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018137477A RU2693281C1 (ru) 2018-10-24 2018-10-24 Инвертная пылегазовая призматическая топка

Publications (1)

Publication Number Publication Date
RU2693281C1 true RU2693281C1 (ru) 2019-07-02

Family

ID=67252161

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018137477A RU2693281C1 (ru) 2018-10-24 2018-10-24 Инвертная пылегазовая призматическая топка

Country Status (1)

Country Link
RU (1) RU2693281C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2050507C1 (ru) * 1993-05-14 1995-12-20 Московский энергетический институт Топка
RU2116563C1 (ru) * 1996-07-24 1998-07-27 Московский энергетический институт (Технический университет) Топка
RU2377466C1 (ru) * 2008-09-17 2009-12-27 Александр Михайлович Архипов Топка
RU109527U1 (ru) * 2011-06-15 2011-10-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Низкоэмиссионная вихревая топка

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2050507C1 (ru) * 1993-05-14 1995-12-20 Московский энергетический институт Топка
RU2116563C1 (ru) * 1996-07-24 1998-07-27 Московский энергетический институт (Технический университет) Топка
RU2377466C1 (ru) * 2008-09-17 2009-12-27 Александр Михайлович Архипов Топка
RU109527U1 (ru) * 2011-06-15 2011-10-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Низкоэмиссионная вихревая топка

Similar Documents

Publication Publication Date Title
CN100343576C (zh) 低级燃料的增氧燃烧
CN1110645C (zh) 低no.的联合切向燃烧***
US4501204A (en) Overfire air admission with varying momentum air streams
US4715301A (en) Low excess air tangential firing system
EP0238907B1 (en) Low excess air tangential firing system
RU2693281C1 (ru) Инвертная пылегазовая призматическая топка
US5899172A (en) Separated overfire air injection for dual-chambered furnaces
RU2355944C1 (ru) Паровой котел с механической топкой для сжигания твердого топлива
RU2428632C2 (ru) Способ факельного сжигания пылевидного топлива и устройство для реализации способа
US20160146462A1 (en) PLANT, COMBUSTION APPARATUS, AND METHOD FOR REDUCTION OF NOx EMISSIONS
RU182137U1 (ru) Котлоагрегат для сжигания твердого топлива в кипящем слое
RU2377466C1 (ru) Топка
RU2716961C2 (ru) Воздухонагревательная установка
RU2627757C2 (ru) Слоевой котел с вертикальной вихревой топкой
RU2635947C2 (ru) Котел и способ его работы
RU2373457C2 (ru) Топка парогенератора
RU2244211C1 (ru) Вихревая низкотемпературная топка
HUT65491A (en) An advanced overfire air system for nox control and method for controlling nox in fossil fuel furnaces
RU2648314C2 (ru) Котел с камерной топкой
Marishin et al. Low-NO x Firing Systems with Swirl Burners Installed on Boilers PK-39-IIM and BKZ-420-140-5
RU2132016C1 (ru) Низкотемпературная вихревая топка
RU2116563C1 (ru) Топка
RU2597346C1 (ru) Пылегазомазутная топка
RU2032853C1 (ru) Призматическая экранированная топка
CN112833388B (zh) 对冲燃烧锅炉的超低NOx燃烧***