RU2688785C1 - Method for increasing permeability of pores of a carbon-graphite workpiece - Google Patents

Method for increasing permeability of pores of a carbon-graphite workpiece Download PDF

Info

Publication number
RU2688785C1
RU2688785C1 RU2018108714A RU2018108714A RU2688785C1 RU 2688785 C1 RU2688785 C1 RU 2688785C1 RU 2018108714 A RU2018108714 A RU 2018108714A RU 2018108714 A RU2018108714 A RU 2018108714A RU 2688785 C1 RU2688785 C1 RU 2688785C1
Authority
RU
Russia
Prior art keywords
impregnation
carbon
copper
melt
graphite
Prior art date
Application number
RU2018108714A
Other languages
Russian (ru)
Inventor
Виктор Александрович Гулевский
Николай Юрьевич Мирошкин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ)
Priority to RU2018108714A priority Critical patent/RU2688785C1/en
Application granted granted Critical
Publication of RU2688785C1 publication Critical patent/RU2688785C1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1146After-treatment maintaining the porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/18Current collectors for power supply lines of electrically-propelled vehicles using bow-type collectors in contact with trolley wire
    • B60L5/20Details of contact bow
    • B60L5/205Details of contact bow with carbon contact members

Abstract

FIELD: technological processes.
SUBSTANCE: invention relates to production of carbon-graphite composite material. Method includes vacuum degassing of porous carbon-graphite workpiece, its impregnation in impregnation chamber by molten matrix alloy under effect of excessive pressure due to thermal expansion of lead melt in pressure chamber at heating by 100 °C is higher than liquidus temperature of matrix alloy simultaneously with lead melt. Copper-phosphorous alloy is used as matrix alloy, degassing is performed before immersion of porous workpiece into melt of matrix alloy, and before impregnation a four-layer galvanic coating consisting of internal copper, intermediate nickel and silver and external palladium layers is applied on the porous workpiece.
EFFECT: higher quality of composite material.
1 cl, 2 dwg, 1 tbl, 1 ex

Description

Изобретение относится к области металлургии, а именно к созданию композиционных материалов пропиткой пористого каркаса, имеющих высокую электропроводность, антифрикционные свойства, стойкость в агрессивных средах.The invention relates to the field of metallurgy, in particular to the creation of composite materials by impregnation of a porous frame, having a high electrical conductivity, antifriction properties, resistance in aggressive environments.

Известен способ получения композиционного материала пропиткой с одновременным химическим воздействием. Заготовку устанавливают на специальной графитовой платформе, прогревают над поверхностью расплава кремния или сплавом на основе кремния и меди, имеющим температуру 1700-1800°С, затем постепенно, со скоростью не более 10 см/мин опускают заготовку в ванну с расплавом. Тем самым осуществляя пропитку однонаправленным потоком расплава, распространяющимся фронтом по всему сечению заготовки (патент РФ №2276631 МПК С04В 35/52, опубл. 02.08.2004).A method of obtaining a composite material by impregnation with simultaneous chemical exposure. The workpiece is installed on a special graphite platform, heated over the surface of the silicon melt or an alloy based on silicon and copper, having a temperature of 1700-1800 ° C, then gradually, with a speed of not more than 10 cm / min, lower the workpiece into the bath with the melt. Thus, carrying out the impregnation of the unidirectional flow of the melt, spreading the front over the entire cross section of the workpiece (RF patent №2276631 IPC SW 35/52, publ. 02.08.2004).

Недостатком данного способа является отсутствие в процессе пропитки стадии вакуумирования как сплава, так и заготовки, вследствие чего различные загрязнения в порах углеграфитовой заготовки препятствуют их заполнению матричным сплавом, а так же отсутствие вакуумирования негативно сказывается на расплаве матричного сплава который окисляется взаимодействуя с воздухом, снижая качество композиционного материала.The disadvantage of this method is the absence in the impregnation process of the stage of evacuation of both the alloy and the billet, as a result of which various impurities in the pores of the carbon-graphite billet prevent them from being filled with the matrix alloy, and the absence of vacuuming adversely affects the melt of the matrix alloy, which oxidizes while interacting with air, reducing the quality composite material.

