RU2685799C1 - Измерение скорости коррозии многопараметрическим датчиком - Google Patents

Измерение скорости коррозии многопараметрическим датчиком Download PDF

Info

Publication number
RU2685799C1
RU2685799C1 RU2018102896A RU2018102896A RU2685799C1 RU 2685799 C1 RU2685799 C1 RU 2685799C1 RU 2018102896 A RU2018102896 A RU 2018102896A RU 2018102896 A RU2018102896 A RU 2018102896A RU 2685799 C1 RU2685799 C1 RU 2685799C1
Authority
RU
Russia
Prior art keywords
corrosion
sensor
measurement system
output signal
dependent
Prior art date
Application number
RU2018102896A
Other languages
English (en)
Inventor
Роберт К. ХЕДТКЕ
Чарльз Р. ВИЛЛКОКС
Original Assignee
Роузмаунт Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Роузмаунт Инк. filed Critical Роузмаунт Инк.
Application granted granted Critical
Publication of RU2685799C1 publication Critical patent/RU2685799C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/04Corrosion probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

Изобретение относится к области измерительной техники. Предложена система (100) измерения коррозии, которая включает датчик (110) коррозии, имеющий выходной сигнал датчика коррозии, зависящий от коррозии вследствие воздействия технологической текучей среды (104). Датчик (106) технологического параметра выдает выходной сигнал о технологическом параметре, зависящий от переменной характеристики текучей среды (104). Измерительная схема (120), соединенная с датчиком (110) коррозии и датчиком (106) технологического параметра, выдает выходной сигнал, зависящий от коррозии, на основе выходного сигнала датчика коррозии и выходного сигнала о технологическом параметре. Технический результат – повышении точности и информативности получаемых данных. 20 з.п. ф-лы, 5 ил.

