RU2680664C1 - Способ регистрации быстрых флуоресцентных сигналов при помощи лазерного сканирующего конфокального микроскопа - Google Patents

Способ регистрации быстрых флуоресцентных сигналов при помощи лазерного сканирующего конфокального микроскопа Download PDF

Info

Publication number
RU2680664C1
RU2680664C1 RU2017144359A RU2017144359A RU2680664C1 RU 2680664 C1 RU2680664 C1 RU 2680664C1 RU 2017144359 A RU2017144359 A RU 2017144359A RU 2017144359 A RU2017144359 A RU 2017144359A RU 2680664 C1 RU2680664 C1 RU 2680664C1
Authority
RU
Russia
Prior art keywords
time
series
laser scanning
images
signal
Prior art date
Application number
RU2017144359A
Other languages
English (en)
Inventor
Дмитрий Владимирович Самигуллин
Арсений Юрьевич Архипов
Эдуард Фаритович Хазиев
Original Assignee
Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Казанский Национальный Исследовательский Технический Университет Им. А.Н. Туполева-Каи", Книту-Каи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Казанский Национальный Исследовательский Технический Университет Им. А.Н. Туполева-Каи", Книту-Каи filed Critical Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Казанский Национальный Исследовательский Технический Университет Им. А.Н. Туполева-Каи", Книту-Каи
Priority to RU2017144359A priority Critical patent/RU2680664C1/ru
Application granted granted Critical
Publication of RU2680664C1 publication Critical patent/RU2680664C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/58Photometry, e.g. photographic exposure meter using luminescence generated by light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Данный способ относится к использованию лазерной сканирующей конфокальной микроскопии при регистрации высокоскоростных флуоресцентных сигналов. В частности, в физиологических исследованиях, для регистрации интенсивности свечения кальциевых красителей в нервно-мышечном препарате при стимуляции двигательного нерва. Технический результат изобретения заключается в возможности достоверной оценки амплитудных и временных характеристик регистрируемых сигналов. Способ включает в себя получение на лазерном сканирующем конфокальном микроскопе временной серии изображений и построение графика зависимости интенсивности свечения флуоресцентного красителя от времени, при этом съемка происходит в несколько этапов, на каждом из которых смещается по времени сигнал от стимулятора относительно начала процесса сканирования конфокальным микроскопом, а полученные серии изображений собираются в одну серию. 2 ил.