Известен способ получения композиционного материала пропиткой пористой заготовки металлом, при котором армирующий пористый каркас предварительно нагревают, затем заливают его матричным сплавом, проводят вакуумную дегазацию и пропитывают под воздействии избыточного давления 15±3 МПа на заготовку за счет термического расширения расплава в замкнутом объеме емкости при нагреве (патент РФ №1759932, МПК С22С 1/09, B22F 3/26, опубл. 07.09.92).A method of obtaining a composite material by impregnation of a porous billet with metal, in which the reinforcing porous frame is preheated, then it is poured with a matrix alloy, vacuum degassing is carried out and impregnated under the effect of overpressure 15 ± 3 MPa on the workpiece due to thermal expansion of the melt in a closed volume of the vessel during heating (RF patent №1759932, IPC С22С 1/09, B22F 3/26, publ. 07.09.92).

Недостатком этого способа при его использовании для получения КМ пропиткой является ограничение номенклатуры металлов для использования их в качестве матричного сплава, только свинец или его сплавы.The disadvantage of this method when it is used to obtain KM impregnation is to limit the range of metals for use as a matrix alloy, only lead or its alloys.

Наиболее близким является способ изготовления композиционных материалов, включающий погружение пористой заготовки в расплав матричного сплава алюминия, находящегося в камере для пропитки, вакуумную дегазацию в расплаве, нагрев на 100°С выше температуры ликвидус сплава алюминия одновременно с расплавом свинца, находящимся в камере для создания давления, и воздействие избыточным давлением на заготовку за счет термического расширения расплава в замкнутом объеме емкости для пропитки (патент РФ №2539528, МПК B22F 3/26, С22С 1/04, опубл. 20.01.2015).The closest is a method of manufacturing composite materials, including immersion of a porous billet in a molten matrix aluminum alloy in the impregnation chamber, vacuum degassing in the melt, heating 100 ° C above the liquidus temperature of the aluminum alloy simultaneously with the lead melt , and the effect of excessive pressure on the workpiece due to thermal expansion of the melt in a closed volume of the tank for impregnation (RF patent №2539528, IPC B22F 3/26, С22С 1/04, publ. 01.20.2015).

Недостатком этого способа является большие потери затраты времени на нагрев оснастки и ее охлаждения для проведения дегазации камеры для пропитки.The disadvantage of this method is the large loss of time spent on heating the equipment and its cooling to conduct the degassing of the impregnation chamber.

Задача - разработка способа максимального заполнения пор в углеграфитовой заготовке при пропитке ее матричным сплавом.The task is to develop a method for maximally filling pores in a carbon-graphite billet when it is impregnated with a matrix alloy.

Техническим результатом изобретения является повышение качества композиционных материалов (КМ).The technical result of the invention is to improve the quality of composite materials (KM).

Технический результат достигается в способе повышения проницаемости пор углеграфитовой заготовки, включающем вакуумную дегазацию пористой заготовки, ее пропитку в камере пропитки расплавом матричного сплава под воздействием избыточного давления за счет термического расширения расплава свинца в камере давления при нагреве на 100°С выше температуры ликвидус матричного сплава одновременно с расплавом свинца, при этом в качестве матричного сплава используют медно-фосфористый сплав, дегазацию проводят до погружения пористой заготовки в расплав матричного сплава, а перед пропиткой на пористую заготовку наносят четырехслойное гальваническое покрытие, состоящее из внутреннего медного, промежуточных никелевого и серебряного, и наружного палладиевого слоев.The technical result is achieved in the method of increasing the permeability of the pores of a carbon-graphite billet, including vacuum degassing a porous billet, impregnating it in an impregnation chamber with molten matrix alloy under the influence of overpressure due to thermal expansion of lead melt in the pressure chamber when heated to 100 ° C above the liquidus temperature of the matrix alloy simultaneously with molten lead, while a copper-phosphorous alloy is used as the matrix alloy, degassing is carried out before the porous billet is immersed in a melt of the matrix alloy, and before impregnation, a four-layer electroplating coating consisting of internal copper, intermediate nickel and silver, and external palladium layers is applied to the porous billet.