Description

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
[0001] Настоящее изобретение относится к коррозии компонентов в разнообразных положениях. Более конкретно, настоящее изобретение относится к мониторингу такой коррозии.
[0002] Коррозия представляет собой постепенное разрушение материалов в результате химической или другой реакции с окружающей их средой. Коррозия ухудшает полезные свойства материалов и конструкций, включающие прочность, внешний вид и проницаемость для текучих сред. Многие конструкционные сплавы корродируют только при воздействии влаги в воздухе, но на процесс может сильно влиять воздействие определенных веществ. Коррозия может быть локально сосредоточенной с образованием оспины или трещины, или же она может распространяться по обширной площади с равномерным ржавлением поверхности.
[0003] Область измерения, контроля и предотвращения коррозии является очень широкой. Измерение коррозии выполняют разнообразными способами для определения, насколько коррозионно-агрессивной является окружающая среда, и с какой скоростью проявляется потеря металла. Некоторые способы измерения коррозии могут применяться в режиме реального времени, при непрерывном воздействии технологического потока, тогда как в других предусматривается отдельное измерение, проводимое в лабораторном анализе. Некоторые способы дают непосредственную меру потери металла или скорость коррозии, тогда как другие используются, чтобы сделать вывод о том, что может существовать коррозионно-агрессивная среда.
[0004] Скоростью коррозии обусловливается то, как долго любая технологическая установка может работать производительно и безопасно. Измерение коррозии и действие для предотвращения высоких скоростей коррозии позволяют достигать наиболее экономичной эксплуатации установки, в то же время сокращая связанные с эксплуатацией расходы в течение срока службы.
[0005] Нижеследующий список приводит подробности о распространенных способах мониторинга коррозии, которые применяются в отраслях промышленности.
- коррозионные образцы (измерения потери веса)
- электрическое сопротивление (ER)
- линейное поляризационное сопротивление (LPR)
- гальванический (ZPA) I потенциал
- проникновение водорода
- микробиальный мониторинг
- песчаная эрозия
[0006] Способ определения потери веса является наиболее известным и простейшим способом мониторинга коррозии. Способ предусматривает подвергание образца материала (купона) воздействию технологической среды в течение времени заданной продолжительности, затем извлечение образца для анализа. Основным измерением, которое определяется по коррозионному купону, является потеря веса. Скорость коррозии может быть рассчитана делением потери веса на плотность материала, площадь поверхности купона и продолжительность воздействия. Мониторинг с использованием купонов является наиболее полезным в средах, где скорости коррозии существенно не изменяются на протяжении длительных периодов времени. Однако они могут обеспечивать полезную корреляцию с другими способами.
[0007] ER-зонды могут рассматриваться как «электронные» коррозионные купоны. ER-зонды проводят базовое измерение потери металла, и значение потери металла может быть измерено в любое время, пока зонд находится на месте. ER-способом измеряют изменение электрического сопротивления корродированного металлического элемента, подвергаемого воздействию технологической среды. Действие коррозии на поверхность элемента обусловливает сокращение площади его поперечного сечения с соответствующим увеличением его электрического сопротивления.
[0008] LPR-способ основывается на электрохимической теории. На электроды в растворе подается небольшое напряжение. Ток, необходимый для поддерживания заданного сдвига профиля напряжения (типично 10 мВ) непосредственно соотносится с коррозией на поверхности электрода в растворе. По измерению тока может быть выведена скорость коррозии. Преимущество LPR-способа состоит в том, что измерение скорости коррозии выполняется моментально, тогда как с купонами или ER для определения скорости коррозии требуется некоторый период времени. LPR-способ может исполняться только в средах чистых водных электролитов, и не будет действовать в газах.
[0009] Коррозия во многих системах связана с расходами. Влияние коррозии включает снижение производительности, время простоя системы, отказы системы, а также время и затраты на ремонт. Существует насущная потребность в предотвращении и мониторинге коррозии.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0010] Система измерения коррозии включает датчик коррозии, имеющий выходной сигнал датчика, соответствующий коррозии вследствие воздействия технологической текучей среды. Датчик технологического параметра выдает выходной сигнал технологического параметра, зависящий от переменной характеристики технологической текучей среды. Измерительная схема, связанная с датчиком коррозии и датчиком технологического параметра, выдает выходной сигнал, соответствующий коррозии, на основе выходного сигнала датчика коррозии и выходного сигнала датчика технологического параметра.
[0011] Эти Сущность изобретения и Реферат приведены для представления набора принципов в упрощенной форме, которые далее описываются ниже в Подробном Описании. Сущность изобретения и Реферат не предназначены для идентификации ключевых признаков или существенных признаков заявленного предмета изобретения, но они предполагаются для использования в качестве пособия в определении области заявленного предмета изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0012] ФИГ. 1 представляет график, иллюстрирующий взаимосвязь между скоростью коррозии и температурой.
[0013] ФИГУРЫ 2А и 2В представляют графики, иллюстрирующие взаимосвязь между давлением и скоростью коррозии.
[0014] ФИГ. 3 представляет график, иллюстрирующий взаимосвязь между скоростями течением и коррозии.
[0015] ФИГ. 4 представляет упрощенную технологическую блок-схему системы измерения коррозии для измерения коррозии на основе выходного сигнала от датчика коррозии и вторичного датчика технологического параметра.
[0016] ФИГ. 5 представляет вид сбоку в разрезе системы измерения коррозии согласно ФИГ. 4, выполненный в виде преобразователя измеряемого технологического параметра.
ПОДРОБНОЕ ОПИСАНИЕ ИЛЛЮСТРАТИВНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
[0017] Представлены система для измерения коррозии и промышленного процесса, которая включает датчик коррозии, а также дополнительный (или вторичный) датчик технологического параметра. Выходные сигналы датчика коррозии и датчика технологического параметра используются для представления дополнительной информации, такой как определение скорости коррозии с повышенной точностью, имеющей отношение к коррозии прогностической информации, имеющей отношение к коррекции информации, имеющей отношение к эксплуатационным характеристикам информации, или другой информации. Датчик коррозии может быть в соответствии с любой подходящей технологией. Подобным образом, датчик технологического параметра может регистрировать любую характеристику технологического процесса, включающую, но не ограничивающуюся этим, давление, температуру, течение, уровень, мутность, рН, проводимость, и т.д.
[0018] Многие операторы в настоящее время проверяют состояние коррозии во время планового ремонта и технического обслуживания либо с фиксированными, либо с внеплановыми интервалами. Новые технологии позволяют отслеживать коррозию в режиме реального времени с использованием системы управления и автоматизации установки. Это обеспечивает возможность оценки состояния коррозии через короткие промежутки времени со способностью контролировать и сокращать интенсивность накопления повреждения.
[0019] Встраиванием измерений коррозии в автоматизированные системы мониторинг коррозии легче осуществляется, автоматизируется и сравнивается с другими технологическими параметрами. Этот подход является более экономичным, чем традиционные автономные системы, требует меньше ручного труда, обеспечивает повышенную степень комбинирования с системами для регистрации, контроля и оптимизации.
