RU2691790C1 - Литейный никелевый сплав - Google Patents

Литейный никелевый сплав Download PDF

Info

Publication number
RU2691790C1
RU2691790C1 RU2019104826A RU2019104826A RU2691790C1 RU 2691790 C1 RU2691790 C1 RU 2691790C1 RU 2019104826 A RU2019104826 A RU 2019104826A RU 2019104826 A RU2019104826 A RU 2019104826A RU 2691790 C1 RU2691790 C1 RU 2691790C1
Authority
RU
Russia
Prior art keywords
alloy
resistance
heat resistance
casting
equiaxial structure
Prior art date
Application number
RU2019104826A
Other languages
English (en)
Inventor
Денис Викторович Данилов
Александр Вячеславович Логунов
Original Assignee
Общество с ограниченной ответственностью "НТЦ "Современные технологии металлургии" (ООО "НТЦ "СТМ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "НТЦ "Современные технологии металлургии" (ООО "НТЦ "СТМ") filed Critical Общество с ограниченной ответственностью "НТЦ "Современные технологии металлургии" (ООО "НТЦ "СТМ")
Priority to RU2019104826A priority Critical patent/RU2691790C1/ru
Application granted granted Critical
Publication of RU2691790C1 publication Critical patent/RU2691790C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Изобретение относится к области металлургии, а именно к сплавам на основе никеля, и может быть использовано в газоперекачивающих, энергетических и морских газотурбинных установках (ГТУ) с длительной наработкой, в частности для литья охлаждаемых рабочих и сопловых лопаток с равноосной структурой. Литейный никелевый сплав для литья охлаждаемых рабочих и сопловых лопаток с равноосной структурой газотурбинных установок содержит, мас. %: С 0,08-0,18, Сr 10,0-16,0, Со 10,0-16,0, W 2,0-10,0, Ti 2,0-5,5, Al 2,0-5,5, Re 1,2-3,6, Та 4,0-9,0, Hf 0,05-2,0, В 0,005-0,5, Zr 0,005-0,05, Се 0,005-0,5, La 0,005-0,5, Y 0,01-0,5, Mg 0,005-0,3, Mn 0,05-0,5, Si 0,05-0,5, Ca 0,02-0,2, Ni - остальное. Сплав характеризуется высокими значениями стойкости к морской солевой коррозии, жаропрочности, а также высокой технологичностью и выходом годных изделий, существенно более низкой трудоемкостью производства и стоимостью. 1 з.п. ф-лы, 1 ил., 2 табл.