Description

Предлагаемый способ относится к использованию лазерной сканирующей конфокальной микроскопии при регистрации высокоскоростных флуоресцентных сигналов. В частности, в физиологических исследованиях, для регистрации интенсивности свечения кальциевых красителей в нервно-мышечном препарате при стимуляции двигательного нерва.
Известен способ сканирования флуоресцентных сигналов от биологических объектов при помощи лазерного сканирующего конфокального микроскопа (принцип впервые предложен М. Мински в 1957 г.), описанный в книге "Мухитова А.Р., Архиповой С.С, Никольского Е.Е., Современная световая микроскопия в биологических и медицинских исследованиях Казанский институт биохимии и биофизики КазНЦ РАН, Казанский гос. мед университет Росздрава. - М.: Наука, 2011. - 140 с. - ISBN 978-5-02-037483-6", в соответствие с которым препарат сканируют поточечно лазерным лучом и возбуждают флуоресцентный краситель, свет от которого через конфокальную диафрагму регистрируется фотоумножителем. Затем из зарегистрированных значений интенсивности света при помощи компьютера восстанавливается поточено изображение препарата. Для формирования серии изображений, циклы сканирования повторяются.
Смещения Стокса - разница длин волн максимумов спектров поглощения и испускания флуоресценции флуорохромом. Измеряется в обратных сантиметрах, реже нанометрах, в силу нелинейности зависимости энергии фотона от длинны волны. Назван в честь физика Джоджа Стокса.
Кальциевый транзиент - изменение интенсивности свечения кальциевого флуоресцентного красителя во времени в зависимости от концентрации ионов кальция в среде.
Вход кальция - вход в нервное окончание ионов кальция через кальциевые каналы, расположенные на мембране.
Кальциевый канал - семейство ионных каналов, избирательно проницаемых для ионов кальция.
Потенциал действия - волна возбуждения, перемещающаяся по мембране живой клетки в виде кратковременного изменения мембранного потенциала на небольшом участке возбудимой клетки, в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к внутренней поверхности мембраны, в то время, как в покое она заряжена положительно. Потенциал действия является физиологической основой нервного импульса.
Конфокальная диафрагма - это диафрагма конфокального микроскопа, которая предназначена отсекать поток фонового рассеянного света. Диафрагма расположена после объективной линзы так, чтобы свет, испускаемый исследуемой точкой, проходил через нее, а свет, исходящий от других точек, задерживался диафрагмой.
Недостатком имеющегося способа является низкая скорость сканирования. Ограничение скорости сканирования связано со временем, необходимым на механическое перемещение зеркал, которые позиционируют лазерный луч. Современные конфокальные микроскопы позволяют сканировать изображение с разверткой несколько десятков мс на кадр. Этого недостаточно для регистрации быстрых процессов. Возможно высокоскоростное сканирование одной линии изображения. Но при таком режиме сканирования, можно получить информацию только от ограниченной зоны объекта исследования.
Техническая задача, на решение которой направлено данное изобретение, является улучшение временного разрешения при сканировании быстрых флуоресцентных сигналов в лазерной сканирующей конфокальной микроскопии на примере регистрации флуоресцентного кальциевого транзиента.
Технический результат предлагаемого способа регистрации быстрых флуоресцентных сигналов при помощи лазерного сканирующего конфокального микроскопа заключается в возможности достоверной оценки амплитудных и временных характеристик регистрируемых быстрых флуоресцентных сигналов.
Технический результат в предлагаемом способе регистрации быстрых флуоресцентных сигналов при помощи лазерного сканирующего конфокального микроскопа, включающий в себя получение на лазерном сканирующем конфокальном микроскопе временной серии изображений и построение графика зависимости интенсивности свечения флуоресцентного красителя от времени, достигается тем, что съемка происходит в несколько этапов, на каждом из которых сигнал от препарата смещается на некую константу времени при неизменных параметрах сканирования микроскопа, а полученные в ходе эксперимента серии изображений собираются в одну серию по определенному алгоритму.
Рассмотрим осуществление предлагаемого способа регистрации быстрого кальциевого флуоресцентного сигнала при помощи лазерного сканирующего конфокального микроскопа на примере регистрации кальциевого транзиента.