Сущность изобретения заключается в разделении технологии на более простые этапы: разделение операций вакуумной дегазации углеграфитовой заготовки и пропитки, нанесение перед пропиткой на заготовку четырехслойного гальванического покрытия, состоящего из внутреннего медного, промежуточных никелевого и серебряного, и наружного палладиевого слоев, что способствует лучшему смачиванию углеграфитового каркаса, увеличивает проницаемость его пор и, соответственно, повышает качество композиционных материалов (КМ), а также позволяет повысить производительность процесса (за счет сокращения времени на получение КМ).The invention consists in dividing the technology into simpler stages: separation of the operations of vacuum degassing of a carbon-graphite blank and impregnation, application before impregnation of a four-layer electroplating coating consisting of an internal copper, intermediate nickel and silver, and external palladium layers, which contributes to a better wetting of the carbon-graphite carcass , increases the permeability of its pores and, accordingly, improves the quality of composite materials (KM), and also allows you to increase l process performance (by reducing the time to receive KM).

Перед нанесением гальваническим способом слоя меди проводится вакуумная дегазация углеграфитового каркаса в медном электролите, вследствие чего происходит частичное заполнение пор медным электролитом, после чего на углеграфитовый каркас наносят гальваническим способом медный слой, который образуется и в порах заполненных медным электролитом, после чего наносится никелевый слой, затем, гальванически наносятся серебряный и палладиевый слои покрытия, что позволяет получить легирующее действие нанесенных особо чистых металлов на межфазной границе углеграфитовый каркас/пропитка. Это позволяет снизить величину краевого угла смачивания.Before electroplating a copper layer, vacuum degassing of the carbon-graphite carcass is carried out in the copper electrolyte, as a result of which the pores are partially filled with copper electrolyte, after which a copper layer is electroplated onto the carbon-graphite carcass, which is also formed then, galvanic deposited silver and palladium layers of the coating, which allows to obtain an alloying effect of the deposited highly pure metals on the interphase. The carbon-graphite carcass / impregnation border. This allows you to reduce the magnitude of the wetting angle.

Погружение пористой заготовки с нанесенным на нее четырехслойным гальваническим покрытием, в расплав матричного медно-фосфористого сплава, находящегося в камере для пропитки, выполненную из титана марки ВТ-1, ведет к лучшей заполняемости пор матричным сплавом.Immersion of a porous billet with a four-layer electroplated coating on it into the melt of a matrix copper-phosphorous alloy in the impregnation chamber made of titanium of the ВТ-1 brand leads to a better filling of the pores with a matrix alloy.

Пластиковые емкости для нанесения гальванических покрытий наполняют:Plastic tanks for electroplating fill:

- для нанесения медного слоя покрытия - сернокислым электролитом меднения, состоящим из медного купороса, дистиллированной воды, серной кислоты;- for the deposition of a copper layer of the coating - with copper sulfate electrolyte consisting of copper sulphate, distilled water, sulfuric acid;

- для нанесения никелевого слоя покрытия - сульфатным электролитом никелирования, состоящим из сульфата никеля, сульфата натрия, сульфата магния, сухой борной кислоты, дистиллированной воды;- for the deposition of a nickel coating layer — by sulphate electrolyte of nickel plating consisting of nickel sulphate, sodium sulphate, magnesium sulphate, dry boric acid, distilled water;

- для нанесения серебряного слоя покрытия - сульфатным электролитом, состоящим из хлористого серебра, железоцианистого калия, кальцинированной соды;- for applying a silver coating layer - by sulphate electrolyte consisting of silver chloride, ferrous potassium soda, soda ash;

- для нанесения слоя палладия - аминохлоридный электролит состоящий из хлористого палладия, хлористого аммония.- for applying a layer of palladium - an amino chloride electrolyte consisting of palladium chloride, ammonium chloride.

После нанесения гальванического покрытия углеграфитовый каркас помещается в устройство для пропитки.After electroplating, the carbon-graphite frame is placed in the impregnator.

При этом верхняя камера для пропитки устройства снабжена разделительной мембраной, на которую устанавливается углеграфитовый каркас с нанесенным на него четырехслойным гальваническим покрытием, состоящим из медного, никелевого, серебряного и палладиевого слоев. После установки углеграфитового каркаса камера для пропитки заполняется медно-фосфористым сплавом. Нижняя камера для создания давления предварительно заполнена расплавом свинца и позволяет осуществлять пропитку пористой заготовки при нагреве, под действием избыточного давления медно-фосфористого матричного сплава и получаемого за счет дополнительного термического расширения свинца, через металлическую мембрану при увеличении объема свинца в замкнутом объеме устройства для пропитки.In this case, the upper chamber for impregnation of the device is equipped with a separation membrane, on which a carbon-graphite frame is installed with a four-layer electroplated coating on it consisting of copper, nickel, silver and palladium layers. After installing the carbon-graphite frame, the impregnation chamber is filled with a copper-phosphorous alloy. The lower pressure chamber is pre-filled with lead melt and allows the porous preform to be impregnated during heating, under the influence of an overpressure of a copper-phosphorous matrix alloy and obtained through additional thermal expansion of lead through a metal membrane with an increase in lead impregnation volume.

