RU2692417C2 - Аналого-цифровой приемный модуль активной фазированной антенной решетки - Google Patents

Аналого-цифровой приемный модуль активной фазированной антенной решетки Download PDF

Info

Publication number
RU2692417C2
RU2692417C2 RU2017136932A RU2017136932A RU2692417C2 RU 2692417 C2 RU2692417 C2 RU 2692417C2 RU 2017136932 A RU2017136932 A RU 2017136932A RU 2017136932 A RU2017136932 A RU 2017136932A RU 2692417 C2 RU2692417 C2 RU 2692417C2
Authority
RU
Russia
Prior art keywords
output
input
group
digital
afar
Prior art date
Application number
RU2017136932A
Other languages
English (en)
Other versions
RU2017136932A3 (ru
RU2017136932A (ru
Inventor
Юрий Аркадьевич Шишов
Виктор Владимирович Подольцев
Виталий Владимирович Подъячев
Михаил Григорьевич Вахлов
Ирина Сергеевна Луцько
Original Assignee
Михаил Григорьевич Вахлов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Михаил Григорьевич Вахлов filed Critical Михаил Григорьевич Вахлов
Priority to RU2017136932A priority Critical patent/RU2692417C2/ru
Publication of RU2017136932A3 publication Critical patent/RU2017136932A3/ru
Publication of RU2017136932A publication Critical patent/RU2017136932A/ru
Application granted granted Critical
Publication of RU2692417C2 publication Critical patent/RU2692417C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к антенной технике, а именно к активным фазированным антенным решеткам (АФАР) с цифровым формированием и управлением диаграммой направленности. Технический результат - упрощение конструкции, повышение коэффициента полезного действия и повышение точности управления диаграммой направленности. Устройство содержит: излучатель, малошумящий усилитель, смеситель, усилитель промежуточной частоты, фильтр спектральных составляющих, группу из М фильтров деления широкополосного спектра на узкополосные спектры, группу из М делителей на два направления, постоянный фазовращатель на 90°, две группы синхронных фазовых детекторов, каждая из которых содержит М детекторов, две группы аналого-цифровых преобразователей (АЦП), каждая из которых содержит М АЦП, формирователь цифровых комплексных коэффициентов, две группы цифровых комплексных умножителей, каждая из которых содержит М умножителей, два цифровых сумматора, выходы которых являются выходами приемного модуля, при этом второй вход смесителя и вход постоянного фазовращателя соединены с выходами соответственно первого и второго гетеродинов АФАР, управляющие входы АЦП соединены с выходом генератора тактовых импульсов АФАР, а вход формирователя цифровых комплексных коэффициентов соединен с выходом системы управления лучом АФАР. 1 ил.

