RU2688417C1 - Способ нанесения теплозащитного покрытия на лопатки турбин высоконагруженного двигателя - Google Patents

Способ нанесения теплозащитного покрытия на лопатки турбин высоконагруженного двигателя Download PDF

Info

Publication number
RU2688417C1
RU2688417C1 RU2018128950A RU2018128950A RU2688417C1 RU 2688417 C1 RU2688417 C1 RU 2688417C1 RU 2018128950 A RU2018128950 A RU 2018128950A RU 2018128950 A RU2018128950 A RU 2018128950A RU 2688417 C1 RU2688417 C1 RU 2688417C1
Authority
RU
Russia
Prior art keywords
layer
heat
coating
resistant coating
applying
Prior art date
Application number
RU2018128950A
Other languages
English (en)
Inventor
Владимир Геннадьевич Опокин
Ринат Галимчанович Равилов
Василий Михайлович Самойленко
Original Assignee
Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") filed Critical Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО")
Priority to RU2018128950A priority Critical patent/RU2688417C1/ru
Application granted granted Critical
Publication of RU2688417C1 publication Critical patent/RU2688417C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Изобретение относится к способу нанесения теплозащитного покрытия на лопатки турбин, работающих при высоких температурах в высоконагруженных двигателях. Наносят многослойное покрытие. В качестве сплава первого слоя жаростойкого покрытия используют сплав содержащий Ni-Co-Cr-Al-Y-Ta-W-Hf. Второй слой состоит из порошковой смеси, содержащей Сr-Al, третий слой - керамики ZrO-YO. Дополнительно на слой керамики методом электронно-лучевого испарения и конденсации в вакууме наносят «барьерный» слой из сплава на основе Ni-Co-Cr-Al-Y с последующим диффузионным отжигом. Первый слой жаростойкого покрытия наносят вакуум-плазменным методом, который совместно с порошковой смесью после нанесения второго слоя покрытия подвергают термовакуумной обработке до диффузионного насыщения хромом и алюминием поверхности покрытия первого слоя. Использование способа позволяет увеличить стойкость покрытия по отслоению на 47%, а термостойкость по числу циклов (нагрев-охлаждение) на 37%, а следовательно, повысить ресурс работы лопатки в составе высоконагруженного газотурбинного двигателя. 3 ил.