Определение температуры ликвидус с перегревом в 100°С позволяет учесть величину нагрева, обеспечивает создание требуемого давления пропитки, что позволяет получить КМ высокого качества с высокой степенью заполнения объема открытых пор пористой заготовки медно-фосфористым матричным сплавом.Determining the liquidus temperature with overheating at 100 ° C allows to take into account the amount of heating, provides the required impregnation pressure, which allows to obtain high quality CM with a high degree of filling the volume of open pores of the porous billet with a copper-phosphorous matrix alloy.

Использование в качестве матричного расплава - медно-фосфористого сплава, а в качестве пористого тела углеграфитовой заготовки позволяет получать композиционные материалы, широко применяемые в машиностроении для изготовления токосъемников, вставок пантографов, электрических щеток, уплотнителей, вкладышей подшипников скольжения.The use of a copper-phosphorous alloy as a matrix melt, and a carbon-graphite billet as a porous body makes it possible to obtain composite materials widely used in mechanical engineering for the manufacture of current collectors, pantograph inserts, electric brushes, compactors, and sliding bearings.

На фиг. 1 показана гальваническая камера, на фиг. 2 показано устройство для пропитки углеграфитовой заготовки.FIG. 1 shows a galvanic chamber; FIG. 2 shows a device for impregnating a carbon-graphite blank.

Гальваническая камера состоит из пластиковой емкости 1 с электролитом 2 и анодами 3, купола 4, герметично закрывающего емкость 1. В емкости 1 помещена углеграфитовая заготовка 5. В куполе 4 выполнено отверстие 6, которое соединено с вакуумным насосом.The galvanic chamber consists of a plastic container 1 with electrolyte 2 and anodes 3, a dome 4, hermetically closing the container 1. A carbon-graphite blank 5 is placed in the container 1. In the dome 4 a hole 6 is made, which is connected to a vacuum pump.

Устройство для пропитки углеграфитовой заготовки 5 состоит из двух камер: камеры для пропитки 7 и камеры для создания давления 8. Между камерами 7 и 8 установлена металлическая мембрана 9. В верхней камере для пропитки 7 размещена углеграфитовая заготовка 5 с нанесенным гальваническим покрытием 10. Камера для пропитки 7 заполнена расплавом медно-фосфористого матричного сплава 11. Нижняя камера для создания давления 8 заполнена расплавом свинца 12. Устройство для пропитки герметично закрывается крышкой 13 с пробкой 14.A device for impregnating a carbon-graphite blank 5 consists of two chambers: a chamber for impregnation 7 and a chamber for creating pressure 8. A metal membrane 9 is installed between chambers 7 and 8. In the upper chamber for impregnation 7 there is a carbon-graphite blank 5 coated with a galvanized coating 10. The chamber for impregnation 7 is filled with a melt of copper-phosphorous matrix alloy 11. The lower chamber for creating pressure 8 is filled with melt of lead 12. The device for impregnation is sealed with a cap 13 with a stopper 14.

ПримерExample

По предложенному способу был получен КМ углеграфит - медно-фосфористый сплав с использованием углеграфита марки АГ-1500 имеющего открытую пористость 15%. Образец углеграфита был выполнен в виде куба со стороной 30 мм. Таким образом, объем углеграфитового каркаса составлял 900 мм3, объем пор в каркасе составлял 135 мм3. В качестве медно-фосфористого сплава использовался матричный сплав на основе меди, согласно патента на изобретение RU 2430983 (МПК С22С 9/00, С22С 1/04, опубл. 10.10.2011).According to the proposed method, KM carbon-graphite was obtained - a copper-phosphorous alloy using an AG-1500 carbon graphite having an open porosity of 15%. The carbon graph sample was made in the form of a cube with a side of 30 mm. Thus, the volume of the carbon frame was 900 mm 3 , the pore volume in the frame was 135 mm 3 . As a copper-phosphorous alloy, a matrix alloy based on copper was used, according to the patent for invention RU 2430983 (IPC С22С 9/00, С22С 1/04, publ. 10.10.2011).