Лазерный сканирующий конфокальный микроскоп - это микроскоп, получение изображения в котором осуществляется сканированием препарата, окрашенного флуоресцентным красителем, сфокусированным лазерным лучом определенной длины волны. Перемещение лазерного луча осуществляется за счет системы зеркал, которые осуществляют развертку лазерного луча при сканировании препарата. Во время сканирования препарата лазерный луч возбуждает флуоресцентный краситель, который согласно смещению Стокса испускает свет, длина волны которого выше длинны волны света от лазерного источника возбуждения. С помощью системы фильтров свет возбуждения задерживается, а свет эмиссии проходит через конфокальную диафрагму и регистрируется системой фотоумножителей. Из зарегистрированных интенсивностей свечения, соответствующих определенным точкам препарата, при помощи компьютера формируется интересующее нас видеоизображение.
В случае регистрации кальциевого транзиента одновременно со сканированием изображения осуществляется стимуляция препарата, которая вызывает изменение свечения флуоресцентного красителя. Регистрация входа кальция осуществляется при помощи флуоресцентных кальциевых красителей, которые меняют интенсивность своего свечения в зависимости от концентрации ионов кальция в среде (кальциевый транзиент). Вход ионов кальция в периферические нервные окончания является быстропротекающим биологическим процессом и для его регистрации необходимо высокоскоростное сканирование. Длительность кальциевого транзиента в зависимости от красителя и объекта исследования составляет 500-1000 мс а скорость нарастания переднего фронта кальциевого транзиента составляет около 6-12 мс. Соответственно для корректного анализа амплитуды флуоресцентного кальциевого транзиента необходимо временное разрешение системы регистрации порядка 1 миллисекунды на кадр. Существующие конфокальные сканирующие системы позволяют сканировать изображения размером 512 на 512 пикселей со скоростью 30-70 миллисекунд на кадр, что не позволяет оценивать корректно амплитудные и временные характеристики кальциевого транзиента.
Кальциевый транзиент инициируется входом кальция в нервное окончание через потенциал-чувствительные кальциевые каналы во время распространяющегося потенциала действия. Потенциал действия запускается раздражением двигательного нерва специализированным стимулятором биологических объектов. Стимулятор - это внешнее электронное устройство, которое выдает импульсы заданной амплитуды и длительности. Стимулятор синхронизируется с конфокальным сканирующим микроскопом через блок синхронизации, входящий в состав микроскопа.
Блок синхронизации осуществляет запуск стимулятора синхроимпульсом. В момент начала съемки видеоизображения блок синхронизации посылает импульсный сигнал на стимулятор, после чего стимулятор посылает импульсный сигнал на препарат. На стимуляторе можно настраивать задержку между синхроимпульсом от микроскопа и импульсом, стимулирующим препарат.
Разработанный способ позволяет зарегистрировать повторяющийся периодический флуоресцентный кальциевый сигнал с достаточным временным и пространственным разрешением посредством только программных операций, без конструктивного изменения существующей конфокальной системы. Суть метода заключается в том, что сигнал стимуляции можно смещать относительно начала процесса сканирования микроскопом. Это достигается посредством задержки этого сигнала стимулятором. Так как развертка микроскопа неизменна, то регистрировать сигнал при смещении микроскоп будет в других точках, отстоящих по времени от начала исходного сигнала на величину временной константы t. Величина t выбирается исходя из необходимого временного разрешения и зависит от временных параметров регистрируемого сигнала. Чтобы достичь необходимого результата, нужно смещать сигнал до тех пор, пока шаг времени смещения n*t не достигнет значения минимального времени между кадрами Т (n*t=Т), где n=1, 2, 3,.., N(Фигура 1). Длительность одной серии кадров k*T выбирается исходя из длительности интересующего сигнала флуоресценции и должна превышать его длительность на значение Т, где k - количество кадров одного регистрируемого сигнала. На фиг. 1 изображен сигнал без смещения и четыре смещенных сигнала. Так как микроскоп формирует кадры с периодом Т, то полученный сигнал будет далек от истинного. На изображении он представлен пятью соединенными между собой точками сигнала без смещения, попавшими в момент регистрации кадра. Таким образом, смещая сигнал по времени, можно собрать потерянные из-за низкой скорости сканирования кадры и соответственно потерянные точки сигнала. Восстановление флуоресцентного сигнала с высоким временным разрешением из зарегистрированных серий кадров осуществляется согласно следующему алгоритму (Фиг. 2): кадр из смещенной серии изображений вставляется за соответствующим кадром первой серии изображений в порядке смещения. Собранные кадры таким путем объединяются в порядке смещения в одно видеоизображение, которое будет обладать интересующей нас разверткой по времени. При этом развертка (время между кадрами) нового видеоизображения будет равна заданному шагу времени смещения сигнала t.