Description

Изобретение относится к области машиностроения и может быть использовано в авиационном и энергетическом турбиностроении для защиты деталей, преимущественно лопаток турбин работающих при высоких температурах в высоконагруженных двигателях.
В промышленности известны способы нанесения 2-х и 3-х слойных теплозащитных покрытий, когда металлические подслои (1 или 2) наносятся шликерным, порошковым, циркуляционным, ионно-плазменным способами, затем проводят термовакуумную обработку, после чего электронно-лучевым способом наносят керамический слой. Основными факторами, влияющими на работоспособность теплозащитного покрытия, являются: состав и структура металлического и керамического слоев, а также соответствие их коэффициентов термического расширения.
/Y. Tamarin, Protective Coatingsfor Turbine Blades, ASM International, 2002, 247 p.,/ [1]
/Тамарин Ю.А., Качанов Е.Б. «Электронно-лучевая технология нанесения ТЗП» - М. ЦИАМ, сб. «Новые технологические процессы и надежностъ.№7 2008 г., с. 144-157/ [2].
Существенным недостатком диффузионных покрытий является их низкая стабильность и долговечность при высоких температурах. Применение теплозащитных покрытий позволяет снизить теплопоток к основному материалу лопатки и обеспечить ее работоспособность в условиях высоких температур. Но теплозащитные покрытия имеют низкую пластичность, что приводит к растрескиванию и отслаиванию керамического слоя при теплосменах под действием термомеханических нагрузок, а также столбчатая структура керамического слоя является кислородопроницаемой, что приводит к росту оксидной пленки на металлическом подслое.
/Абраимов Н.В., Елисеев Ю.С. Химико-термическая обработка жаропрочных сталей и сплавов. М.: Интермет Инжиниринг, 2001 г., 620 с. [3].
Указанные недостатки покрытий не позволяют значительно повысить жаростойкость и термостойкость лопаток турбин высоконагруженных двигателей.
Известен способ нанесения теплозащитного покрытия на лопатку турбины. В данном способе наносят многослойное покрытие газотермическим уетодом, в котором чередуют керамические и металлические слои.
/US №24904542 МПК С23С 14/06, С23С 14/08, С23С 28/00/ [4].
Такое покрытие имеет ряд существенных недостатков. Керамический слой формируют плазменным напылением, что существенно снижает его термическую усталость и работоспособность. Чередование металлических и керамических слоев ведет к тому, что при наличии термоциклирования между слоями возникают термические напряжения, которые приводят к растрескиванию такого покрытия.
Наиболее близким по технической сущности и достигаемому результату является способ нанесения теплозащитного покрытия на лопатки турбин высоконагруженного двигателя, включающий нанесение первого слоя жаростойкого покрытия из сплава на основе Ni, нанесение второго слоя покрытия порошковой смесью содержащей Cr-Al, термическую обработку порошковой смеси и первого слоя жаростойкого покрытия, подготовку поверхности и нанесение третьего слоя керамики на основе Zr02-Y203, методом электронно-лучевого испарения и конденсации в вакууме,
/RU 2280095 МПК С23С14/06 Опубликовано 2006 г./
К недостаткам способа можно отнести следующее: 1 Диффузионный второй слой формируется из состава порошков, содержащих в основном алюминий и хром, в результате которого в покрытии формируется β фаза в наружном слое и β+У во внутреннем слое. Слой имеет поры и низкую стабильность при высоких температурах.
2. После формирования металлического первого слоя системы MeCrAl на нем образуется оксидная пленка Al2O3, которая уменьшает адгезионную прочность с керамическим слоем.
3. Нанесение на керамический слой Zr02-Y203 электроннолучевым методом плотного слоя керамики толщиной 10-15 мкм состава Zr02-11% Y203 40% Al2O3 не приводит к изменению столбчатой структуры керамического слоя, а, следовательно, керамика остается кислородопроницаемой, что в процессе воздействия высоких температур приводит к интенсивному росту оксидной пленки Al2Oз на металлическом диффузионном слое.
Задача изобретения повышение качества наносимого покрытия.
Ожидаемый технический результат повышение работоспособности (ресурса) рабочих лопаток турбины в составе высоконагруженных двигателей.
Ожидаемый технический результат достигается тем, что в известном способе нанесения теплозащитного покрытия на лопатки турбин высоконагруженного двигателя, включающем нанесение первого слоя жаростойкого покрытия из сплава на основе Ni, нанесение второго слоя покрытия порошковой смесью содержащей Cr-Al, термическую обработку порошковой смеси и первого слоя жаростойкого покрытия, подготовку поверхности и нанесение третьего слоя керамики на основе Zr02-Y203, методом электронно-лучевого испарения и конденсации в вакууме, отличающийся тем, что в качестве сплава первого слоя жаростойкого покрытия используют сплав содержащий Ni -Co-Cr-Al-Y- Ta-W-Hf, а на слой керамики Zr02-Y203, дополнительно методом электронно-лучевого испарения и конденсации в вакууме наносят «барьерный» слой из сплава на основе Ni -Co-Cr-Al-Y с последующим диффузионным отжигом, при этом первый слой жаростойкого покрытия наносят вакуум - плазменным методом, который совместно с порошковой смесью после нанесения второго слоя покрытия, подвергают термовакуумной обработке до диффузионного насыщения хромом и алюминием поверхности покрытия первого слоя.
Сущность изобретения иллюстрируется примером: В предложенном способе нанесения теплозащитного покрытия в качестве материала металлического подслоя используют жаростойкий сплав толщиной 50 … 70 мкм состава: Ni - основа; Cr - от 11% до 15%; Al - от 6% до 9%; Та - от 4% до 6%; w-от 3% до 4%; Hf- от 1,8% до 2,2%; Si - от 0,5% до 1,5%, Y - от 0,8% до 1,5%, наносимого конденсационным методом ВПТВЭ (вакуум - плазменная технология высоких энергий) и содержащий в составе тугоплавкие элементы, тем самым повышая стабильность металлического подслоя при воздействии высоких температур.
После нанесения металлического подслоя проводят хромоалитирование в порошковой смеси с последующей термовакуумной обработкой. Затем наносят слой керамики Zr02-8%Y203 на всю защищаемую поверхность рабочих лопаток методом электроннолучевого испарения и конденсации в вакууме (ЭЛИКВ). Технический результат достигается также за счет нового действия в способе нанесения теплозащитного покрытия, а именно: нанесения на поверхность керамического покрытия высокотемпературного барьерного покрытия толщиной 5 … 10 мкм состава: Ni - основа; Cr - от 18% до 22%; Al - от 11% до 13%; Со - от 8% до 9%, Y - от 0,4% до 0,6%. Тем самым предотвращается доступ кислорода к металлическому подслою и замедляется рост оксидной пленки на границе раздела «металл - керамика». После чего проводят диффузионный отжиг для окончательного формирования структуры покрытия.
Свойства теплозащитного покрытия, после окончательного формирования структуры покрытия, полученные в результате использования предлагаемого способа нанесения покрытия поясняются графическими материалами.
Фиг. 1 - микроструктура теплозащитного покрытия,
Фиг. 2 - диаграмма испытаний на изотермическую жаростойкость при температуре 1100°с
Фиг. 3 - термостойкость теплозащитных покрытий при испытаниях по режиму нагрева 400-1100°С.
Теплозащитное покрытие состоит из нанесенного на поверхность лопатки 1, первого металлического слоя 2 одержащего Ni -Co-Cr-Al-Y-Ta-W-Hf, второго слоя покрытия 3 из порошковой смеси содержащей Cr-Al, третьего слоя керамики 4 на основе Zr02-Y203 и барьерного слоя 5 из сплава на основе Ni -Co-Cr-Al-Y.
Сравнительный анализ заявляемого решения и известного решения показал:
1. Более стабильный легированный первый металлический слой, создает диффузионный барьер легирующим элементам сплава и покрытия при воздействии высоких температур, что в сочетании с конденсационным методом нанесения обеспечивает более высокую диффузионную стабильность покрытия.
2. Дополнительный металлический «барьерный» слой наносимый электронно-лучевым методом на керамический слой блокирует доступ кислорода по межстолбовому пространству к металлическому слою.
После нанесения теплозащитного покрытия рабочие лопатки подвергали испытаниям на изотермическую жаростойкость и термостойкость
Данные по толщинам слоев покрытия определяли на оптическом микроскопе "NEOPHOT 31". Химический состав структура покрытий определялись на рентгеновском дифрактометре Rigaku Ultima IV и электронном сканирующем микроскопе JEOL 300LV (Япония). Результаты испытаний представлены на Фиг. 2 и Фиг. 3 соответственно.
В результате сравнения установлено, что стойкость покрытия полученного предложенным способом по отслоению на 47% больше, а термостойкость по по числу циклов (нагрев-охлаждение) на 37% больше чем в известном способе.
Таким образом, использование способа предусматривающего создание 3-слойного теплозащитного покрытия, в котором в первый слой введены тугоплавкие легирующие элементы, а также дополнительно на керамический слой нанесен «барьерный» металлический слой, позволяет надежно защитить лопатки высокотемпературной коррозии, а, следовательно, повысить ресурс работы лопатки в составе высоконагруженного газотурбинного двигателя.