Description

Изобретение относится к антенной технике, а именно к активным фазированным антенным решеткам (АФАР) с цифровым формированием и управлением диаграммой направленности и может быть использовано в радиолокационных станциях с широкоугольным электронным обзором пространства, применяющих в качестве зондирующих импульсов широкополосные линейно-частотно-модулированные (ЛЧМ) сигналы.
Известны технические решения, направленные на создание приемных модулей (или приемных каналов приемно-передающих модулей). Однако большинство из них предполагает либо применение узкополосных сигналов [1, 2, 3, 4, 5], либо широкополосных сигналов, но при электронном сканировании диаграммы направленности в относительно узком секторе [6, 7].
Вместе с тем, для решения стоящих перед современными РЛС задач требуется использование сигналов с широким спектром (до десятков процентов от значения несущей частоты). К таким задачам относятся повышение разрешающей способности РЛС по дальности, улучшение ее помехозащищенности, распознавание обнаруженных объектов и др. При широком спектре излучаемого сигнала и широком секторе электронного сканирования на линейный набег фазы на раскрыве линейной АФАР накладывается дополнительный набег фазы, вызванный девиацией частоты ЛЧМ-сигнала. Проведенный в [8] анализ показал, что дополнительный набег фазы определяется фазовым множителем
Figure 00000001
где Δƒ - девиация частоты ЛЧМ-сигнала, τu - длительность зондирующего импульса, n - номер излучателя линейной АФАР, d - шаг решетки, θф - угол отклонения луча АФАР от нормали к ее раскрыву, t - текущее время (0≤t<τu). В [8] предложено при излучении ЛЧМ сигнала в каждом n-м элементе для выбранного направления фазирования θф компенсировать изменения фазы сигнала за счет девиации частоты Δƒ ЛЧМ сигнала путем умножения (1) на комплексно сопряженный с ним коэффициент
Figure 00000002
Поскольку и фазовый множитель (1), и комплексно сопряженный с ним коэффициент (2) являются функциями времени, они должны формироваться синхронно. В режиме передачи синхронизировать функции (1) и (2) не составляет технической сложности. В этом состоит достоинство способа [8]. Однако в [8] предложено и в режиме приема компенсировать изменение фазы сигнала с выхода n-го антенного элемента для выбранного направления фазирования θф путем умножения на комплексный коэффициент
Figure 00000003
Figure 00000004
где tз - время запаздывания отраженного от цели сигнала.
Однако, поскольку неизвестна дальность до цели, неизвестно и время запаздывания t3. Даже если дальность до цели измерена, она измерена с ошибкой. Элементарный анализ показывает, что даже при временной ошибке Δt<<τu дополнительная фазовая погрешность существенно искажает диаграмму направленности антенной решетки. Таким образом предложенный в [8] способ компенсации фазовых ошибок, возникающих при приеме ЛЧМ сигнала с девиацией частоты Δƒ и при фазировании луча в направлении θф, технически нереализуем. В этом состоит недостаток способа [8].
Наиболее близким по технической сущности к заявленному является аналого-цифровой модуль [9], содержащий последовательно соединенные излучатель модуля, малошумящий усилитель (МШУ), смеситель, усилитель промежуточной частоты (УПЧ), фильтр спектральных составляющих, а также М фильтров деления широкополосного спектра принимаемого сигнала на М узкополосных участков спектра, две группы синхронных фазовых детекторов (СФД) по М СФД в каждой группе, две группы аналого-цифровых преобразователей (АЦП) по М АЦП в каждой группе, постоянный фазовращатель на 90°, две группы управляемых фазовращателей по М управляемых фазовращателей в каждой группе, два цифровых сумматора. Достоинство данного аналого-цифрового модуля, выбранного в качестве прототипа, состоит в том, что широкополосный спектр принимаемого сигнала
Figure 00000005
с помощью М делителей спектра делится на М узкополосных участков
Figure 00000006
,
где
Figure 00000007
- участок ширины спектра широкополосного сигнала, для которого выполняется условие узкополосности
Figure 00000008
,
где с - скорость света, L - максимальный размер раскрыва антенной решетки. Управление диаграммой направленности АФАР осуществляется для каждого узкополосного i-го спектра
Figure 00000009
(
Figure 00000010
) с помощью двух групп управляемых фазовращателей. При этом вносимый фазовый сдвиг для i-го узкополосного участка спектра определяется соотношением
Figure 00000011
,
где ƒi - центральная частота i-го узкополосного спектра, n - номер излучателя линейной антенной решетки, d - шаг решетки, с - скорость света, θф - направление фазирования луча. Таким образом, управление диаграммой направленности АФАР при широкополосном сигнале сводится к управлению при узкополосном сигнале, что исключает появление дополнительных фазовых ошибок на раскрыве антенны, вызванных девиацией частоты ЛЧМ зондирующего сигнала. В этом достоинство прототипа [9].
Недостатками прототипа являются сложность конструкции приемного модуля, низкий КПД и низкая точность электронного управления лучом АФАР, что определяется большим числом управляемых фазовращателей, входящих в состав структуры каждого приемного модуля, число двоичных разрядов которых не более шести. Например, если максимальный размер апертуры антенны L a =100 м, а требуемая разрешающая способность РЛС по дальности составляет δRmin=2 м, то ширина спектра зондирующего сигнала должна быть