Claims (1)

  1. Способ регистрации быстрых флуоресцентных сигналов, включающий получение временной серии изображений и построение графика зависимости интенсивности свечения флуоресцентного красителя от времени, отличающийся тем, что съемка происходит в несколько этапов, на каждом из которых смещается по времени сигнал от стимулятора относительно начала процесса сканирования конфокальным микроскопом, а полученные серии изображений собираются в одну серию.
RU2017144359A 2017-12-18 2017-12-18 Способ регистрации быстрых флуоресцентных сигналов при помощи лазерного сканирующего конфокального микроскопа RU2680664C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017144359A RU2680664C1 (ru) 2017-12-18 2017-12-18 Способ регистрации быстрых флуоресцентных сигналов при помощи лазерного сканирующего конфокального микроскопа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017144359A RU2680664C1 (ru) 2017-12-18 2017-12-18 Способ регистрации быстрых флуоресцентных сигналов при помощи лазерного сканирующего конфокального микроскопа

Publications (1)

Publication Number Publication Date
RU2680664C1 true RU2680664C1 (ru) 2019-02-25

Family

ID=65479309

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017144359A RU2680664C1 (ru) 2017-12-18 2017-12-18 Способ регистрации быстрых флуоресцентных сигналов при помощи лазерного сканирующего конфокального микроскопа

Country Status (1)

Country Link
RU (1) RU2680664C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034613A (en) * 1989-11-14 1991-07-23 Cornell Research Foundation, Inc. Two-photon laser microscopy
RU2005115052A (ru) * 2005-05-18 2006-11-27 Андрей Алексеевич Климов (RU) Способ флуоресцентной наноскопии

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034613A (en) * 1989-11-14 1991-07-23 Cornell Research Foundation, Inc. Two-photon laser microscopy
RU2005115052A (ru) * 2005-05-18 2006-11-27 Андрей Алексеевич Климов (RU) Способ флуоресцентной наноскопии

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Штейн Г.И. "Руководство по конфокальной микроскопии" - СПб: ИНЦ РАН, 2007, всего - 77 страниц. Митрошина Е.В. "Оптический имиджинг в приложении к исследованию нейробиологических систем мозга", Электронное учебно-методическое пособие - Нижний Новгород: Нижегородский госуниверситет, 2012, всего - 40 страниц. *

Similar Documents

Publication Publication Date Title
JP6338597B2 (ja) 無線周波数多重励起を用いた蛍光イメージングのための装置及び方法
Lillis et al. Two-photon imaging of spatially extended neuronal network dynamics with high temporal resolution
Vicidomini et al. STED nanoscopy with time-gated detection: theoretical and experimental aspects
JP5776992B2 (ja) 自然放出蛍光をパルス励起、連続脱励起、およびゲート記録するsted顕微鏡法、sted蛍光相関分光法、およびsted蛍光顕微鏡
CN109187459B (zh) 一种自适应扫描宽视场高通量层析显微成像方法及装置
Elson et al. Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier
CN111202499B (zh) 快速高效自适应光学补偿的受激拉曼散射成像***和方法
US10041883B2 (en) System and method for time-resolved fluorescence imaging and pulse shaping
Becker et al. Picosecond fluorescence lifetime microscopy by TCSPC imaging
US20110031414A1 (en) Device for microscopy having selective illumination of a plane
US20130126755A1 (en) Method and device for simultaneous multi-channel and multi-method acquisition of synchronized parameters in cross-system fluorescence lifetime applications
JP7287961B2 (ja) 同時複数平面撮像のためのシステム、装置および方法
Becker et al. Multiwavelength TCSPC lifetime imaging
CN111971606B (zh) 具有高空间分辨率的时间分辨成像方法
Becker et al. FRET measurements by TCSPC laser scanning microscopy
US20110043619A1 (en) Resolution-Enhanced Luminescence Microscopy
US11944448B2 (en) Adaptive illumination apparatus, method, and applications
Talbot et al. High speed unsupervised fluorescence lifetime imaging confocal multiwell plate reader for high content analysis
CN212489863U (zh) 一种快速高效自适应光学补偿的受激拉曼散射成像***
Chen et al. Spatial resolution enhancement in photon-starved STED imaging using deep learning-based fluorescence lifetime analysis
RU2680664C1 (ru) Способ регистрации быстрых флуоресцентных сигналов при помощи лазерного сканирующего конфокального микроскопа
CN108982445A (zh) 多光子激发的近红外二区荧光寿命显微成像***
US11953440B2 (en) Method and apparatus for simultaneous nonlinear excitation and detection of different chromophores across a wide spectral range using ultra-broadband light pulses and time-resolved detection
US11009463B2 (en) Fluorescence microscopy system and methods based on stimulated emission
Fernandez et al. Dynamic real-time subtraction of stray-light and background for multiphoton imaging