При осуществлении способа углеграфитовую заготовку 5 закрепленную медной проволокой погружают в емкость 1 наполненную медным электролитом 2, состоящим из 200 г/л сернокислой меди, 70 г/л серной кислоты и 10-15 мл спирта, температура электролита 20-25°С. Затем емкость 1 накрывают герметичным куполом 4, после чего через отверстие 6 в куполе проводят вакуумную дегазацию в течение 5-7 минут. Далее в емкость 1 погружают два медных анода 3, соединенных между собой медной проволокой, после чего аноды 3 и углеграфитовая заготовка 5 подключаются к источнику постоянного тока, положительный заряд к анодам, а отрицательный к углеграфитовой заготовке 5, сила тока устанавливается 1,5 А с выдержкой в 40-60 мин. После нанесения на углеграфитовый каркас медного покрытия, наносится слой никеля. Для этого используется емкость, аналогичная емкости 1, наполненная никелевым электролитом 2, состоящим из 140 г/л сульфата никеля, 50 г/л сульфата натрия, 30 г/л сульфата магния, 20 г/л сухой борной кислоты, и установленными в ней анодами 3 выполненных из никеля соединенными между собой медной проволокой. Затем сила тока устанавливается на 2 А с выдержкой 60 минут. Подключение к источнику постоянного тока аналогично ванне меднения. Процесс дегазации повторно не проводится.In the process of implementation, a carbon-graphite billet 5 fixed with copper wire is immersed in a container 1 filled with copper electrolyte 2 consisting of 200 g / l of copper sulphate, 70 g / l of sulfuric acid and 10-15 ml of alcohol, the electrolyte temperature is 20-25 ° C. Then the tank 1 is covered with a hermetic dome 4, after which vacuum degassing is conducted through the opening 6 in the dome for 5-7 minutes. Next, two copper anodes 3, interconnected by copper wire, are immersed in capacity 1, after which the anodes 3 and the carbon-graphite blank 5 are connected to a DC source, a positive charge to the anodes, and negative to a carbon-graphite blank 5, the current is set to 1.5 A aged at 40-60 min. After applying a copper coating on the carbon-graphite frame, a layer of nickel is applied. For this purpose, a container similar to container 1, filled with nickel electrolyte 2, consisting of 140 g / l of nickel sulphate, 50 g / l of sodium sulphate, 30 g / l of magnesium sulphate, 20 g / l of dry boric acid, and anodes installed in it is used. 3 made of nickel interconnected with copper wire. Then the current is set to 2 A with an exposure time of 60 minutes. Connecting to a DC source is similar to a copper bath. The degassing process is not repeated.

После нанесения на углеграфитовый каркас никелевого слоя покрытия, наносится слой серебра. Перед нанесением серебряного слоя покрытия поверхность углеграфитового образца обезжиривается, после чего обработанная заготовка подвергается серебрению. Для этого используется емкость, аналогичная емкости 1, наполненная электролитом серебрения 2 состоящим из: хлористое серебро - 10-15 г, желтая кровяная соль (железоцианистый калий) - 15-35 г, кальцинированная сода - 15-35 г.В гальваническую ванну погружается углеграфитовая заготовка, закрепленная на проволоку. Затем в гальваническую ванну устанавливают листовые аноды 3, выполненные из серебра, соединенные между собой проволокой. Подключение к источнику постоянного тока аналогично ванне меднения.After deposition of a nickel layer on the carbon-graphite frame, a layer of silver is applied. Before applying the silver coating layer, the surface of the carbon-graphite sample is degreased, after which the treated billet is subjected to silvering. For this purpose, a container similar to container 1 is used, filled with silvering electrolyte 2 consisting of: silver chloride - 10-15 g, yellow blood salt (ferrocyanide potassium) - 15-35 g, soda ash - 15-35 g. Carbon-graphite is immersed in a galvanic bath the preparation fixed on a wire. Then in the galvanic bath set sheet anodes 3, made of silver, connected by a wire. Connecting to a DC source is similar to a copper bath.