[0020] Для операторов установки желательно повышение эффективности и производительности даже на небольшие величины. Однако расходы на борьбу с коррозией являются одной из немногих областей в эксплуатации установки, где возможны крупные усовершенствования наряду со связанным с этим сокращением затрат. Измерение коррозии может рассматриваться как переменный параметр первостепенной важности, который является предметом контроля и оптимизации в процессе.
[0021] Измерение коррозии представляет собой трудную задачу ввиду ряда факторов, включающих многообразные типы коррозии, разнообразные коррозионно-агрессивные агенты, многочисленные материалы резервуаров, уникальные химические воздействия, и зависимость коррозии от таких переменных характеристик, как температура и давление. Представлен многопараметрический датчик коррозии, который включает не только датчик для непосредственной регистрации коррозии, но и вторичный датчик технологического параметра.
[0022] На скорость коррозии может оказывать влияние ряд факторов, таких как температура, давление и скорость течения. Например, ФИГ. 1 представляет график, показывающий коррозию как функцию концентрации растворенного кислорода при различных температурах. В дополнение к изменениям температуры, возникающим в пределах процесса, сам процесс коррозии может быть экзотермическим, вызывая повышение температуры, принимать в расчет которое может понадобиться, чтобы точно определять скорость коррозии.
[0023] Подобным образом, во многих ситуациях скорость коррозии возрастает при повышении давления. Это может быть обусловлено рядом таких причин, как сильнодействующие коррозионно-агрессивные агенты, например, СО2, H2S и О2, будучи более растворимыми в воде при более высоком давлении. ФИГУРЫ 2А и 2В представляют графики зависимости скорости коррозии от давления при двух различных температурах.
[0024] Подобно температуре и давлению, скорость течения также может вызывать повышение скорости коррозии. Повышенная скорость коррозии может обусловливаться усиленной эрозией присутствующими твердыми дисперсными материалами, такими как песок, в технологической текучей среде. Усиленное течение также будет повышать скорости химической коррозии согласно различным механизмам, таким как десорбирование ингибирующих коррозию пленок, или пополнение коррозионно-агрессивных агентов, таких как растворенный кислород. ФИГ. 3 представляет график взаимосвязи между различными концентрациями сульфида, показывающий возрастание скорости коррозии с повышением скорости течения.
[0025] Как обсуждалось ранее, было бы желательным получение информации с помощью усовершенствованного измерения коррозии. Такие улучшения включают простоту применения, улучшенную производительность, проведение измерений многочисленных технологических параметров, обеспечение прогностической аналитики, и получение корректруемой сообразно применению информации, конкретной для уникальных технологических условий.
[0026] ФИГ. 4 представляет упрощенную блок-схему, показывающую многопараметрическую систему 100 измерения скорости коррозии, связанную с технологическим резервуаром 102, в соответствии с одним примерным вариантом исполнения. Технологический резервуар 102 содержит коррозионно-агрессивную технологическую текучую среду 104. Система 100 включает датчик 106 технологического параметра, который конфигурирован для регистрации переменной характеристики технологической текучей среды 104. Датчик 110 коррозии предназначен для выдачи выходного сигнала, который имеет отношение к коррозии. Датчик 110 коррозии действует в соответствии с любой подходящей технологией, включающей те, которые конкретно обсуждаются здесь, а также другие. Датчик 110 коррозии может быть в непосредственном контакте с технологической текучей средой 104, или может проводить дистанционный мониторинг текучей среды 104. Датчик 110 коррозии также может быть рассчитан на бесконтактное измерение коррозии. Датчик 110 коррозии соединен с электрической схемой 120 датчика, которая конфигурирована для измерения выходного сигнала или характеристики датчика 110 коррозии. Примерные характеристики включают сопротивление, емкость, напряжение, и т.д. Датчик 106 технологического параметра также выдает выходной сигнал, имеющий отношение к переменной технологической характеристике, на электрическую схему 120 датчика. Как обсуждалось выше, конкретный технологический параметр может быть любой переменной технологической характеристикой промышленного процесса.
[0027] Контрольно-измерительное устройство 122 соединено с электрической схемой 120 датчика и конфигурировано для действия в соответствии с командами, сохраняемыми в запоминающем устройстве 124. Однако контрольно-измерительное устройство может представлять собой схему более общего назначения, такую как компаратор, или может включать более сложную схему, такую как микропроцессор. На основе выходного сигнала от электрической схемы 120 датчика контрольно-измерительное устройство может сообщаться через устройство 126 ввода-вывода (I/O) и выдавать выходной сигнал, относящийся к скорости коррозии, как зарегистрированной датчиком 106. Электрическая схема 120 датчика, контрольно-измерительное устройство 122 и запоминающее устройство 124 представляют одну примерную конфигурацию измерительной схемы для применения в определении коррозии.
[0028] Иллюстрированная в ФИГ. 4 система 100 обеспечивает возможность многопараметрического измерения датчиком 110 коррозии. Датчик 106 технологического параметра может быть датчиком давления, температуры, уровня, течения, или другой характеристики, включающим аналитический сенсор, такой как датчик рН, кислорода, проводимости, и т.д. Также может быть предусмотрено любое число дополнительных датчиков технологических параметров. Система 100 может быть выполнена в стандартной конфигурации, такой как используемая в существующих преобразователях измеряемого технологического параметра, как обсуждается ниже.
[0029] ФИГ. 5 представляет вид в разрезе примерной конфигурации, в которой система 100 измерения коррозии выполнена в виде традиционной конфигурации преобразователя измеряемого технологического параметра. Иллюстрированная в ФИГ. 5 конфигурация позволяет проводить измерения многочисленных технологических параметров из единственного места внедрения в процесс. В примере согласно ФИГ. 5 датчик 110 технологического параметра иллюстрирован выполненным в виде датчика давления. Как иллюстрировано в ФИГ. 5, датчик 106 коррозии предназначен для измерения коррозии материала вследствие воздействия технологической текучей среды 104. Датчик 110 давления изолирован от технологической текучей среды 104 изолирующей диафрагмой 200. Изолирующая диафрагма 200 выгибается под действие давления, прилагаемого технологической текучей средой 104, и передает это давление на датчик 110 давления с использованием изолированной наполняющей текучей среды, заключенной в капиллярной системе 202. Преобразователь 100 показан связанным с технологическим трубопроводом 102 с использованием фланца 204. Однако может быть применен любой пригодный способ присоединения.
[0030] Электрическая схема 120 датчика иллюстрирована как соединенная со схемой 210 преобразователя, которая выдает выходной сигнал. Выходной сигнал может быть передан по проводному соединению, такому как контур 212 регулирования процесса. Также могут быть применены беспроводные контуры регулирования. Примеры способов проводного соединения включают сигнал от 4 до 20 мА, а также такой аналоговый сигнал с дополнительной модулированной в нем цифровой информацией, как в соответствии с коммуникационным протоколом HART®. Также могут быть использованы полностью цифровые способы коммуникации. Примеры способов беспроводной коммуникации включают беспроводной коммуникационный протокол HART® в соответствии со стандартом IEC 62591. Система 100 измерения коррозии может питаться энергией, получаемой от контура 212 регулирования процесса, или от другого источника, включающего внутренний источник питания, такой как батарея.