Figure 00000012
.
Условие узкополосности
Figure 00000013
.
Для выполнения неравенства примем
Figure 00000014
.
Тогда количество узкополосных спектров
Figure 00000015
.
На каждый узкополосный участок спектра требуется свой фазовращатель, и так как в составе модуля два блока фазовращателей, их общее число не менее 500, и каждый из них вносит потери не менее 1 дБ и фазовые ошибки не менее 6°.
Задачами изобретения являются упрощение конструкции аналого-цифрового приемного модуля, повышение его КПД и точности электронного сканирования АФАР.
Решение указанных задач достигается тем, что в аналого-цифровой приемный модуль, содержащий последовательно соединенные излучатель и малошумящий усилитель, выход которого соединен с первым входом смесителя, второй вход которого соединен с выходом первого гетеродина приемного модуля, а выход соединен с входом усилителя промежуточной частоты (УПЧ), выход которого соединен с входом фильтра спектральных составляющих, М фильтров деления широкополосного спектра на М узкополосных участков спектра, входы фильтров деления широкополосного спектра объединены и соединены с выходом фильтра спектральных составляющих, выход i-го фильтра деления широкополосного спектра (
Figure 00000010
) соединен с входом i-го делителя, первый выход которого соединен с первым входом i-го синхронного фазового детектора (СФД) первой группы, выход которого соединен с первым входом i-го аналого-цифрового преобразователя (АЦП) первой группы, второй выход i-го делителя соединен с первым входом i-го СФД второй группы, выход которого соединен с первым входом i-го АЦП второй группы, два цифровых сумматора, выходы которых соединены соответственно с первым и вторым выходами приемного модуля соответственно, и постоянный фазовращатель на 90°, вход которого подключен к выходу второго гетеродина приемного модуля, введены две группы цифровых комплексных умножителей по М умножителей в каждой группе и формирователь цифровых комплексных весовых коэффициентов, вход которого соединен с выходом системы управления лучом (СУЛ) АФАР, а i-й выход (
Figure 00000016
) подключен к первому входу i-го цифрового комплексного умножителя каждой группы, второй вход i-го цифрового комплексного умножителя первой группы подключен к выходу i-го АЦП первой группы, а второй вход i-го цифрового комплексного умножителя второй группы подключен к выходу i-го АЦП второй группы, выход i-го цифрового комплексного умножителя первой группы подключен к i-му входу первого цифрового сумматора, а выход i-го цифрового комплексного умножителя второй группы подключен к i-му входу второго цифрового сумматора, второй вход i-го СФД первой группы соединен с выходом второго гетеродина приемного модуля непосредственно, а второй вход i-го СФД второй группы соединен с выходом второго гетеродина приемного модуля через постоянный фазовращатель на 90°.
Ожидаемый положительный эффект состоит в упрощении конструкции аналого-цифрового приемного модуля, повышении его КПД за счет исключения двух блоков управляемых фазовращателей, а также в повышении точности управления лучом АФАР на основе цифрового формирования и управления диаграммой направленности, что достигается за счет введения двух групп цифровых комплексных умножителей по М умножителей в каждой группе и формирователя цифровых комплексных весовых коэффициентов в сочетании с предложенной схемой их соединения с другими элементами приемного модуля.
Сущность изобретения иллюстрируется фигурой 1, на которой приведена структурная схема аналого-цифрового приемного модуля активной фазированной антенной решетки.
В состав аналого-цифрового приемного модуля АФАР входят: 1 - излучатель, 2 - малошумящий усилитель, 3 - смеситель, 4 - усилитель промежуточной частоты, 5 - фильтр спектральных составляющих, 6 - группа из М фильтров деления широкополосного спектра на узкополосные спектры, 7 - группа из М делителей на два направления, 8 - постоянный фазовращатель на 90°, две группы 9 и 10 синхронных фазовых детекторов, состоящие из М детекторов каждая, две группы 11 и 12 аналого-цифровых преобразователей, состоящие из М АЦП каждая, формирователь 13 цифровых комплексных коэффициентов, две группы 14 и 15 цифровых комплексных умножителей, состоящие из М умножителей каждая, 16 и 17 - цифровые сумматоры, выходы которых являются выходами приемного модуля. Второй вход 18 смесителя 3 подключен к выходу первого гетеродина АФАР. Вход постоянного фазовращателя 8 подключен к выходу 19 второго гетеродина АФАР. Управляющие входы АЦП 11, 12 подключены к выходу 20 генератора тактовых импульсов АФАР. Вход 21 формирователя 13 цифровых комплексных коэффициентов соединен с выходом системы управления лучом (СУЛ) АФАР.