После нанесения серебряного слоя покрытия на КМ наносят слой палладия. Для чего используется емкость, аналогичная емкости 1, наполненная электролитом для осаждения палладия 2 состоящим из: палладия хлористого 20-30 г/л, аммоний хлористый 15-20 г/л. В гальваническую ванну погружается углеграфитовая заготовка, с нанесенным медным слоем закрепленная на проволоку. Затем в гальваническую ванну устанавливают листовые аноды 3, выполненные из палладия или платинированного титана соединенными между собой проволокой. Подключение к источнику постоянного тока аналогично ванне меднения.After applying the silver coating layer on the CM put a layer of palladium. What is the use of the capacity similar to the capacity 1, filled with electrolyte for the deposition of palladium 2 consisting of: palladium chloride 20-30 g / l, ammonium chloride 15-20 g / l. A carbon-graphite billet is immersed in the galvanic bath, with a copper layer applied attached to the wire. Then, sheet anodes 3 made of palladium or platinized titanium are interconnected by a wire in a galvanic bath. Connecting to a DC source is similar to a copper bath.

Далее углеграфитовую заготовку 5 с нанесенным четырехслойным гальваническим покрытием 10, состоящим из внутреннего медного, промежуточных никелевого и серебряного, и наружного палладиевого слоев, промывают в воде, сушат и помещают в емкость для пропитки матричным сплавом меди.Next, the carbon-graphite blank 5 with a deposited four-layer electroplated coating 10 consisting of internal copper, intermediate nickel and silver, and external palladium layers is washed in water, dried and placed in a container for impregnation with a matrix alloy of copper.

При осуществлении способа устройство для пропитки углеграфитовой заготовки 5, выполненное из двух камер 7 и 8 нагревают до температуры 400°С и заполняют камеру 8 расплавом свинца 12. Устанавливают металлическую мембрану 9 между камер и скручивают их так, чтобы мембрана 9 герметизировала соединение. Затем, в камере 7 размещают углеграфитовую заготовку 5 с нанесенным гальваническим покрытием 10, закрывают камеру 7 крышкой 13, нагревают до температуры 800°С. В камеру 7 заливают расплав медно-фосфористого матричного сплава 11, полностью покрывая им пористую заготовку 5, затем крышку 13 притирают пробкой 14, предварительно нагретой до 900°С и шплинтуют ее.In the process, a device for impregnating a carbon-graphite blank 5 made of two chambers 7 and 8 is heated to a temperature of 400 ° C and the chamber 8 is filled with lead melt 12. A metal membrane 9 is installed between the chambers and twisted so that the membrane 9 seals the joint. Then, in the chamber 7, a carbon-graphite blank 5 with electroplated coating 10 is placed, the chamber 7 is closed with a cover 13, heated to a temperature of 800 ° C. A melt of a copper-phosphorous matrix alloy 11 is poured into the chamber 7, completely covering the porous billet 5 with it, then the lid 13 is rubbed with a stopper 14, preheated to 900 ° C, and splintered.

После этого устройство для пропитки углеграфитовой заготовки 5 нагревают на 100°С выше температуры ликвидус расплава медно-фосфористого матричного сплава с изотермической выдержкой 20 мин при достижении указанной температуры и расчетного давления. За счет разницы коэффициентов термического расширения емкости и расплава медно-фосфористого матричного сплава 11, а также за счет разницы, коэффициентов термического расширения расплава свинца 12 внутри камеры 8 и расплава медно-фосфористого матричного сплава 11, при котором увеличивается объем камеры 7, создается оптимальное давление пропитки.After that, the device for impregnating the carbon-graphite blank 5 is heated to 100 ° C above the liquidus temperature of the melt of a copper-phosphorous matrix alloy with an isothermal holding for 20 minutes at the specified temperature and design pressure. Due to the difference in the coefficients of thermal expansion of the capacity and melt of the copper-phosphorous matrix alloy 11, as well as due to the difference, the coefficients of thermal expansion of the lead melt 12 inside the chamber 8 and the melt of the copper-phosphorous matrix alloy 11, at which the volume of the chamber 7 increases, an optimum pressure is created impregnation.

Пропитка производилась при давлении 3-5 МПа, что обеспечивалось температурой нагрева емкости для пропитки, равной 950-980°С.Impregnation was carried out at a pressure of 3-5 MPa, which was ensured by the heating temperature of the impregnation tank equal to 950-980 ° C.