[0031] Запоминающее устройство 124, иллюстрированное в ФИГ. 4, может быть использовано для хранения информации о конфигурации, включающей относящиеся к технологической текучей среде константы, материал резервуара, коррозионно-агрессивные агенты, корректировочную информацию, такую как полиномиальные коэффициенты, справочные таблицы, и т.д. Эта информация может сохраняться в запоминающем устройстве в отдаленном месте, таком как пульт управления технологическим процессом, или с использованием портативного калибратора 220, иллюстрированного в ФИГ. 5. Такая информация также может быть конфигурирована во время изготовления или монтажа системы 100. Во время работы контрольно-измерительное устройство 122 определяет скорость коррозии, общую коррозию, прогнозируемую коррозию, и т.д., как желательно, и в ответ выдает выходной сигнал через контур 212. Такая информация, как справочные таблицы, может сохраняться в запоминающем устройстве 124 и использоваться для хранения конфигурационной информации, такой как корреляция между разнообразными материалами резервуара и скоростями их коррозии вследствие воздействия конкретного коррозионно-агрессивного агента при конкретных температуре, давлении, скорости течения, и т.д.
[0032] Коррозия обычно протекает с относительно низкой скоростью. Поэтому измерения скорости коррозии не требуют частых обновлений, и система 100 является весьма пригодной для беспроводной среды. Более точное определение скорости коррозии может быть получено с использованием дополнительного технологического параметра. Информация может быть использована для подтверждения того, что скорости коррозии находятся в пределах проектных значений для конкретных конфигурации или процесса. Информация может быть использована для прогнозирования скоростей коррозии и срока службы резервуара на основе констант, сохраняемых в запоминающем устройстве, а также технологических параметров. Система 100 может предоставлять скорее имеющую практическое значение информацию, нежели просто необработанный выходной сигнал. Например, оператору может быть подан сигнал тревоги о том, что конкретный компонент в процессе должен быть заменен или отремонтирован вследствие коррозии. Система 100 может быть размещена в едином корпусе, таком как иллюстрировано в ФИГ. 5. Однако в такой конфигурации затруднительно заменять или ремонтировать датчик коррозии. В еще одной конфигурации система 100 может принимать технологический параметр из отдаленного места, такого место дистанционного зондирования. Один или оба из датчика коррозии и дополнительного датчика технологического параметра могут быть размещены на расстоянии друг от друга. В еще одной примерной конфигурации информация от датчика коррозии и дополнительного датчика технологического параметра передается в удаленное место, такое как сетевой шлюз. Определение фактической скорости коррозии выполняется в сетевом шлюзе или в удаленном месте. Такая конфигурация полезна, когда используется с бесконтактным зондом как датчиком коррозии, таким как ультразвуковая система, или тому подобным.
[0033] Система 100 выдает выходной сигнал, имеющий отношение к коррозии. Определение этого имеющего отношение к коррозии выходного сигнала может быть проведено любым подходящим способом, включающим применение справочной таблицы, сохраняемой в запоминающем устройстве 124, способа аппроксимации кривых с использованием полиномиальных коэффициентов, сохраняемых в запоминающем устройстве 124, анализа по базе правил, применением нечеткой логики, и т.д. Датчик коррозии может представлять собой датчик коррозии любого типа, включающий те, которые здесь обсуждаются. Примеры системы измерения коррозии иллюстрированы в патентных документах с серийным номером US 14/656,850, поданном 13 марта 2015 года, озаглавленном CORROSION RATE MEASUREMENT (Измерение скорости коррозии), и с серийным номером 14/501,755, поданном 30 сентября 2014 года, озаглавленном CORROSION RATE MEASUREMENT USING SACRIFICIAL PROBE (Измерение скорости коррозии с использованием разрушаемого образца), которые включены здесь ссылкой во всей их полноте.
[0034] В одной конфигурации датчик 110 технологического параметра включает датчик температуры, который размещается поблизости от датчика 106 коррозии. Это позволяет датчику температуры детектировать изменения температуры вследствие экзотермической коррозии датчика 106 коррозии. Другие источники коррозии также могут вызывать изменения температуры вследствие экзотермических процессов, которые измеряются таким температурным датчиком. Измерения коррозии могут быть использованы для корректирования изменений температуры вследствие экзотермических процессов, которые могут быть зарегистрированы датчиком температуры. Подобным образом, детектированная температура может быть использована для корректирования измерения коррозии.
[0035] Для хранения информации в системе 100 могут быть применены методы дистанционного программирования. Это может быть сделано с помощью портативного калибратора или сообщением с централизованным устройством, таким как пульт управления технологическим процессом. Входные сигналы могут приниматься устройством, имеющим отношение к константам, таким как технологическая текучая среда, материал резервуара, и т.д. Также может приниматься и храниться другая информация, имеющая отношение к коррозионным зависимостям, такая как скорость коррозии относительно технологического параметра. Прогностический анализ может быть проведен на основе известных переменных величин, а также измеренных технологических параметров и измеренной скорости коррозии. Взаимосвязь между выходным сигналом от датчика коррозии и выходным сигналом от еще одного датчика технологического параметра может быть использована для диагностических целей, включающих выявление неисправности в устройстве или некоторого события, которое может произойти в процессе.
[0036] В некоторых конфигурациях контрольно-измерительное устройство 122 включает часы. Информация от часов может быть использована для отметки времени для измеренной скорости коррозии, или дополнительного технологического параметра, например, для применения в определении гистограммы, а также для определения скорости изменения. Информация, включающая сведения о времени, также может быть зарегистрирована для последующего анализа.
[0037] В одной примерной конфигурации система является самообучающейся и отслеживает взаимосвязь между измеренной коррозией и измеренным вторичным технологическим параметром. Примеры признаков самообучаемости включают подачу сигнала тревоги, определение частоты опроса, и т.д. В одной примерной конфигурации частота опроса по меньшей мере одного из датчика коррозии и/или датчика технологического параметра может изменяться на основе выходного сигнала от другого датчика. Например, если значительно повышается измеряемая скорость течения, может быть соответственно увеличена частота опроса для получения выходного сигнала от датчика коррозии. Это позволяет устройству действовать, используя меньше энергии во время периодов уменьшенной коррозии.
[0038] Хотя настоящее изобретение было описано со ссылкой на предпочтительные варианты осуществления, квалифицированным специалистам в этой области технологии будет понятно, что могут быть сделаны изменения по форме и в деталях без выхода за пределы смысла и области изобретения. Как используемый здесь, дополнительный датчик технологического параметра измеряет дополнительную (или вторичную) переменную характеристику процесса в дополнение к датчику коррозии. Система может быть использована для измерения скорости коррозии, прогнозирования скорости коррозии, ожидаемого срока службы или исправности технологического компонента, а также для выполнения диагностических действий.