Description

Изобретение относится к области металлургии и может быть использовано в газоперекачивающих, энергетических и морских газотурбинных установках (ГТУ) с длительной наработкой, в частности для литья охлаждаемых рабочих и сопловых лопаток с равноосной структурой, производство которых является существенно менее трудоемким, в связи с чем обходится в 6-8 раз дешевле по сравнению с сплавами, имеющими монокристальную структуру.
Суть проблемы заключается в том, что используемые в настоящее время для ГТУ жаропрочные никелевые сплавы с равноосной структурой, способные работать в условиях активного воздействия сульфидно-оксидной коррозии (например, сплав ЧС-70, ЧС-88, ЧС-104 и др.) обладают недостаточным уровнем жаропрочности, что резко сокращает ресурс их работы и увеличивает количество дорогостоящих ремонтов, особенно в неблагоприятных условиях Севера, Сибири и др. малообжитых районов, увеличивает время простоя на ремонте морской техники и т.д.
В связи с этим особенно острой становится задачи создания жаропрочного сплава с:
- высокой стойкостью к сульфидно-оксидной коррозии, способного эффективно работать в условиях активного воздействия таких продуктов сгорания жидкого и газообразного топлива, как Na2SO4 (результатам взаимодействия присутствующих в топливе солей NaCl и сероводорода), солей кальция, магния, кремния, сульфидирования из соединений, содержащих среду азотирования и науглероживания поверхности, отрицательного влияния имеющихся в топливе соединений ванадия, свинца и др. вредных элементов;
- высокой жаропрочностью на уровне
Figure 00000001
, равной (320-340) МПа,
близкой к жаропрочности лучших сплавов с высокой стойкостью к сульфидно-оксидной (морской) коррозии;
- равноосной структурой, снижающей трудоемкость производства и, как следствие, себестоимость в 6-8 раз рабочих и сопловых лопаток по сравнению с монокристальными;
- отличающихся более экономными (по наиболее дорогому и дефицитному элементу рению) легированием.
Таким образом, задача сводится к созданию сплава, обладающего высокой стойкостью к «морской» коррозии, при этом обеспечивающего одновременно повышенную работоспособность и гораздо более дешевое производство узловых деталей ГТУ при заметном снижении стоимости самого материала лопаток турбины.
В качестве наиболее близкого аналога (прототипа) выбран литейный никелевый сплав, содержащий, мас. %: Cr 9-18, Со 7-20, W 1-8, Мо 0,2-4,0, Al 1,5-5,0, Ti 1,5-5,0, Та 2,4-7,5, Nb 0,05-2,0, В 0,005-0,5, La 0,005-0,5, Y 0,01-0,5, Се 0,02-0,5, Re 0,5-6,0, Hf 0,05-1,5, Mn 0,05-1,0, Si 0,05-1,0, Mg 0,01-0,5, С 0,003-0,03, Sc 0,0002-0,01, Pr 0,0002-0,01, Gd 0,0002-0,01, Nd 0,0002-0,01, Ni остальное (см. Патент RU 2623940).
Сплав обладает наиболее высоким среди всех отечественных и зарубежных никелевых жаропрочных материалов с повышенной стойкостью к сульфидно-оксидной коррозии уровнем жаропрочности (его
Figure 00000001
≈ 350 МПа),
при этом в отличие от ряда эксплуатируемых в настоящее время сплавов он не склонен к образованию в процессе эксплуатации охрупчивающих топологически плотноупакованных (ТПУ) фаз.
Высокая структурная стабильность обеспечивает ему способность сохранить работоспособность в течение весьма длительного ресурса.
Весьма с тем характерным для этого сплава является ряд недостатков:
- во-первых, этот сплав имеет монокристальную структуру, а, как известно, трудоемость производства, большое количество брака, а следовательно, и себестоимость лопаток с монокристальной структурой существенно выше, чем лопаток с равноосной структурой;
- во-вторых, он содержит до 9% рения, что делает его весьма дорогим.
Не случайно поэтому ведущие зарубежные и отечественные фирмы и предприятия в настоящее время активно работают над созданием экономно легированных по рению никелевых жаропрочных сплавов. Производство ГТУ для энергетики является гораздо более массовым по сравнению с изготовлением газотурбинных двигателей для авиации.
Здесь вопросы максимально возможного снижения стоимости установок при обеспечении их высокой работоспособности и надежности становится особенно острыми.
Указанные обстоятельства делают задачу создания высокожаропрочного никелевого сплава с равноосной структурой, обладающего высокой стойкостью к сульфидно-оксидной коррозии и жаропрочностью, но при этом экономно легированного рением, весьма актуальной.
Техническим результатом, на достижение которого направлено изобретение, является разработка нового сплава на никелевой основе с равноосной структурой, обладающего одновременно высокими стойкостью к морской солевой коррозии, уровнем жаропрочности, технологичностью и выходом годных изделий, существенно более низкой трудоемкостью производства и стоимостью.
Указанный технический результат достигается тем, что литейный никелевый сплав, содержащий С, Cr, Со, W, Ti, Al, Re, Та, Hf, В, Се, La, Y, Mg, Mn, Si, согласно настоящему изобретению, для литья охлаждаемых рабочих и сопловых лопаток с равноосной структурой газотурбинных установок, он дополнительно содержит Zr с Са при следующем соотношении компонентов, мас. %: С 0,08-0,18, Cr 10,0-16,0, Со 10,0-16,0, W 2,0-10,0, Ti 2,0-5,5, Al 2,0-5,5, Re 1,2-3,6, Та 4,0-9,0, Hf 0,05-2,0, В 0,005-0,5, Zr 0,005-0,05, Се 0,005-0,5, La 0,005-0,5, Y 0,01-0,5, Mg 0,005-0,3, Mn 0,05-0,5, Si 0,05-0,5, Ca 0,02-0,2, Ni остальное.
Решение указанной задачи осуществлено по следующим направлениям:
- поскольку было необходимо разработать сплав, имеющий равноосную структуру, которая, как известно, характерна наличием границ зерен, расположенных в поперечном направлении действующей силе и являющихся наиболее слабым местом при высокотемпературном нагружении, в сплав введено значительное количество по сравнению с прототипом углерода (0,08-0,18) мас. %. Углерод образует карбиды, которые, располагаясь вдоль границ зерен, упрочняют их.