По окончании пропитки, удаляют пробку 14, сливают третью часть расплава медно-фосфористого матричного сплава 11, отворачивают крышку 13, извлекают полученный КМ и производят его охлаждение с кристаллизацией расплава медно-фосфористого матричного сплава 11 в порах.At the end of the impregnation, remove the plug 14, drain the third part of the melt of the copper-phosphorous matrix alloy 11, unscrew the lid 13, remove the resulting CM and cool it with crystallization of the melt of the copper-phosphorous matrix alloy 11 in the pores.

Полученный КМ испытывался на прочность при сжатии, степень заполнения открытых пор (плотность пропитки) оценивалась по удельному весу КМ до и после пропитки, структура КМ оценивалась по результатам металлографических исследований.The resulting CM was tested for compressive strength, the degree of filling of open pores (density of impregnation) was evaluated by the specific gravity of CM, before and after impregnation, the structure of CM was evaluated by the results of metallographic studies.

Результаты испытаний приведены в таблице.The test results are shown in the table.

Figure 00000001
Figure 00000001

Таким образом, способ повышения проницаемости пор углеграфитовой заготовки, включающий вакуумную дегазацию пористой заготовки до ее погружения в расплав матричного сплава, при котором перед пропиткой пористую заготовку покрывают четырехслойным гальваническим покрытием, состоящим из внутреннего медного, промежуточных никелевого и серебряного, и наружного палладиевого слоев, пропитку в камере расплавом медно-фосфористого матричного сплава под воздействием избыточного давления за счет термического расширения расплава свинца в камере давления при нагреве на 100°С выше температуры ликвидус матричного сплава одновременно с расплавом свинца, обеспечивает повышение качества композиционных материалов (КМ).Thus, a method for increasing the pore permeability of a carbon-graphite billet, including vacuum degassing a porous billet prior to its immersion in a molten matrix alloy, in which the porous billet is coated with a four-layer electroplated coating consisting of internal copper, nickel intermediate and silver intermediate, and external palladium layers, impregnation in the chamber with a melt of copper-phosphorous matrix alloy under the influence of overpressure due to thermal expansion of the lead melt in the chambers When the pressure is heated to 100 ° C above the liquidus temperature of the matrix alloy simultaneously with lead melt, it provides an increase in the quality of composite materials (KM).

Claims (1)

Способ получения углеграфитового композиционного материала, включающий вакуумную дегазацию пористой углеграфитовой заготовки, ее пропитку в камере пропитки расплавом матричного сплава под воздействием избыточного давления за счет термического расширения расплава свинца в камере давления при нагреве на 100°C выше температуры ликвидус матричного сплава одновременно с расплавом свинца, отличающийся тем, что в качестве матричного сплава используют медно-фосфористый сплав, дегазацию проводят до погружения пористой заготовки в расплав матричного сплава, а перед пропиткой на пористую заготовку наносят четырехслойное гальваническое покрытие, состоящее из внутреннего медного, промежуточных никелевого и серебряного и наружного палладиевого слоев.The method of obtaining carbon-graphite composite material, including vacuum degassing of porous carbon-graphite billet, its impregnation in the impregnation chamber of the matrix alloy melt under the influence of overpressure due to thermal expansion of the lead melt in the pressure chamber when heated to 100 ° C above the liquidus temperature of the matrix alloy simultaneously with the lead melt, characterized in that a copper-phosphorous alloy is used as a matrix alloy, degassing is carried out before the porous billet is immersed in the melt -symmetric alloy and prior to impregnation onto the porous preform deposited four layer electroplated coating consisting of an inner copper, nickel and silver intermediate and outer layers of palladium.
RU2018108714A 2018-03-12 2018-03-12 Method for increasing permeability of pores of a carbon-graphite workpiece RU2688785C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018108714A RU2688785C1 (en) 2018-03-12 2018-03-12 Method for increasing permeability of pores of a carbon-graphite workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018108714A RU2688785C1 (en) 2018-03-12 2018-03-12 Method for increasing permeability of pores of a carbon-graphite workpiece

Publications (1)