Claims (25)

1. Система измерения коррозии, включающая:
датчик коррозии, имеющий выходной сигнал датчика коррозии, зависящий от коррозии вследствие воздействия технологической текучей среды;
датчик технологического параметра, имеющий выходной сигнал о технологическом параметре, зависящий от переменной характеристики текучей среды; и
измерительную схему, соединенную с датчиком коррозии и датчиком технологического параметра, имеющим выходной сигнал, зависящий от коррозии на основе выходного сигнала датчика коррозии и выходного сигнала о технологическом параметре,
причем измерительная схема сконфигурирована с возможностью идентификации периодов уменьшенной коррозии на основе выходного сигнала, относящегося к коррозии, и дополнительно сконфигурирована с возможностью снижения энергии системы во время идентифицированных периодов уменьшенной коррозии.
2. Система измерения коррозии по п.1, в которой датчик технологического параметра включает в себя датчик давления.
3. Система измерения коррозии по п.1, в которой датчик технологического параметра включает в себя датчик температуры.
4. Система измерения коррозии по п.1, в которой датчик технологического параметра включает в себя датчик потока.
5. Система измерения коррозии по п.1, в которой датчик коррозии и датчик технологического параметра размещаются в едином корпусе.
6. Система измерения коррозии по п.1, в которой по меньшей мере один из датчика коррозии и датчика технологического параметра размещен удаленно.
7. Система измерения коррозии по п.1, в которой выходной сигнал, зависящий от коррозии, является показателем скорости коррозии.
8. Система измерения коррозии по п.1, в которой выходной сигнал, зависящий от коррозии, является показательным для прогнозирования коррозии.
9. Система измерения коррозии по п.1, в которой выходной сигнал, зависящий от коррозии, является показательным для оставшегося срока службы технологического компонента.
10. Система измерения коррозии по п.1, в которой выходной сигнал, зависящий от коррозии, включает в себя диагностическую информацию.
11. Система измерения коррозии по п.1, содержащая запоминающее устройство, предназначенное для хранения информации, зависящей от технологической текучей среды.
12. Система измерения коррозии по п.1, содержащая запоминающее устройство, предназначенное для хранения информации, имеющей отношение к технологическому резервуару.
13. Система измерения коррозии по п.1, содержащая запоминающее устройство, предназначенное для хранения информации, зависящей от корреляции между выходным сигналом о коррозии и выходным сигналом о переменной характеристике процесса и коррозией технологического компонента.
14. Система измерения коррозии по п.13, в которой корреляция основывается на справочной таблице.
15. Система измерения коррозии по п.13, в которой корреляция основывается на аппроксимации кривых.
16. Система измерения коррозии по п.1, в которой выходной сигнал, зависящий от коррозии, включает применимый на практике выходной сигнал.
17. Система измерения коррозии по п.16, в которой применимый на практике выходной сигнал включает выходной сигнал, извещающий оператора о замене компонента.
18. Система измерения коррозии по п.1, содержащая часы.
19. Система измерения коррозии по п.18, в которой выходной сигнал, зависящий от коррозии, включает информацию от часов, имеющую отношение к времени.
20. Система измерения коррозии по п.1, в которой выходной сигнал, зависящий от коррозии, включает беспроводной выходной сигнал.
21. Система измерения коррозии по п.1, в которой частота опроса выходного сигнала датчика коррозии изменяется в зависимости от выходного сигнала о переменной характеристике процесса.
RU2018102896A 2015-06-26 2016-05-12 Измерение скорости коррозии многопараметрическим датчиком RU2685799C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/751,298 2015-06-26
US14/751,298 US10190968B2 (en) 2015-06-26 2015-06-26 Corrosion rate measurement with multivariable sensor
PCT/US2016/032020 WO2016209399A1 (en) 2015-06-26 2016-05-12 Corrosion rate measurement with multivariable sensor