Аналого-цифровой приемный модуль активной АФАР работает следующим образов. Принятый излучателем 1 отраженный от цели сигнал поступает на вход МШУ 2, который повышает уровень сигнала до величины, достаточной для его квантования по уровню. Сигнал с выхода МШУ 2 поступает на первый вход смесителя 3, который переносит спектр сигнала на промежуточную частоту, достаточную для его дискретизации по времени и оцифровки. Затем сигнал усиливается в УПЧ 4 и с помощью фильтра 5 спектральных составляющих очищается от дополнительных спектральных составляющих, возникающих при преобразовании частоты. С выхода фильтра 5 спектральных составляющих широкополосный сигнал поступает на входы М узкополосных фильтров 6. С выходов узкополосных фильтров 6 сигналы поступают на входы М делителей 7. С первого выхода i-го делителя (
Figure 00000017
) 7 сигнал поступает на первый вход i-го СФД 9 первой группы, а со второго выхода i-го делителя 7 сигнал поступает на первый вход i-го СФД второй группы 10. На второй вход i-го СФД первой группы 9 напряжение поступает непосредственно с выхода 19 второго гетеродина АФАР, а на второй вход i-го СФД второй группы 10 - через постоянный фазовращатель 8 на 90°. Частота колебаний второго гетеродина равна частоте основного сигнала: ωг20.
Синхронные фазовые детекторы 9 и 10 делят поступающие на их входы узкополосные сигналы на две квадратурные составляющие - синфазную Ii(t) и квадратурную Qi(t).
Синфазная составляющая сигнала на выходе i-го СФД первой группы может быть представлена в виде
Figure 00000018
а квадратурная составляющая на выходе i-го СФД второй группы:
Figure 00000019
где Uci, Usi - амплитуды, ωi=2πƒi - частота, ϕci и ϕsi фазы напряжений (5) и (6).
Комплексные огибающие напряжений (5) и (6)
Figure 00000020
Figure 00000021
поступают на первые входы соответствующих аналого-цифровых преобразователей 11 и 12, на вторые входы которых поступают тактовые импульсы с выхода 20 генератора тактовых импульсов АФАР, частота повторения которых Fти определяется в соответствии с теоремой Котельникова. Оцифрованные значения комплексных огибающих напряжения (7) с выхода i-го АЦП первой группы 11 поступают на второй вход i-го цифрового комплексного умножителя первой группы 14, а оцифрованные значения комплексных огибающих напряжения (8) с выхода i-го АЦП второй группы 12 поступают на второй вход i-го цифрового комплексного умножителя второй группы 15.
На вход блока 13 формирователя цифровых комплексных весовых коэффициентов с выхода СУЛ АФАР поступают значения направляющих косинусов углов θох и θоу, определяющих ожидаемое направление прихода отраженного от цели сигнала. Комплексные цифровые весовые коэффициенты Wi для каждой центральной частоты ωi i-го узкополосного сигнала вычисляются в соответствии с соотношением
Figure 00000022
где
Figure 00000023
с - скорость света, m и n - номера строк и столбцов, на пересечении которых размещены излучатели АФАР, dx и dy - шаг решетки вдоль осей ОХ и OY соответственно.
В результате умножения комплексных огибающих напряжений (7) и (8) на комплексные весовые коэффициенты (9) напряжения (7) и (8) получают дополнительный сдвиг по фазе на величину определяемый соотношением (10). Сигнал с выхода i-го цифрового комплексного умножителя первой группы 14 поступает на i-й вход первого цифрового сумматора 16, а сигнал с выхода i-го цифрового комплексного умножителя второй группы поступает на i-й вход второго цифрового сумматора 17, где производится суммирование цифровых кодов каждого узкополосного участка широкополосного спектра. В результате с выхода аналого-цифрового модуля выдается код амплитуды и фазы принимаемого аналого-цифровым приемным модулем широкополосного сигнала, который поступает на вход системы цифрового формирования диаграммы направленности АФАР.
Таким образом, обеспечивается упрощение конструкции приемного модуля и повышение его КПД за счет исключения из его состава двух блоков управляемых фазовращателей, а также повышение точности управления лучом АФАР на основе цифрового формирования и управления диаграммой направленности за счет введения двух групп цифровых комплексных умножителей и формирователя цифровых комплексных весовых коэффициентов в сочетании с предложенной схемой их соединения с другими элементами устройства.
Источники информации, использованные при составлении заявки:
1. Патент США №59430/10, H01Q 3/24. 24.08.1999. Direct Digital Synthesizer Driven Phased Array Antenna.
2. Патент США №6441783, H01Q 3/22, 27.08.2002. Circuit Module for a Phased Array.
3. Патент РФ №2454763, H01Q 21/00, 27.06.2012. Приемно-передающий модуль активной фазированной антенной решетки СВЧ диапазона.
4. Патент РФ №2206155, H01Q 3/34, 10.06.2003. Приемно-передающий модуль активной фазированной антенной решетки.
5. Патент РФ №2362268, Н04В 1/38, 10.02.2009. Приемопередающий модуль активной фазированной антенной решетки.
6. Патент РФ №2497146, H01S 13/44, 27.10.2013. Импульсно-доплеровская моноимпульсная РЛС.
7. Патент РФ №2392704, H01Q 3/26, 20.06.2010. Способ повышения широкополосности приемопередающего модуля фазированной антенной решетки, использующего генерацию сигналов методом прямого цифрового синтезами варианты его реализации.
8. Патент РФ №2516683, H01Q 21/00, 20.05.2014. Способ цифрового формирования диаграммы направленности активной фазированной антенной решетки при излучении и приеме линейно-частотно-модулированного сигнала.
9. Патент РФ №2146076, Н03М 1/12, 27.02.2000. Аналого-цифровой модуль.