Так как углерод соединяясь с Ti и Hf, создает упрочняющие границы зерен карбиды типа (Ti, Hf) С и при этом часть Ti и Hf уходит на образование карбидов, то максимальное содержание Ti в сплаве увеличено до 5,5 мас. %, т.к. необходимо, чтобы количество Ti, образующего упрочняющую γ'-фазу, не изменялось: Ti, входящий в состав упрочняющей γ'-фазы, оказывает положительное влияние на жаропрочность. Гафний, входя в состав карбидов, изменяет их морфологию от «китайских иероглифов» (что не очень благоприятно) до мелких округлых включений, которые более эффективно управляют границы зерен и не снижают пластичность материала. Поэтому максимальное содержание в новом сплаве Hf также увеличено до 2,0 мас. %.
- одной из главных задач в процессе разработке сплава являлось снижение его стоимости за счет уменьшения концентрации остродефицитного и крайне дорогого рения. Его максимальное количество в заявленном сплаве снижено до 3,6 мас. % (почти в 2 раза). Однако (поскольку Re эффективно повышает жаропрочность никелевых сплавов) необходимо было уменьшить отрицательное влияние на высокотемпературную длительную прочность, вызванное снижением концентрации Re в сплаве. Это достигнуто исключением из состава Мо, который упрочняет сплав почти в 2 раза менее эффективно, чем W, и одновременным увеличением максимального содержания в сплаве W с 8,0 мас. % до 10,0 мас. %. Кроме того Мо, присутствуя в сплаве, способствует его внутреннему окислению, что нежелательно в первую очередь для сплавов, предназначенных для работы в окислительной среде.
С целью реализации дополнительных возможностей повышения жаропрочности было осуществлено следующее. Известно, что Nb является элементом, который достаточно хорошо повышает жаропрочность при средних температурах, однако при высоких температурах (800-1000°С), при которых в основном работают лопатки ГТУ, его положительное влияние на длительную прочность ослабевает и заметно уступает по величине своего воздействия на жаропрочность W и Та. Поэтому Nb исключен из состава сплава, а среднее содержание Та и W увеличено до (4,0-9,0) мас. % и (2,0-10,0) мас. % соответственно.
Кроме того, для использования еще одной возможности повышения жаропрочности за счет снижения содержания в заявленном сплаве кислорода, в состав материала дополнительно введены Zr в количестве (0,005-0,05) мас. % и Са (0,02-0,2) мас. %. Эти элементы с одной стороны, имея высокое сродство с кислородом, образуют с ним соединения, эффективно снижая таким образом его концентрацию в сплаве, с другой стороны они заметно уменьшают скорость окисления по границам зерен, что крайне важно для сплавов с равноосной структурой. (Известно, что окисление сплавов эффективно развивается именно по границам зерен).
Содержание повышающих стойкость сплава к окислению Si и Mn, а также микролегирующих элементов В, Zr, Mg, Y и ОЗМ (La, Се) оставлено на прежнем уровне.
Таким образом, по сравнению с прототипом в составе предлагаемого сплава исключены Мо и Nb, почти вдвое сокращено количество Re, значительно (более, чем в 9 раз) увеличено среднее содержание углерода, повышена концентрация Ti, Та, Hf и W.
Поскольку в данном сплаве одновременно повышена концентрация γ'-образующих элементов Ti, Та и Hf, важно, чтобы в процессе его работы не произошел распад γ'-фазы с образованием пластинчатых охрупчивающих соединений типа Ni3Ti и Ni3Ta. Поэтому нами введено еще одно дополнительное условие:
Figure 00000002
где CA1 CTi, CTa, CHf - концентрации соответствующих элементов, ат. %.
Выполненные нами многочисленные экспериментальные исследования коррозионно-стойкого сплава-прототипа показали, что при соотношении CA1/(CTiТа+CHf)≤1,1 ат. %/ат. %, из γ'-фазы начинают выделяться фазы Ni3Ti, Ni3Ta, Ni3 Hf и их смеси, что значительно снижает уровень жаропрочности сплава в целом и его сопротивление хрупкому разрушению.
Сущность заявленного изобретения поясняется следующими таблицами: - в Таблице 1 представлены результаты кратковременных и длительных испытаний образцов четырех плавок в сравнении с результатами прототипа, приведенными в патенте РФ №2623940.
Figure 00000003
Следует отметить, что для проведения испытаний образцов 4-х составов был выплавлен сплав со средним (оптимальным) содержанием всех легирующих компонентов, который затем был долегирован различным количеством Cr, W и Re - содержание этих элементов в первую очередь определяет возможность появления охрупчивающих ТПУ-фаз, а также уровень жаропрочности и стойкости к сульфидной коррозии.
Сравнительная оценка коррозионной стойкости образцов к сульфидно-оксидному воздействию производилась в продуктах сгорания дизельного топлива, содержащего 1% S, с коэффициентом избытка воздуха 30:1 и впрыском 200 частиц /мин морской соли при температуре 950°С в течение 100 час. Значения величин глубины проникновения окисленного слоя 4-х образцов, прототипа приведены в Таблице 2.
Figure 00000004
На Фиг. 1 представлена кривая зависимости длительной прочности нового сплава от параметра Ларсена-Миллера (пунктирная кривая) в сравнении с аналогичной зависимостью для сплава по патенту РФ №2623940, который имеет монокристальную структуру, где О и - экспериментальные точки и усредняющая кривая нового сплава; х и - экспериментальные данные и обобщающая кривая сплава по патенту РФ №2623940.
Из таблиц 1 и 2, а также фигуры 1 наглядно следует, что опытные образцы по показателям длительной прочности и стойкости к сульфидно-оксидной коррозии не уступают сплаву - прототипу.
Таким образом, нами создан сплав для литья охлаждаемых рабочих и сопловых лопаток с равноосной структурой газотурбинных установок, соответствующий уровню длительной прочности и стойкости к сульфидно-оксидной коррозии известному сплаву, выбранному в качестве прототипа.