Claims (1)

  1. Способ нанесения теплозащитного покрытия на лопатки турбин высоконагруженного двигателя, включающий нанесение первого слоя жаростойкого покрытия из сплава на основе Ni, нанесение второго слоя покрытия порошковой смесью, содержащей Сr-Аl, термическую обработку порошковой смеси и первого слоя жаростойкого покрытия, подготовку поверхности и нанесение третьего слоя керамики на основе ZrO2-Y2O3 методом электронно-лучевого испарения и конденсации в вакууме, отличающийся тем, что в качестве сплава первого слоя жаростойкого покрытия используют сплав, содержащий Ni-Co-Cr-Al-Y-Ta-W-Hf, при этом дополнительно на слой керамики ZrO2-Y2O3 методом электронно-лучевого испарения и конденсации в вакууме наносят «барьерный» слой из сплава на основе Ni-Co-Cr-Al-Y и осуществляют последующий диффузионный отжиг, причем первый слой жаростойкого покрытия наносят вакуум-плазменным методом и совместно с порошковой смесью после нанесения второго слоя покрытия подвергают термовакуумной обработке до диффузионного насыщения хромом и алюминием поверхности покрытия первого слоя.
RU2018128950A 2018-08-08 2018-08-08 Способ нанесения теплозащитного покрытия на лопатки турбин высоконагруженного двигателя RU2688417C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018128950A RU2688417C1 (ru) 2018-08-08 2018-08-08 Способ нанесения теплозащитного покрытия на лопатки турбин высоконагруженного двигателя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018128950A RU2688417C1 (ru) 2018-08-08 2018-08-08 Способ нанесения теплозащитного покрытия на лопатки турбин высоконагруженного двигателя

Publications (1)

Publication Number Publication Date
RU2688417C1 true RU2688417C1 (ru) 2019-05-22

Family

ID=66637011

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018128950A RU2688417C1 (ru) 2018-08-08 2018-08-08 Способ нанесения теплозащитного покрытия на лопатки турбин высоконагруженного двигателя

Country Status (1)

