RU2676819C2 - Оптоволоконное осветительное устройство с оптическим способом слежения неподвижного концентратора за солнцем - Google Patents

Оптоволоконное осветительное устройство с оптическим способом слежения неподвижного концентратора за солнцем Download PDF

Info

Publication number
RU2676819C2
RU2676819C2 RU2016148779A RU2016148779A RU2676819C2 RU 2676819 C2 RU2676819 C2 RU 2676819C2 RU 2016148779 A RU2016148779 A RU 2016148779A RU 2016148779 A RU2016148779 A RU 2016148779A RU 2676819 C2 RU2676819 C2 RU 2676819C2
Authority
RU
Russia
Prior art keywords
lens
lenses
fiber
cylindrical
sun
Prior art date
Application number
RU2016148779A
Other languages
English (en)
Other versions
RU2016148779A3 (ru
RU2016148779A (ru
Inventor
Сергей Яковлевич Самохвалов
Олег Викторович Горбачев
Денис Иванович Артюхов
Original Assignee
Сергей Яковлевич Самохвалов
Олег Викторович Горбачев
Денис Иванович Артюхов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сергей Яковлевич Самохвалов, Олег Викторович Горбачев, Денис Иванович Артюхов filed Critical Сергей Яковлевич Самохвалов
Priority to RU2016148779A priority Critical patent/RU2676819C2/ru
Publication of RU2016148779A publication Critical patent/RU2016148779A/ru
Publication of RU2016148779A3 publication Critical patent/RU2016148779A3/ru
Application granted granted Critical
Publication of RU2676819C2 publication Critical patent/RU2676819C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

Солнечное оптоволоконное осветительное устройство содержит концентратор, оптоволоконный жгут, рассеивающую линзу. Концентратор выполнен неподвижным с оптическим способом наведения светового потока на вход оптоволоконного жгута и содержит цилиндрическую сужающую линзу Френеля на внутренней поверхности прозрачного куполообразного корпуса, в фокусе которой расположен второй прозрачный купол с цилиндрической расширяющей линзой Френеля, на третьем внутреннем прозрачном куполе имеются несимметричные цилиндрические полосковые линзы Френеля, плоскость фокусировки которых перпендикулярна плоскости фокусировки двух предыдущих линз. Полосковые сужающие линзы дополнительно обладают постепенно изменяющимися углами преломления светового потока, каждый из которых соответствует одному из положений солнца на небосводе в течение дня. Технический результат - уменьшение потерь световой энергии, снижение массы и ветровой нагрузки, увеличение времени работы в течение дня, увеличение срока службы и надежности при освещении труднодоступных для солнечного света темных помещений. 2 ил.