Publications (1)

Publication Number Publication Date
RU2685799C1 true RU2685799C1 (ru) 2019-04-23

Family

ID=56369152

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018102896A RU2685799C1 (ru) 2015-06-26 2016-05-12 Измерение скорости коррозии многопараметрическим датчиком

Country Status (7)

Country Link
US (1) US10190968B2 (ru)
EP (1) EP3314235B1 (ru)
JP (1) JP6767400B2 (ru)
CN (2) CN106290123B (ru)
CA (1) CA2988562A1 (ru)
RU (1) RU2685799C1 (ru)
WO (1) WO2016209399A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10190968B2 (en) * 2015-06-26 2019-01-29 Rosemount Inc. Corrosion rate measurement with multivariable sensor
EP3994435A4 (en) 2019-07-01 2022-08-24 Thermasense Corp. NON-INVASIVE THERMAL INTERROGATION APPARATUS, SYSTEMS AND METHODS

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014682A (ja) * 2001-06-28 2003-01-15 Kawasaki Heavy Ind Ltd 腐食モニタリングセンサー並びに該センサーを用いる腐食速度推定方法及び装置
RU2225594C1 (ru) * 2003-04-21 2004-03-10 Общество с ограниченной ответственностью Научно производственное предприятие "СОНАР" Измеритель параметров коррозии
US20050011278A1 (en) * 2003-07-18 2005-01-20 Brown Gregory C. Process diagnostics
US20050122121A1 (en) * 2003-12-05 2005-06-09 Gilboe Derek Direct resistance measurement corrosion probe
RU2286558C1 (ru) * 2005-06-20 2006-10-27 Общество С Ограниченной Ответственностью "Газпромэнергодиагностика" Способ прогнозирования аварийного технического состояния трубопровода
US20100064816A1 (en) * 2008-09-17 2010-03-18 Dario Filippi Diaphragm structure and method of manufacturing a diaphragm structure