Country Link
RU (1) RU2688417C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4229600C1 (de) * 1992-07-07 1993-11-25 Mtu Muenchen Gmbh Schutzschicht für Titanbauteile und Verfahren zu ihrer Herstellung
RU2089655C1 (ru) * 1994-03-30 1997-09-10 Акционерное общество открытого типа "Моторостроитель" Способ получения защитного покрытия
US5834070A (en) * 1996-04-04 1998-11-10 International Center For Electron Beam Technologies Of E.O. Paton Electric Welding Institute Method of producing protective coatings with chemical composition and structure gradient across the thickness
JP2001323361A (ja) * 2000-05-16 2001-11-22 Nisshin Steel Co Ltd 耐高温酸化性に優れたラジアントチューブおよび製造方法
RU2280095C2 (ru) * 2004-10-05 2006-07-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ нанесения покрытия
RU2413791C2 (ru) * 2006-05-30 2011-03-10 Сименс Акциенгезелльшафт Применение для покрытия керамического материала со структурой вольфрамовой бронзы и деталь турбины с создающим термический барьер покрытием
RU2423551C2 (ru) * 2009-09-23 2011-07-10 Общество с ограниченной ответственностью "Производственное предприятие Турбинаспецсервис" Способ формирования теплозащитного покрытия

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4229600C1 (de) * 1992-07-07 1993-11-25 Mtu Muenchen Gmbh Schutzschicht für Titanbauteile und Verfahren zu ihrer Herstellung
RU2089655C1 (ru) * 1994-03-30 1997-09-10 Акционерное общество открытого типа "Моторостроитель" Способ получения защитного покрытия
US5834070A (en) * 1996-04-04 1998-11-10 International Center For Electron Beam Technologies Of E.O. Paton Electric Welding Institute Method of producing protective coatings with chemical composition and structure gradient across the thickness
JP2001323361A (ja) * 2000-05-16 2001-11-22 Nisshin Steel Co Ltd 耐高温酸化性に優れたラジアントチューブおよび製造方法
RU2280095C2 (ru) * 2004-10-05 2006-07-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ нанесения покрытия
RU2413791C2 (ru) * 2006-05-30 2011-03-10 Сименс Акциенгезелльшафт Применение для покрытия керамического материала со структурой вольфрамовой бронзы и деталь турбины с создающим термический барьер покрытием
RU2423551C2 (ru) * 2009-09-23 2011-07-10 Общество с ограниченной ответственностью "Производственное предприятие Турбинаспецсервис" Способ формирования теплозащитного покрытия

Similar Documents

Publication Publication Date Title
US4916022A (en) Titania doped ceramic thermal barrier coatings
US5015502A (en) Ceramic thermal barrier coating with alumina interlayer
US4880614A (en) Ceramic thermal barrier coating with alumina interlayer
RU2228389C2 (ru) Способ обеспечения тепловой защиты и металлическое изделие с керамическим покрытием (варианты)
RU2423550C1 (ru) Теплозащитное покрытие для лопаток турбин и способ его получения
JPH1088368A (ja) 遮熱コーティング部材およびその作製方法
US7537806B2 (en) Method for producing a thermal barrier coating on a substrate
JP6386740B2 (ja) セラミック粉末及びそのための方法
JP2008169481A (ja) 合金組成物及びそれを含む物品
JP7174811B2 (ja) 高温部材
RU2426819C1 (ru) Теплозащитное покрытие и способ его получения
RU2423551C2 (ru) Способ формирования теплозащитного покрытия
JP2008095191A (ja) 遮熱コーティングの形成法
Vorkötter et al. Oxide dispersion strengthened bond coats with higher alumina content: Oxidation resistance and influence on thermal barrier coating lifetime
RU2688417C1 (ru) Способ нанесения теплозащитного покрытия на лопатки турбин высоконагруженного двигателя
RU2402639C1 (ru) Способ нанесения комбинированного теплозащитного покрытия на детали из жаропрочных сплавов
RU2445199C2 (ru) Способ упрочнения блока сопловых лопаток турбомашин из никелевых и кобальтовых сплавов
JPS61174385A (ja) セラミツク被覆耐熱部材及びその製造方法
Kumar et al. Study on Sol–Gel Synthesized IN800 Thermal Barrier Coatings Subjected to Thermal Cyclic Loading: Effect of Metallic Substrates
RU2349679C1 (ru) Способ нанесения комбинированного теплозащитного покрытия на лопатки турбин гтд
RU2441103C2 (ru) Способ получения теплозащитного покрытия
Prater et al. Ceramic thermal barrier coatings with improved corrosion resistance
EP3048183B1 (en) Corrosion resistant coating application method
Lee et al. Improved Deposition Efficiency of Cold-Sprayed CoNiCrAlY with Pure Ni Coatings and Its High-Temperature Oxidation Behavior after Pre-Treatment in Low Oxygen Partial Pressure
RU2479666C1 (ru) Способ формирования теплозащитного покрытия на деталях газовых турбин из никелевых и кобальтовых сплавов