Description

Изобретение относится к области бытовых осветительных приборов, а именно, к приборам для освещения помещений с низкой естественной освещенностью: подвалов, коридоров, прихожих, ванных комнат, рудников, шахт, подземных автостоянок и гаражей, станций метро.
Общеизвестные электроосветительные приборы являются энергозависимыми, и обладают существенными недостатками: относительно высоким энергопотреблением, электрической и пожарной опасностью, малым сроком службы, плохим не естественным спектром (Приложение 1), и необходимостью специальной утилизации.
Известно, что в качестве естественного освещения сейчас по-прежнему применяются окна и зенитные фонари - световые прозрачные конструкции в кровле здания. Зенитные фонари устанавливают на крыше зданий, устраняя тем самым недостаток естественного освещения, но только на верхних этажах (Приложение 2). Кроме того, окна и зенитные фонари ухудшают теплоизоляцию помещений, они сложно монтируются, вносят изменения в конструкцию зданий, и поэтому, сравнительно дороги. В некоторых помещениях их применение просто не эффективно (северная сторона дома, дворы колодцы, первые этажи зданий с высокими деревьями перед окнами), или их установка не представляется возможной, например, в подземных станциях метро, в подземных гаражах и автостоянках, в подвалах и погребах.
Также известно, что экологически чистую солнечную световую энергию, можно преобразовывать в электроэнергию с помощью солнечных батарей или фотоэлектронных преобразователей, используя затем электрическое освещение. Однако, при таком способе для освещения закрытых помещений неизбежно двойное преобразование энергии. Сначала, световая энергия преобразуется в электричество, а затем это электричество транспортируется по проводам, и снова преобразуется в свет. Учитывая низкий КПД преобразователей (обычно он составляет 10-20%), на освещение остается 1-2% от входной солнечной энергии. И световой спектр будет уже далеко не естественный - солнечный, а искусственный. [1]
Относительно недавно для освещения помещений естественным светом, стали использовать гибридные оптоволоконные устройства (Приложение 3). Концентратор в этих устройствах, выполненный из параболических зеркал, фокусирует солнечные лучи во входной торец оптоволоконного кабеля, по которому свет транспортируется затем в освещаемое помещение. Устройство содержит систему позиционирования, которая поворачивает зеркала в течение дня, постоянно направляя их на солнце, как это делает всем известный подсолнух. В течение дня, установленный на крыше концентратор собирает солнечную энергию, отслеживая ход светила по небу. Такие устройства являются сложными и дорогостоящими. Наличие системы слежения за солнцем, поворотного мотто подвесного кронштейна с двумя степенями свободы, требуют внешнего электропитания подводимого от сети, или получаемого от преобразования световой энергии в энергию электрическую. Стоимость такой системы достигает 16 тыс. долларов, а ее установка колеблется от 500 до 2000 долларов. Высокая цена, сложность обслуживания, необходимость во внешнем электропитании, не большая мощность из-за ограниченной площади концентратора, его большой вес и существенная ветровая нагрузка, являются основными недостатками данных систем. Тем не менее, несмотря на внушительные цены, по прогнозам экспертов, к 2020 г. в США планируется продать более 5000 гибридных оптоволоконных систем освещения.
Для упрощения оптоволоконных осветительных устройств, имеются конструкции неподвижных концентраторов, например, устройства, предложенные в патентах: United States Patent 3,780,722, или US 2012/0154941 А1. В данных конструкциях для концентрации светового потока применяются фоконы, либо специальные призмы, образующие матричные поверхности для сбора света, и его дальнейшей транспортировки по оптическим каналам (Приложение 5). Однако такие концентраторы обладают большой массой, и низкой эффективностью. Они не могут обеспечить высокую плотность светового потока в оптоволоконном жгуте, из-за ограниченной числовой апертуры фоконов. При большой входной, и малой выходной площадях торцов фоконов, с каждым последующим отражением, у световых лучей увеличивается угол отражения. Когда этот угол достигнет 90 градусов, продвижение лучей по фокону прекращается, затем лучи разворачиваются в обратном направлении, и выходят через входной торец (Приложение 4). Поэтому, такие концентраторы не позволяют обеспечивать передачу больших световых потоков по тонкому оптоволокну.
Известны, также конструкции неподвижных концентраторов, в которых для увеличения плотности светового потока, совместно с фоконами используются сужающие линзы, например, патент РФ на ПМ №102747. Такие концентраторы имеют не большой угол по азимуту, т.е. обеспечивают малое время слежение за солнцем в течение дня. У цилиндрической (линейной) линзы фокус представляет собой не точку, а прямую линию, поэтому, такие концентраторы хорошо сужают световой поток только в одной плоскости, в которой солнце движется по небосводу. Изгиб линзы, или изменение ее толщины в этой плоскости, дают не большой эффект для снижения потерь световой энергии от некачественной фокусировки света на входной торец фокона. При перемещении солнца по небосводу, фокусное световое пятно будет вытянуто в форме ромба, и оно все равно будет смещаться в течение дня по фокусной линии. При этом входной торец фокона необходимо делать в виде эллипса, вытянутого вдоль фокусной линии, либо, использовать плоский фоконный жгут. И то, и другое, ведет к увеличению числовой апертуры, увеличивает площадь сечения оптического волокна, или приходится снижать плотность светового потока в оптическом волокне, а значит, снижается и эффективность осветительного устройства. Такие концентраторы, так же имеют большую массу, и большой расход материала при изготовлении линз.