Claims (1)

  1. Аналого-цифровой приемный модуль активной фазированной антенной решетки (АФАР), содержащий последовательно соединенные излучатель модуля и малошумящий усилитель, выход которого соединен с первым входом смесителя, второй вход которого соединен с выходом первого гетеродина АФАР, а выход соединен с входом усилителя промежуточной частоты (УПЧ), выход которого соединен с входом фильтра спектральных составляющих, М фильтров деления широкополосного спектра на М узкополосных участков спектра, входы фильтров деления широкополосного спектра объединены и соединены с выходом фильтра спектральных составляющих, выход i-го фильтра деления широкополосного спектра
    Figure 00000024
    соединен с входом i-го делителя, первый выход которого соединен с первым входом i-го синхронного фазового детектора (СФД) первой группы, выход которого соединен с первым входом i-го аналого-цифрового преобразователя (АЦП) первой группы, второй выход i-го делителя соединен с первым входом i-го СФД второй группы, выход которого соединен с первым входом i-го АЦП второй группы, два цифровых сумматора, выходы которых соединены соответственно с первым и вторым выходами приемного модуля, и постоянный фазовращатель на 90°, вход которого подключен к выходу второго гетеродина АФАР, отличающийся тем, что в него дополнительно введены две группы цифровых комплексных умножителей по М умножителей в каждой группе и формирователь комплексных весовых коэффициентов, вход которого соединен с выходом системы управления лучом (СУЛ) АФАР, а i-й выход
    Figure 00000025
    подключен к первому входу i-го цифрового комплексного умножителя каждой группы, второй вход i-го цифрового комплексного умножителя первой группы подключен к выходу i-го АЦП первой группы, а второй вход i-го цифрового комплексного умножителя второй группы подключен к выходу i-го АЦП второй группы, выход i-го цифрового комплексного умножителя первой группы подключен к i-му входу первого цифрового сумматора, а выход i-го цифрового комплексного умножителя второй группы подключен к i-му входу второго цифрового сумматора, второй вход i-го СФД первой группы соединен с выходом второго гетеродина АФАР непосредственно, а второй вход i-го СФД второй группы соединен с выходом второго гетеродина АФАР через постоянный фазовращатель на 90°.
RU2017136932A 2017-10-19 2017-10-19 Аналого-цифровой приемный модуль активной фазированной антенной решетки RU2692417C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017136932A RU2692417C2 (ru) 2017-10-19 2017-10-19 Аналого-цифровой приемный модуль активной фазированной антенной решетки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017136932A RU2692417C2 (ru) 2017-10-19 2017-10-19 Аналого-цифровой приемный модуль активной фазированной антенной решетки