Claims (2)

1. Литейный никелевый сплав для литья охлаждаемых рабочих и сопловых лопаток с равноосной структурой газотурбинных установок, содержащий С, Cr, Со, W, Ti, Al, Re, Та, Hf, В, Се, La, Y, Mg, Mn, Si, отличающийся тем, что он дополнительно содержит Zr и Са при следующем соотношении компонентов, мас. %: С 0,08-0,18, Cr 10,0-16,0, Со 10,0-16,0, W 2,0-10,0, Ti 2,0-5,5, Al 2,0-5,5, Re 1,2-3,6, Та 4,0-9,0, Hf 0,05-2,0, В 0,005-0,5, Zr 0,005-0,05, Се 0,005-0,5, La 0,005-0,5, Y 0,01-0,5, Mg 0,005-0,3, Mn 0,05-0,5, Si 0,05-0,5, Ca 0,02-0,2, Ni остальное.
2. Сплав по п. 1, отличающийся тем, что CA1/(CTi+CTa+CHf)>1,1 ат.%/ат.%, где CA1, CTi, CTa, CHf - концентрации соответствующих элементов, ат.%.
RU2019104826A 2019-02-20 2019-02-20 Литейный никелевый сплав RU2691790C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019104826A RU2691790C1 (ru) 2019-02-20 2019-02-20 Литейный никелевый сплав

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019104826A RU2691790C1 (ru) 2019-02-20 2019-02-20 Литейный никелевый сплав

Publications (1)

Publication Number Publication Date
RU2691790C1 true RU2691790C1 (ru) 2019-06-18

Family

ID=66947941

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019104826A RU2691790C1 (ru) 2019-02-20 2019-02-20 Литейный никелевый сплав

Country Status (1)

Country Link
RU (1) RU2691790C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2777077C1 (ru) * 2022-02-02 2022-08-01 Общество с ограниченной ответственностью "Фирма "Медел" Жаропрочный никелевый сплав с равноосной структурой