Техническим результатом заявляемого изобретения является снижение стоимости оптоволоконных осветительных устройств, уменьшение потерь световой энергии, снижение их массы, и ветровой нагрузки, увеличение времени работы в течение дня, увеличение срока службы и надежности при освещении труднодоступных для солнечного света темных помещений, при полной независимости от электричества.
Сущность изобретения. Технический результат достигается тем, что в заявляемом устройстве применен неподвижный концентратор с оптическим способом наведения светового потока на входной торец фокона. Световой поток последовательно сужается в двух перпендикулярных плоскостях, при этом, солнечный свет, концентрируется на входной торец оптоволоконного кабеля фоконного типа, с помощью неподвижного куполообразного концентратора, выполненного на основе цилиндрических линз Френеля. Сначала поток солнечного света поляризуется в плоскости движения солнца по небосводу с помощью линейного коллиматора, состоящего из двух специальных неподвижных цилиндрических линз Френеля, сужающей и расширяющей. Затем плоский поляризованный световой поток попадает на ряд полосковых не симметричных линз Френеля и сужается в перпендикулярной плоскости до размеров входного торца фоконого жгута (кабеля). Одновременно с сужением, полосковые не симметричные линзы Френеля постоянно направляют концентрированный световой поток на входной торец оптоволоконного жгута. Окончательно световой поток сужается до размеров оптоволоконного жгута с помощью фоконного приемного участка жгута. На другом торце оптоволоконного жгута, находящегося в темном помещении, имеется рассеивающая линза, которая равномерно рассеивает свет, освещая это помещение (фото в приложении 6). Такой способ сужения светового потока в концентраторе, значительно упрощает устройство, исчезает необходимость механического позиционирования фокусирующего блока в течение светового дня, полностью отсутствует потребление электроэнергии, значительно увеличивается срок службы устройства, существенно возрастает безопасность его эксплуатации. Это позволяет значительно снизить цену устройства, и стоимость его обслуживания, уменьшить световые потери, и массу, расширить область применения, следовательно, увеличить тираж. Можно использовать данное устройство даже там, где нет электричества, и не только в помещениях с повышенной влажностью, но и в воде (бассейны, аквариумы, субмарины), и во взрывоопасных помещениях (шахты, рудники и химические предприятия).
Концентратор, предназначенный для приема и уплотнения солнечного светового потока, его ввода во входной торец оптоволоконного жгута, представлен на фигуре 1. Фокусирующий блок устройства, состоит из линейной (цилиндрической) сужающей линзы Френеля (1), которая выполнена на внутренней стороне прозрачного куполообразного корпуса (2). У цилиндрической линзы фокус представляет собой прямую линию. В непосредственной близости от фокуса сужающей линзы находится такая же линейная (цилиндрическая) линза Френеля, с таким же фокусным расстоянием, но только расширяющая световой поток (3). Для упрощения рисунка, линейная (цилиндрическая) сужающая линза Френеля (1), показана только на одной из проекций, а у расширяющей линзы Френеля (3), показано только место ее расположения на внутреннем куполе. После прохождения этой линзы, световые лучи снова оказываются параллельными друг другу, но световой поток становится плоским, т.е. он поляризуется в плоскости, почти параллельной плоскости дневного перемещения солнца. Небольшой угол смещения между плоскостями обеспечивает небольшое боковое смещение фокусной линии при движении солнца по небосводу. При движении солнца, плоский световой поток постепенно смещается в перпендикулярном направлении, и последовательно попадает на несимметричные полосковые линейные линзы Френеля, расположенные на следующем прозрачном куполе (4). Эти полосковые линзы образуют на куполе прозрачное поле (5), они смещены относительно друг друга, как в плоскости движения солнца по небосводу, так и в перпендикулярном направлении, в котором смещается фокусная линия. Таким образом, образованная ими поверхность имеет вид лесенки. Каждая из этих полосковых несимметричных линз (5), не только сужает световой поток в перпендикулярной плоскости, но и меняет угол преломления света в этой плоскости, постоянно направляя свет на входной торец оптоволоконного жгута. Ранним утром после восхода солнца, плоский световой поток будет проходить через крайнюю полосковую линзу (7). К полудню, световой поток сместится на среднюю полосковую линзу Френеля (8). К вечеру, перед заходом солнца, плоский световой поток сместится, и будет проходить через другую крайнюю полосковую линзу (9). Сужающую линзу Френеля (11), можно получить из плосковыпуклой линзы (10), путем пошагового смещения ее выпуклой поверхности, к ее плоской поверхности. Применение линз Френеля позволяет снизить вес устройства и его цену, за счет уменьшения материала на изготовление линз. Свет преломляется, и меняет свое направление, только на границе раздела сред, а не в самой линзе. Поэтому, обе линзы (10) и (11), концентрируют световой поток, практически одинаково.