Publications (3)

Publication Number Publication Date
RU2017136932A3 RU2017136932A3 (ru) 2019-04-19
RU2017136932A RU2017136932A (ru) 2019-04-19
RU2692417C2 true RU2692417C2 (ru) 2019-06-24

Family

ID=66168077

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017136932A RU2692417C2 (ru) 2017-10-19 2017-10-19 Аналого-цифровой приемный модуль активной фазированной антенной решетки

Country Status (1)

Country Link
RU (1) RU2692417C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2722408C1 (ru) * 2019-11-14 2020-05-29 Федеральное государственное казенное военное образовательное учреждение высшего образования "Санкт-Петербургский военный ордена Жукова институт войск национальной гвардии Российской Федерации" Цифровой приемный модуль активной фазированной антенной решетки

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003367A1 (en) * 1995-07-07 1997-01-30 The Secretary Of State For Defence Circuit module for a phased array radar
RU2146076C1 (ru) * 1997-07-28 2000-02-27 Московское высшее училище радиоэлектроники ПВО Аналого-цифровой модуль
US6441783B1 (en) * 1999-10-07 2002-08-27 Qinetiq Limited Circuit module for a phased array
RU2206155C1 (ru) * 2002-04-17 2003-06-10 Открытое акционерное общество "Научно-производственное объединение "Алмаз" им. акад. А.А. Расплетина" Приемно-передающий модуль активной фазированной антенной решетки
RU2362268C2 (ru) * 2007-07-31 2009-07-20 Открытое акционерное общество "Корпорация "Фазотрон-Научно-исследовательский институт радиостроения" Приемопередающий модуль активной фазированной антенной решетки (афар)
RU157114U1 (ru) * 2015-03-19 2015-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский авиационный институт (национальный исследовательский университет)" (МАИ) Приемопередающий модуль бортовой цифровой антенной решетки
RU2571188C2 (ru) * 2010-11-15 2015-12-20 Электролюкс Хоум Продактс Корпорейшн Н.В. Посудомоечная машина
WO2017015430A1 (en) * 2015-07-22 2017-01-26 Blue Danube Systems, Inc. A modular phased array