Publication Number Publication Date
RU2688785C1 true RU2688785C1 (en) 2019-05-22

Family

ID=66636939

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018108714A RU2688785C1 (en) 2018-03-12 2018-03-12 Method for increasing permeability of pores of a carbon-graphite workpiece

Country Status (1)

Country Link
RU (1) RU2688785C1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1759932A1 (en) * 1990-01-19 1992-09-07 Волгоградский Политехнический Институт Method of producing composite materials
SU1831413A3 (en) * 1989-07-18 1993-07-30 Lanxide Technology Co Ltd Method of getting compound material with metallic matrix
RU2124418C1 (en) * 1996-07-08 1999-01-10 Товарищество с ограниченной ответственностью МИФИ - АМЕТО Method of producing composite materials
US6699410B2 (en) * 1998-12-09 2004-03-02 Hoffman & Co Elektrokohle Aktiengesellschaft Method of impregnating porous workpieces
RU2276631C2 (en) * 2004-08-02 2006-05-20 Открытое Акционерное Общество "Челябинский Электродный завод" Carbon carbide-silicon composition material producing method
RU2539528C1 (en) * 2013-07-04 2015-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Composite materials manufacturing method
RU2571295C1 (en) * 2014-05-19 2015-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Production of composite materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1831413A3 (en) * 1989-07-18 1993-07-30 Lanxide Technology Co Ltd Method of getting compound material with metallic matrix
SU1759932A1 (en) * 1990-01-19 1992-09-07 Волгоградский Политехнический Институт Method of producing composite materials
RU2124418C1 (en) * 1996-07-08 1999-01-10 Товарищество с ограниченной ответственностью МИФИ - АМЕТО Method of producing composite materials
US6699410B2 (en) * 1998-12-09 2004-03-02 Hoffman & Co Elektrokohle Aktiengesellschaft Method of impregnating porous workpieces
RU2276631C2 (en) * 2004-08-02 2006-05-20 Открытое Акционерное Общество "Челябинский Электродный завод" Carbon carbide-silicon composition material producing method
RU2539528C1 (en) * 2013-07-04 2015-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Composite materials manufacturing method
RU2571295C1 (en) * 2014-05-19 2015-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Production of composite materials

Similar Documents

Publication Publication Date Title
RU2688538C1 (en) Method for increasing permeability of pores of a carbon-graphite workpiece
RU2688529C1 (en) Method for increasing permeability of pores of graphite workpiece
RU2688437C1 (en) Method for increasing permeability of pores of a carbon-graphite workpiece
RU2688772C1 (en) Method for increasing permeability of pores of a graphite workpiece
RU2688560C1 (en) Method for increasing permeability of pores of a graphite workpiece
RU2688779C1 (en) Method for increasing permeability of pores of a carbon-graphite workpiece
RU2688555C1 (en) Method for increasing permeability of pores of a graphite workpiece
RU2688471C1 (en) Method for increasing permeability of pores of graphite workpiece
RU2688781C1 (en) Method for increasing permeability of pores of a carbon-graphite workpiece
RU2688775C1 (en) Method for increasing permeability of pores of a carbon-graphite workpiece
RU2688782C1 (en) Method for increasing permeability of pores of a carbon-graphite workpiece
RU2688368C1 (en) Method for increasing permeability of pores of a carbon-graphite workpiece
RU2688780C1 (en) Method for increasing permeability of pores of a carbon-graphite workpiece
RU2725524C1 (en) Method of producing carbon-graphite composite material
RU2688778C1 (en) Method for increasing permeability of pores of graphite workpiece
RU2688557C1 (en) Method for increasing permeability of pores of graphite workpiece
RU2688535C1 (en) Method for increasing permeability of pores of a carbon-graphite workpiece
RU2688531C1 (en) Method for increasing permeability of pores of a carbon-graphite workpiece
RU2688776C1 (en) Method for increasing permeability of pores of graphite workpiece
RU2688774C1 (en) Method for increasing permeability of pores of graphite workpiece
RU2688474C1 (en) Method for increasing permeability of pores of graphite workpiece
RU2688476C1 (en) Method for increasing permeability of pores of graphite workpiece
RU2688484C1 (en) Method for increasing permeability of pores of graphite workpiece
RU2688543C1 (en) Method for increasing permeability of pores of a carbon-graphite workpiece
RU2688523C1 (en) Method for increasing permeability of pores of a carbon-graphite workpiece

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200313