Способ смещения фокусного пятна демонстрируется на фигуре 2. Несимметричная плосковыпуклая линза 14, и полученная из нее несимметричная линза Френеля 15, смещают фокус влево. У симметричной плосковыпуклой линзы 12, и симметричной линзы Френеля 13, фокус находится в центре линзы. Таким образом, плоский световой поток не только сужается в перпендикулярной плоскости с помощью набора полосковых линз Френеля, но и за счет последовательного изменения угла преломления в течение светового дня, направляется на входной торец фокона. Чем больше количество полосковых линз, и чем меньше их ширина, тем меньше шаг дискретности, и больше эффективность оптической концентрации света.
Далее концентрированный световой поток проходит фоконы оптических волокон, при этом постепенно сужаясь до размеров этих волокон, и после многократного отражения от их стенок, попадает на рассеивающую линзу в освещаемом помещении.
Оптоволоконный жгут (6), может быть изготовлен из кварца, но из-за своей хрупкости, диаметр его волокон делают не более 500 мкм. Такое волокно называется многомодовым. Кварцевый жгут сравнительно дорогой, из-за большого количества волокон в жгуте, но зато он имеет большую световую прозрачность [2], следовательно, малое затухание при прохождении светового потока (0,2-5 дБ/км). В устройстве может использоваться и полимерное оптоволокно (ПОВ). Однако ПОВ имеет значительно большее затухание света (100-500 дБ/км), но обладает хорошей гибкостью. Поэтому ПОВ изготавливают значительно большего диаметра, до 3 мм. [3]
Рассеивающая линза является стандартной деталью, поэтому на рисунке она не изображена. Оптоволоконное осветительное устройство, по сути, представляет выносное окно, роль которого выполняет неподвижный концентратор, с последующей транспортировкой света в освещаемое помещение по оптоволоконному кабелю.
Надежность данного осветительного устройства очень высока, поскольку оно не содержит подвижных деталей, за исключением блока сезонной коррекции. Этот блок изменяет угол места концентратора в диапазоне, всего от 0 до 0,5 градусов/сутки (в данном изобретении не рассматривается). Вес концентратора, ветровая нагрузка на него, и расход материала при изготовлении, не велики, в виду того, что применены пустотелые детали, выполненные из медицинского пластика, методом горячей штамповки. Внешний купол концентратора может в диаметре достигать 3 м, при его толщине 3-5 мм. В городе Сочи с такого концентратора можно получить в полдень до 3 кВт солнечной энергии. Для освещения темных помещений в стандартной квартире достаточно концентратора с диаметром 40-50 см.
При хорошей прозрачности, детали такого осветительного устройства практически не нагреваются. Эксперименты показали, что при освещении ванной комнаты (Приложение 6), рассеивающая стеклянная линза нагревалась всего на 0,4°C, а оптоволоконный жгут был теплее окружающего воздуха всего на 0,1°C. В данном эксперименте использовался концентратор с диаметром 20 см, и приемной площадью всего 70 см2, этим и объясняется не высокая освещенность помещения. В эксперименте использовалось оптическое полимерное волокно фоконного типа из полиметилметакрилата (ПММА) с диаметром 1 мм, и длиной 10 м. Данное оптическое волокно не имело защитного покрытия, и поэтому светилось в темноте. Эксперимент проводился в ясную солнечную погоду в мае месяце, в полдень, в Москве. Цифровые значения физических величин, полученные при проведении эксперимента, хорошо согласуются с уже известными энергетическими величинами. [4] Результаты проведенных экспериментов дают основание утверждать, что заявляемое устройство найдет широкое применение, поскольку обладает рядом существенных преимуществ, по сравнению с существующими осветительными устройствами.
Розничная цена таких простых и надежных осветительных устройств, при их массовом производстве может быть меньше, чем цена аналога (гибридного устройства, приложение 3), в 100-200 раз. Расчет показал, что цена устройств, при массовом их производстве, будет находиться в пределах 5-15 тыс.руб./шт. Срок службы устройства ограничен только временем сохранения прозрачности деталей, и зависит от оптических свойств используемых материалов. Он на несколько порядков превышает срок службы газоразрядных ламп и тем более, ламп накаливания.
Легко прогнозируется большой гарантированный спрос на эту недорогую и нужную продукцию (Приложение 7). Тираж вполне может достичь миллионов оптоволоконных осветительных устройств в год. Фокусирующий блок (концентратор) можно изготовить в виде неразъемной, литой, цельной конструкции, применяя технологию, подобную той, что используется при изготовлении пластиковых канистр для воды.
Используемые источники информации
1. http://altenergiva.ru/sun/sroki-okupaemosti-solnechnyx-batarej.html#h2_1
2. http://studopedia.ru/4_137359_zatuhanie-v-opticheskom-volokne.html
3. http://www.pofcentre.ru/
4. http://al-vo.ru/o-zhizni/solnechnava-energiya.html

