RU2668185C2 - Узел турбомашины - Google Patents

Узел турбомашины Download PDF

Info

Publication number
RU2668185C2
RU2668185C2 RU2016135342A RU2016135342A RU2668185C2 RU 2668185 C2 RU2668185 C2 RU 2668185C2 RU 2016135342 A RU2016135342 A RU 2016135342A RU 2016135342 A RU2016135342 A RU 2016135342A RU 2668185 C2 RU2668185 C2 RU 2668185C2
Authority
RU
Russia
Prior art keywords
shaft
turbomachine
radial
compressor
expander
Prior art date
Application number
RU2016135342A
Other languages
English (en)
Other versions
RU2016135342A (ru
RU2016135342A3 (ru
Inventor
Маттео БЕРТИ
ТУРКО Паоло ДЕЛЬ
Маттео ДАЛЛЬ'АРА
ДЕЛЬ ГРЕКО Альберто СКОТТИ
Original Assignee
Нуово Пиньоне СРЛ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Нуово Пиньоне СРЛ filed Critical Нуово Пиньоне СРЛ
Publication of RU2016135342A publication Critical patent/RU2016135342A/ru
Publication of RU2016135342A3 publication Critical patent/RU2016135342A3/ru
Application granted granted Critical
Publication of RU2668185C2 publication Critical patent/RU2668185C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K5/00Plants characterised by use of means for storing steam in an alkali to increase steam pressure, e.g. of Honigmann or Koenemann type
    • F01K5/02Plants characterised by use of means for storing steam in an alkali to increase steam pressure, e.g. of Honigmann or Koenemann type used in regenerative installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Изобретение относится к узлу турбомашины, в частности к интегральному узлу турбокомпрессора-турбодетандера. Узел турбомашины содержит: вал, радиальный газовый детандер, удерживаемый на валу между первым и вторым подшипником и компрессор, удерживаемый на валу в консольном положении рядом с одним из упомянутых подшипников, при этом компрессор содержит множество подвижных входных сопел, а радиальный газовый детандер содержит множество подвижных направляющих лопаток. Изобретение направлено на повышение производительности установки. 9 з.п. ф-лы, 3 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к узлу турбомашины, в частности к интегральному узлу турбокомпрессора-турбодетандера.
УРОВЕНЬ ТЕХНИКИ
Турбодетандеры широко используются для промышленного охлаждения, переработки нефти и газа и в низкотемпературных процессах. В некоторых известных применениях турбодетандеры используются в органических циклах Ренкина (organic Rankine cycle) (ORC).
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Когда органический цикл Ренкина используется в применении к механическому приводу, турбодетандер обычно соединяют с турбокомпрессором, который используется для сжатия технологического газа. Соединение требует, чтобы технологический газ в цикле Ренкина был отделен от технологического газа, циркулирующего в турбокомпрессоре. Кроме того, турбодетандер и турбокомпрессор обычно работают на различных скоростях. По этим причинам турбокомпрессор нуждается в высокоскоростном вале, который соединяется с валом турбодетандера с помощью редуктора или гидравлической муфты, способных менять передаточное число. Два раздельных вала позволяют использовать два газа разделенными, а редуктор (или гидравлическая муфта) позволяет скорости турбокомпрессора отличаться от скорости турбодетандера.
Основным недостатком этого решения является то, что крепления двух валов и соединение между ними обычно подразумевают большое количество подшипников, уплотнений, сложных элементов (например, зубчатых колес) и вспомогательных элементов, тем самым увеличивая потери и стоимость.
Конструкция редуктора также ограничена с точки зрения мощности из-за неизбежных ограничений по мощности и размеру редуктора.
Следовательно, желательно модифицировать известные узлы турбокомпрессора-турбодетандера для того, чтобы достичь меньших потерь и затрат путем снижения общей сложности узла, в частности с точки зрения общего количества компонентов без ухудшения общей производительности узла.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В соответствии с первым вариантом осуществления настоящее изобретение достигает поставленной цели путем разработки узла турбомашины, состоящего из:
- вала,
- радиального газового детандера, удерживаемого на валу между по меньшей мере одним первым подшипником и по меньшей мере вторым подшипником, и
- компрессора, удерживаемого на этом валу в консольном положении рядом с одним или другим из упомянутых первого и второго подшипников,
- упомянутый компрессор включает в себя множество подвижных входных сопел и упомянутый радиальный газовый детандер включает в себя множество подвижных направляющих лопаток.
Подвижные сопла и лопатки используются для регулирования общего процесса и получения максимальной эффективности машины в любых условиях эксплуатации. Это может быть сделано независимо для детандера и компрессора, тем самым давая возможность компрессору и детандеру работать с одинаковой скоростью, а значит, преодолевая необходимость наличия редуктора или гидравлической муфты между ними.