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2976123A (en) 1958-03-24 1961-03-21 Pure Oil Co Corrosion-measuring apparatus
US4046010A (en) 1976-11-12 1977-09-06 Beckman Instruments, Inc. Pressure transducer with welded tantalum diaphragm
JPS5365783A (en) 1976-11-24 1978-06-12 Nippon Steel Corp Corrosion loss measuring method for metal in corrosive environment
JPS5624510A (en) 1979-08-08 1981-03-09 Ebara Corp Monitoring method for decrease of wall thickness
US4468613A (en) 1981-11-27 1984-08-28 Texaco Inc. Apparatus for detecting corrosion rate
US4506540A (en) 1983-01-24 1985-03-26 Union Oil Company Of California Liquid sensor and the use thereof in controlling the corrosion of pipelines
JPS61177783A (ja) 1985-02-04 1986-08-09 Nissan Motor Co Ltd 半導体圧力センサ
EP0240236B1 (en) 1986-03-26 1990-05-23 Central Electricity Generating Board Corrosion monitoring apparatus
US4935195A (en) 1988-08-29 1990-06-19 Westinghouse Electric Corp. Corrosion-erosion trend monitoring and diagnostic system
US5061846A (en) 1989-05-11 1991-10-29 Conoco Inc. Detecting disturbance using optical gap sensing
FR2650389B1 (fr) 1989-07-27 1993-03-26 Sextant Avionique Dispositif de mesure de deformation d'une membrane
JPH03183946A (ja) 1989-12-13 1991-08-09 Hitachi Ltd 腐食検出方法及び装置
CA2146463C (en) 1990-04-19 1999-11-02 Charles S. Argyle Coolant corrosiveness indicator
US5253674A (en) 1990-04-19 1993-10-19 Long Manufacturing Limited Coolant corrosiveness indicator
US5295395A (en) 1991-02-07 1994-03-22 Hocker G Benjamin Diaphragm-based-sensors
US5301001A (en) 1992-02-12 1994-04-05 Center For Innovative Technology Extrinsic fiber optic displacement sensors and displacement sensing systems
US5854557A (en) 1993-04-16 1998-12-29 Tiefnig; Eugen Corrosion measurement system
FR2711797B1 (fr) 1993-10-29 1996-01-12 Inst Francais Du Petrole Dispositif de surveillance du vieillissement de fluides.
US5447073A (en) 1994-02-04 1995-09-05 The Foxboro Company Multimeasurement replaceable vortex sensor
JPH08178172A (ja) * 1994-12-27 1996-07-12 Toshiba Corp 機器及び配管装置類のエロージョン・コロージョンによる減肉計算及び評価法
US5637802A (en) 1995-02-28 1997-06-10 Rosemount Inc. Capacitive pressure sensor for a pressure transmitted where electric field emanates substantially from back sides of plates
US5571955A (en) 1995-04-06 1996-11-05 Cc Technologies Systems, Inc. Monitoring of stress corrosion cracking
US5731523A (en) 1996-03-22 1998-03-24 Aeroquip Corporation Hose fatigue indicator
US5948971A (en) 1996-07-17 1999-09-07 Texaco Inc. Corrosion monitoring system
WO1999034176A1 (fr) 1997-12-26 1999-07-08 Ngk Insulators, Ltd. Detecteur de masse a deux tetes et procede de detection de masse
JP4183789B2 (ja) 1998-01-14 2008-11-19 株式会社堀場製作所 物理現象および/または化学現象の検出装置
JP3545269B2 (ja) 1998-09-04 2004-07-21 日本碍子株式会社 質量センサ及び質量検出方法
US6426796B1 (en) 1998-09-28 2002-07-30 Luna Innovations, Inc. Fiber optic wall shear stress sensor
JP3521243B2 (ja) 1998-10-28 2004-04-19 横河電機株式会社 圧力測定装置
JP2000171386A (ja) 1998-12-08 2000-06-23 Hitachi Ltd 腐食センサ
DE69915679T2 (de) 1998-12-10 2005-02-17 Baker-Hughes Inc., Houston Verfahren und system zur korrosionsmessung durch ermittlung des elektrochemischen rauschens
US6571639B1 (en) 1999-03-01 2003-06-03 Luna Innovations, Inc. Fiber optic system
JP3760657B2 (ja) * 1999-03-05 2006-03-29 三菱化学株式会社 エロージョンの測定方法及びその測定装置
JP3854422B2 (ja) 1999-03-18 2006-12-06 住友重機械工業株式会社 応力腐食割れ検知用電極センサおよび応力腐食割れモニター装置
JP2001004527A (ja) 1999-06-24 2001-01-12 Hitachi Ltd 腐食環境監視用き裂センサ
US6341185B1 (en) 1999-08-26 2002-01-22 Luna Innovations, Inc. Extrinisic optical waveguide sensors
US6383451B1 (en) 1999-09-09 2002-05-07 Korea Gas Corporation Electric resistance sensor for measuring corrosion rate
AU1852701A (en) 1999-12-10 2001-06-18 Vn-Instrument I/S Method and apparatus for measuring accumulated and instant rate of material lossor material gain
WO2001059442A1 (en) 2000-02-14 2001-08-16 Kurita Water Industries Ltd. Water-based water treatment method
US6671055B1 (en) 2000-04-13 2003-12-30 Luna Innovations, Inc. Interferometric sensors utilizing bulk sensing mediums extrinsic to the input/output optical fiber
GB0020177D0 (en) 2000-08-17 2000-10-04 Psl Technology Ltd Intelligent sensor depositor
JP2002277339A (ja) 2001-03-21 2002-09-25 Yokogawa Electric Corp 差圧測定装置
DE10131405A1 (de) 2001-06-28 2003-03-13 Endress & Hauser Gmbh & Co Kg Vorrichtung mit vorausschauender Korrosionsüberwachung
US6843135B2 (en) 2002-06-28 2005-01-18 Vista Engineering Technologies Llc Method and apparatus for remotely monitoring corrosion using corrosion coupons
GB0222658D0 (en) 2002-10-01 2002-11-06 Bae Systems Plc Corrosion sensing microsensors
FR2852391B1 (fr) 2003-03-11 2005-09-09 Oxand Procede et systeme pour surveiller(monitoring) le comportement d'une tuyauterie contenant un fluide sous pression
US20050150279A1 (en) 2004-01-08 2005-07-14 Taber Bruce E. Pressure-based fluid corrosion/erosion protection apparatus and associated methods
US20050151546A1 (en) 2004-01-08 2005-07-14 Taber Bruce E. Electrically-based fluid corrosion/erosion protection apparatus and associated methods
JP4708711B2 (ja) 2004-02-03 2011-06-22 株式会社デンソー 圧力センサ
JP4511844B2 (ja) 2004-02-05 2010-07-28 横河電機株式会社 圧力センサ及び圧力センサの製造方法
US7024918B2 (en) 2004-02-19 2006-04-11 General Electric Company Apparatus and methods for dynamically pressure testing an article
US7866211B2 (en) 2004-07-16 2011-01-11 Rosemount Inc. Fouling and corrosion detector for process control industries
JP4185477B2 (ja) 2004-07-23 2008-11-26 長野計器株式会社 圧力センサ
US20060125493A1 (en) 2004-12-13 2006-06-15 Materials Modification, Inc. Corrosion sensor and method of monitoring corrosion
US7295131B2 (en) 2005-01-07 2007-11-13 Rosemount Inc. Diagnostic system for detecting rupture or thinning of diaphragms
JP2006258601A (ja) 2005-03-17 2006-09-28 Ebara Corp 露点腐食モニタリング用プローブおよび露点腐食モニタリング方法
JP2006322783A (ja) 2005-05-18 2006-11-30 Dainippon Screen Mfg Co Ltd 圧力センサおよび基板処理装置
CN1699191A (zh) 2005-05-25 2005-11-23 天津化工研究设计院 一种锅炉水处理药剂及设备的阻垢缓蚀性能测试方法
JP2007021996A (ja) 2005-07-20 2007-02-01 Fujifilm Holdings Corp 液体吐出ヘッド、画像形成装置及び圧力調整方法
US7515781B2 (en) 2005-07-22 2009-04-07 Exxonmobil Research And Engineering Company Fiber optic, strain-tuned, material alteration sensor
US7204128B1 (en) 2005-10-05 2007-04-17 James Z T Liu Engine wear and oil quality sensor
US20070120572A1 (en) 2005-11-30 2007-05-31 Weiguo Chen Smart coupon for realtime corrosion detection
US7681449B2 (en) 2006-02-28 2010-03-23 Exxonmobil Research And Engineering Company Metal loss rate sensor and measurement using a mechanical oscillator
WO2007126491A2 (en) 2006-03-31 2007-11-08 Davidson Instruments, Inc. Differential pressure transducer configurations including displacement sensor
US7540197B2 (en) 2006-12-01 2009-06-02 Luna Innovations Incorporated Sensors, methods and systems for determining physical effects of a fluid
JP4870013B2 (ja) 2007-04-10 2012-02-08 新日本製鐵株式会社 腐食量測定センサ
US7437939B1 (en) 2007-04-13 2008-10-21 Rosemount Inc. Pressure and mechanical sensors using titanium-based superelastic alloy
CN101842689B (zh) 2007-08-02 2012-06-27 Nxp股份有限公司 基于暴露材料的渐进腐蚀的湿度传感器
CN201218797Y (zh) 2008-04-03 2009-04-08 中国石油天然气股份有限公司 自恒定高压静态腐蚀率测定仪
JP2009250110A (ja) 2008-04-07 2009-10-29 Takuma Co Ltd 伸縮継手の劣化検知システム
EP2124034A1 (en) 2008-05-20 2009-11-25 BAE Systems PLC Corrosion sensors
JP5556585B2 (ja) 2010-10-26 2014-07-23 株式会社Ihi 腐食試験装置及び腐食試験方法
JP2012237697A (ja) 2011-05-13 2012-12-06 Seiko Epson Corp センサー装置
GB201117707D0 (en) * 2011-10-13 2011-11-23 Maggs Tony Stimulator
US10768092B2 (en) * 2013-09-27 2020-09-08 Luna Innovations Incorporated Measurement systems and methods for corrosion testing of coatings and materials
US9891161B2 (en) 2014-03-14 2018-02-13 Rosemount Inc. Corrosion rate measurement
US10107700B2 (en) 2014-03-24 2018-10-23 Rosemount Inc. Process variable transmitter with process variable sensor carried by process gasket
US10830689B2 (en) 2014-09-30 2020-11-10 Rosemount Inc. Corrosion rate measurement using sacrificial probe
US10190968B2 (en) * 2015-06-26 2019-01-29 Rosemount Inc. Corrosion rate measurement with multivariable sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014682A (ja) * 2001-06-28 2003-01-15 Kawasaki Heavy Ind Ltd 腐食モニタリングセンサー並びに該センサーを用いる腐食速度推定方法及び装置
RU2225594C1 (ru) * 2003-04-21 2004-03-10 Общество с ограниченной ответственностью Научно производственное предприятие "СОНАР" Измеритель параметров коррозии
US20050011278A1 (en) * 2003-07-18 2005-01-20 Brown Gregory C. Process diagnostics
US20050122121A1 (en) * 2003-12-05 2005-06-09 Gilboe Derek Direct resistance measurement corrosion probe
RU2286558C1 (ru) * 2005-06-20 2006-10-27 Общество С Ограниченной Ответственностью "Газпромэнергодиагностика" Способ прогнозирования аварийного технического состояния трубопровода
US20100064816A1 (en) * 2008-09-17 2010-03-18 Dario Filippi Diaphragm structure and method of manufacturing a diaphragm structure