Claims (1)

  1. Солнечное оптоволоконное осветительное устройство, содержащее концентратор, оптоволоконный жгут, рассеивающую линзу, отличающееся тем, что неподвижный концентратор с оптическим способом наведения светового потока содержит цилиндрическую сужающую линзу Френеля на внутренней поверхности прозрачного куполообразного корпуса, в фокусе которой расположен второй прозрачный купол с цилиндрической расширяющей линзой Френеля, на третьем внутреннем прозрачном куполе имеются несимметричные цилиндрические полосковые линзы Френеля, плоскость фокусировки которых перпендикулярна плоскости фокусировки двух предыдущих линз, и полосковые сужающие линзы дополнительно обладают постепенно изменяющимися углами преломления светового потока, каждый из которых соответствует каждому положению солнца на небосводе в течение дня.
RU2016148779A 2016-12-12 2016-12-12 Оптоволоконное осветительное устройство с оптическим способом слежения неподвижного концентратора за солнцем RU2676819C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016148779A RU2676819C2 (ru) 2016-12-12 2016-12-12 Оптоволоконное осветительное устройство с оптическим способом слежения неподвижного концентратора за солнцем

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016148779A RU2676819C2 (ru) 2016-12-12 2016-12-12 Оптоволоконное осветительное устройство с оптическим способом слежения неподвижного концентратора за солнцем

Publications (3)

Publication Number Publication Date
RU2016148779A RU2016148779A (ru) 2018-06-13
RU2016148779A3 RU2016148779A3 (ru) 2018-09-28
RU2676819C2 true RU2676819C2 (ru) 2019-01-11

Family

ID=62619290

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016148779A RU2676819C2 (ru) 2016-12-12 2016-12-12 Оптоволоконное осветительное устройство с оптическим способом слежения неподвижного концентратора за солнцем

Country Status (1)

Country Link
RU (1) RU2676819C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2728330C1 (ru) * 2019-12-16 2020-07-29 Общество с ограниченной ответственностью "СЕНС" Оптоволоконное осветительное и нагревательное устройство с оптическим способом слежения неподвижного концентратора за солнцем