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003367A1 (en) * 1995-07-07 1997-01-30 The Secretary Of State For Defence Circuit module for a phased array radar
RU2146076C1 (ru) * 1997-07-28 2000-02-27 Московское высшее училище радиоэлектроники ПВО Аналого-цифровой модуль
US6441783B1 (en) * 1999-10-07 2002-08-27 Qinetiq Limited Circuit module for a phased array
RU2206155C1 (ru) * 2002-04-17 2003-06-10 Открытое акционерное общество "Научно-производственное объединение "Алмаз" им. акад. А.А. Расплетина" Приемно-передающий модуль активной фазированной антенной решетки
RU2362268C2 (ru) * 2007-07-31 2009-07-20 Открытое акционерное общество "Корпорация "Фазотрон-Научно-исследовательский институт радиостроения" Приемопередающий модуль активной фазированной антенной решетки (афар)
RU2571188C2 (ru) * 2010-11-15 2015-12-20 Электролюкс Хоум Продактс Корпорейшн Н.В. Посудомоечная машина
RU157114U1 (ru) * 2015-03-19 2015-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский авиационный институт (национальный исследовательский университет)" (МАИ) Приемопередающий модуль бортовой цифровой антенной решетки
WO2017015430A1 (en) * 2015-07-22 2017-01-26 Blue Danube Systems, Inc. A modular phased array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2722408C1 (ru) * 2019-11-14 2020-05-29 Федеральное государственное казенное военное образовательное учреждение высшего образования "Санкт-Петербургский военный ордена Жукова институт войск национальной гвардии Российской Федерации" Цифровой приемный модуль активной фазированной антенной решетки

Also Published As

Publication number Publication date
RU2017136932A3 (ru) 2019-04-19
RU2017136932A (ru) 2019-04-19

Similar Documents

Publication Publication Date Title
US8009080B2 (en) Weather radar and weather observation method
US9658321B2 (en) Method and apparatus for reducing noise in a coded aperture radar
US7714765B2 (en) Synthetic aperture perimeter array radar
US20080100510A1 (en) Method and apparatus for microwave and millimeter-wave imaging
RU146508U1 (ru) Короткоимпульсный радиолокатор с электронным сканированием в двух плоскостях и с высокоточным измерением координат и скорости объектов
RU2495447C2 (ru) Способ формирования диаграммы направленности
RU2546999C1 (ru) Короткоимпульсный радиолокатор с электронным сканированием в двух плоскостях и с высокоточным измерением координат и скорости объектов
CN111649803B (zh) 基于垂直线性阵列的三维雷达物位计及其设计方法
CN108828546B (zh) 一种天基多通道动目标雷达接收处理***及方法
JP6462365B2 (ja) レーダ装置及びそのレーダ信号処理方法
RU2496120C2 (ru) Многофункциональная многодиапазонная масштабируемая радиолокационная система для летательных аппаратов
RU2315332C1 (ru) Радиолокационная станция
RU2692417C2 (ru) Аналого-цифровой приемный модуль активной фазированной антенной решетки
Shoykhetbrod et al. Concept for a fast tracking 60 GHz 3D-radar using frequency scanning antennas
RU2732803C1 (ru) Способ цифрового формирования диаграммы направленности активной фазированной антенной решётки при излучении и приеме линейно-частотно-модулированных сигналов
Wannberg et al. EISCAT_3D: a next-generation European radar system for upper-atmosphere and geospace research
JPH0251074A (ja) 高空間分解能マイクロ波放射計
RU2740782C1 (ru) Способ радиолокационной съёмки Земли и околоземного пространства радиолокатором с синтезированной апертурой антенны в неоднозначной по дальности полосе с селекцией движущихся целей на фоне отражений от подстилающей поверхности и радиолокатор с синтезированной апертурой антенны для его реализации
RU2309425C2 (ru) Способ калибровки радиопеленгатора-дальномера
Anajemba et al. Efficient switched digital beamforming radar system based on SIMO/MIMO receiver
RU2722408C1 (ru) Цифровой приемный модуль активной фазированной антенной решетки
RU2414721C1 (ru) Способ радиолокационного измерения скорости объекта
RU2471200C1 (ru) Способ пассивного обнаружения и пространственной локализации подвижных объектов
Harter et al. Realization of an innovative 3D imaging digital beamforming radar system
RU2429501C1 (ru) Способ обнаружения и пеленгования воздушных объектов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191020