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046708A1 (en) * 2006-10-17 2008-04-24 Siemens Aktiengesellschaft Nickel-base superalloys
RU2520934C1 (ru) * 2013-03-15 2014-06-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью
EP2330225B1 (en) * 2008-10-02 2015-03-25 Nippon Steel & Sumitomo Metal Corporation Nickel based heat-resistant alloy
JP2016056436A (ja) * 2014-09-12 2016-04-21 新日鐵住金株式会社 Ni基耐熱合金
RU2623540C1 (ru) * 2016-08-12 2017-06-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Гранулируемый высокожаропрочный никелевый сплав и изделие, изготовленное из него
RU2623940C2 (ru) * 2015-06-23 2017-06-29 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии
RU2672463C1 (ru) * 2018-03-16 2018-11-14 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046708A1 (en) * 2006-10-17 2008-04-24 Siemens Aktiengesellschaft Nickel-base superalloys
EP2330225B1 (en) * 2008-10-02 2015-03-25 Nippon Steel & Sumitomo Metal Corporation Nickel based heat-resistant alloy
RU2520934C1 (ru) * 2013-03-15 2014-06-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью
JP2016056436A (ja) * 2014-09-12 2016-04-21 新日鐵住金株式会社 Ni基耐熱合金
RU2623940C2 (ru) * 2015-06-23 2017-06-29 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Литейный никелевый сплав с повышенной жаропрочностью и стойкостью к сульфидной коррозии
RU2623540C1 (ru) * 2016-08-12 2017-06-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Гранулируемый высокожаропрочный никелевый сплав и изделие, изготовленное из него
RU2672463C1 (ru) * 2018-03-16 2018-11-14 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2777077C1 (ru) * 2022-02-02 2022-08-01 Общество с ограниченной ответственностью "Фирма "Медел" Жаропрочный никелевый сплав с равноосной структурой

Similar Documents

Publication Publication Date Title
CN105014258A (zh) 700℃以上超超临界煤发电设备用镍基高温合金焊丝
US8877122B2 (en) Ni-based single crystal superalloy and turbine blade incorporating the same
RU2562175C2 (ru) Чугун, содержащий ниобий, и конструктивный элемент
Klarstrom et al. Nickel-base alloy solutions for ultrasupercritical steam power plants
CN107034387A (zh) 一种高强抗热腐蚀低偏析镍基单晶高温合金
JP5526223B2 (ja) Ni基合金、並びにそれを用いたガスタービン動翼及び静翼
US4569824A (en) Corrosion resistant nickel base superalloys containing manganese
CN111172430A (zh) 镍基超合金和制品
JP5622165B2 (ja) 耐摩耗性及び耐高温腐食性に優れた肉盛溶射用粉末合金
KR20200002776A (ko) 니켈 합금
CA2749755C (en) Ni-based single crystal superalloy
CN108866389A (zh) 一种低成本高强抗热腐蚀镍基高温合金及其制备工艺和应用
RU2691790C1 (ru) Литейный никелевый сплав
US20110194969A1 (en) Ductile Iron Having Cobalt
EP2835441B1 (en) Precipitation-hardened stainless steel alloys
CN102168211A (zh) 一种轧钢加热炉耐热垫块用的耐高温钴基合金
CN108866387A (zh) 一种燃气轮机用高强抗热腐蚀镍基高温合金及其制备工艺和应用
JP6084802B2 (ja) 高強度Ni基超合金と、それを用いたガスタービン
CN106636756B (zh) 一种镍基高温合金和燃气涡轮发动机部件
CN106636755B (zh) 一种镍基高温合金和燃气涡轮发动机部件
CN102031461A (zh) 一种高屈强比高韧性长期弹性稳定性耐热合金
RU2700442C1 (ru) Никелевый жаропрочный сплав для монокристаллического литья
JPS6343458B2 (ru)
CN106676366B (zh) 耐高温合金的制备方法
US20150315919A1 (en) LIGHTWEIGHT STRUCTURAL NiAl ALLOY WITH A HIGH HIGH-TEMPERATURE STRENGTH

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210221