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201806159PA (en) * 2018-07-18 2020-02-27 Kong Mun Chew Angled Solar Refracting Surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2137978C1 (ru) * 1998-03-26 1999-09-20 Открытое акционерное общество "ЛОМО" Осветительное устройство с несимметричным распределением светового потока относительно оптической оси
US20100175685A1 (en) * 2008-07-14 2010-07-15 Robert Owen Campbell Advanced Tracking Concentrator Employing Rotating Input Arrangement and Method
RU2403510C1 (ru) * 2009-07-06 2010-11-10 Государственное Научное Учреждение "Институт Физики Имени Б.И. Степанова Национальной Академии Наук Беларуси" Голографический концентратор солнечной энергии
RU102747U1 (ru) * 2010-09-28 2011-03-10 Сергей Яковлевич Самохвалов Солнечное оптоволоконное осветительное устройство
US20120255540A1 (en) * 2011-04-07 2012-10-11 Hutchin Richard A Sun tracking solar concentrator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2137978C1 (ru) * 1998-03-26 1999-09-20 Открытое акционерное общество "ЛОМО" Осветительное устройство с несимметричным распределением светового потока относительно оптической оси
US20100175685A1 (en) * 2008-07-14 2010-07-15 Robert Owen Campbell Advanced Tracking Concentrator Employing Rotating Input Arrangement and Method
RU2403510C1 (ru) * 2009-07-06 2010-11-10 Государственное Научное Учреждение "Институт Физики Имени Б.И. Степанова Национальной Академии Наук Беларуси" Голографический концентратор солнечной энергии
RU102747U1 (ru) * 2010-09-28 2011-03-10 Сергей Яковлевич Самохвалов Солнечное оптоволоконное осветительное устройство
US20120255540A1 (en) * 2011-04-07 2012-10-11 Hutchin Richard A Sun tracking solar concentrator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2728330C1 (ru) * 2019-12-16 2020-07-29 Общество с ограниченной ответственностью "СЕНС" Оптоволоконное осветительное и нагревательное устройство с оптическим способом слежения неподвижного концентратора за солнцем

Also Published As

Publication number Publication date
RU2016148779A3 (ru) 2018-09-28
RU2016148779A (ru) 2018-06-13

Similar Documents

Publication Publication Date Title
US4389085A (en) Lighting system utilizing the sunlight
Chong et al. Design and construction of active daylighting system using two-stage non-imaging solar concentrator
RU102747U1 (ru) Солнечное оптоволоконное осветительное устройство
Obradovic et al. Daylight transport systems for buildings at high latitudes
Malet-Damour et al. Technological review of tubular daylight guide system from 1982 to 2020
Ullah Fiber-based daylighting system using trough collector for uniform illumination
RU2676819C2 (ru) Оптоволоконное осветительное устройство с оптическим способом слежения неподвижного концентратора за солнцем
RU2670360C1 (ru) Неподвижный каскадный линзовый концентратор солнечного излучения с оптическим способом наведения
RU2468288C1 (ru) Солнечное самонаводящееся оптоволоконное осветительное устройство
Ullah Heliostats daylighting system for multi-floor buildings
Li et al. An optimal design analysis of a novel parabolic trough lighting and thermal system
JP2012225611A (ja) 太陽光集光装置および太陽エネルギー利用システム
Yin et al. A spectral splitting planar solar concentrator with a linear compound parabolic lightguide for optical fiber daylighting
Abdul-Rahman et al. Limitations in current day lighting related solar concentration devices: A critical review
CN205191484U (zh) 一种导光管采光装置
André et al. Daylighting by optical fiber
Ullah et al. Concept of solar tower for daylighting in multi-floor buildings
RU2728330C1 (ru) Оптоволоконное осветительное и нагревательное устройство с оптическим способом слежения неподвижного концентратора за солнцем
Couture et al. Improving passive solar collector for fiber optic lighting
RU2483242C2 (ru) Устройство солнечного освещения "гелиолампа"
RU2739167C1 (ru) Неподвижный концентратор солнечного излучения
RU2659319C1 (ru) Неподвижный концентратор солнечного излучения с оптическим способом наведения
KR100384277B1 (ko) 프레넬 및 프리즘 렌즈를 이용한 태양광 집광 자연 채광조명 장치
Mani et al. Energy saving hybrid solar lighting system model for small houses
CN103822166A (zh) 一种反射式屋顶太阳光照明***

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190122