Also Published As

Publication number Publication date
CN106290123A (zh) 2017-01-04
CN205426744U (zh) 2016-08-03
US20160377527A1 (en) 2016-12-29
CN106290123B (zh) 2020-02-21
EP3314235B1 (en) 2021-04-28
US10190968B2 (en) 2019-01-29
CA2988562A1 (en) 2016-12-29
JP2018518685A (ja) 2018-07-12
WO2016209399A1 (en) 2016-12-29
EP3314235A1 (en) 2018-05-02
JP6767400B2 (ja) 2020-10-14

Similar Documents

Publication Publication Date Title
US10830689B2 (en) Corrosion rate measurement using sacrificial probe
US9518915B2 (en) Sensing systems and methods for determining and classifying corrosivity
CN103969066B (zh) 监控运行的过程的***和方法
US9823100B2 (en) Method and apparatus for determining a state of a measuring transducer integrated in a process container
CN101988889A (zh) 用于在线监控燃气轮机构件腐蚀的***和方法
JP4931996B2 (ja) プロセス制御及びモニタリングシステムの診断法
CN214225012U (zh) 过程分析***
CN101517420A (zh) 用于腐蚀测量的现场设备
CN204143214U (zh) 一种水质预警及控制排放***
US20160290560A1 (en) Monitoring of a condensate drain
RU2685799C1 (ru) Измерение скорости коррозии многопараметрическим датчиком
Brijder et al. Review of corrosion monitoring and prognostics in offshore wind turbine structures: Current status and feasible approaches
JP7411459B2 (ja) 腐食管理システム
WO2021113673A1 (en) Low-power sensor network
CN105719816A (zh) 智能化充气式电压互感器
CN112782256A (zh) 用于腐蚀监测的多参数探头、腐蚀检测***
US11965818B1 (en) Corrosion monitor
US8489362B2 (en) Method for determining failure rate of an electrochemical sensor
Saluja et al. Non-intrusive online corrosion monitoring
CN114924171A (zh) 一种电缆绝缘性能故障预警装置及方法
LePee KEEPING CORROSION AT BAY.
Eden et al. Performance Improvement for Cooling Water Systems

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200513