Другие преимущества настоящего изобретения достигаются с использованием узла турбомашины в соответствии с зависимыми пунктами формулы изобретения. Например, вставка уплотнения на валу между рабочими колесами детандера и компрессора позволяет им использовать два разных газа.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Другие особенности и преимущества настоящего изобретения станут очевидными из последующего описания вариантов осуществления изобретения, рассматриваемых вместе с последующими чертежами, на которых:
- Фиг. 1 представляет вид сбоку в разрезе узла турбомашины в соответствии с настоящим изобретением;
- Фиг. 2 представляет схематическое изображение турбомашины, показанной на фиг. 1;
- Фиг. 3 представляет схематическое изображение возможного варианта в соответствии с настоящим изобретением для турбомашины, показанной на фиг. 1.
ПОДРОБНОЕ ОПИСАНИЕ НЕКОТОРЫХ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Со ссылкой на прилагаемые чертежи, узел 1 турбомашины содержит:
- вал 10, имеющий ось Y вращения,
- радиальный газовый детандер 2, удерживаемый на валу 10, в консольном положении.
В типичном варианте осуществления настоящего изобретения радиальный газовый детандер 2 вводится в состав органического цикла Ренкина, использующего подходящий органический газ, например циклопентан. Однако настоящее изобретение не ограничивается органическим циклом Ренкина или конкретным газом, с которым работает радиальный газовый детандер 2.
Турбодетандер 2 содержит первую ступень 2а высокого давления и вторую ступень 2b низкого давления. Рабочее вещество поступает в первую ступень 2а высокого давления турбодетандера 2, выходит из первой ступени 2а турбодетандера, чтобы пройти по межступенчатому пути 16 на вход второй ступени 2b низкого давления турбодетандера 2. Путь 16 содержит множество распорок 17 для направления газового потока из первой ступени 2а во вторую ступень 2b с целью оптимизации эффективности.
Со ссылкой на фиг. 1 и 2, рабочий газ поступает в ступень 2а высокого давления радиально, течет через первый набор подвижных входных направляющих лопаток 5а и затем через рабочее колесо ступени 2а высокого давления. Рабочий газ выходит из ступени 2а высокого давления аксиально и направляется с помощью межступенчатого пути 16 для поступления в ступень 2b низкого давления радиально после протекания через второй набор подвижных входных направляющих лопаток 5b. Рабочий газ выходит из ступени 2b низкого давления аксиально и направляется наружу турбодетандера 2 с помощью аксиального выхода 8.
В качестве альтернативы (фиг. 3), рабочий газ выходит из ступени 2b низкого давления аксиально и направляется наружу турбодетандера 2 с помощью радиального выхода 9.
В соответствии с различными вариантами осуществления настоящего изобретения (не показаны) турбодетандер 2 является одноступенчатым турбодетандером или многоступенчатым турбодетандером, имеющим три или более ступеней.
В соответствии с различными вариантами осуществления настоящего изобретения (не показаны) турбодетандер 2 представляет собой многоступенчатый турбодетандер, в котором некоторые ступени содержат подвижные входные направляющие лопатки, а другие ступени содержат фиксированные входные направляющие лопатки.
Во всех возможных вариантах осуществления настоящего изобретения по меньшей мере одна из ступеней турбодетандера содержит подвижный набор входных направляющих лопаток.
Радиальный газовый детандер 2 удерживается на валу 10 между первой группой подшипников 11, примыкающей к ступени 2а высокого давления, и второй группой подшипников 12, примыкающей к ступени 2b низкого давления. Группы подшипников 11, 12 являются традиционными и известными в данной области техники, и каждый из них представляет собой один или более подшипников магнитного, газового типа или подшипников со смазкой, или их комбинацию.
Со ссылкой на фиг. 1 и 2, центробежный компрессор 3 удерживается на валу 10 в консольном положении, примыкающем к первой группе подшипников 11.
В качестве альтернативы (фиг. 3), центробежный компрессор 3 удерживается на вал 10 в консольном положении, примыкающем ко второй группе подшипников 12.
В обоих вариантах осуществления на фиг. 2 и 3 рабочий газ поступает в турбокомпрессор 3 аксиально, течет через множество подвижных входных сопел 20, затем через рабочее колесо и, наконец, выходит из турбокомпрессора 3 радиально.
В общем, в соответствии с настоящим изобретением, множество подвижных входных сопел 20 является опциональным, и возможны варианты осуществления, в которых они отсутствуют.
Настоящее изобретение, однако, не ограничено конкретным видом турбокомпрессора, например, двухпоточный компрессор может быть использован вместо однопоточного компрессора.
Центробежный компрессор 3 обрабатывает, например, жидкий хладагент в системе СПГ (сжиженных природных газов) или газ, подаваемый в трубопровод.
В качестве еще одного альтернативного варианта осуществления (не показан) узел 1 турбомашины, когда турбодетандер 2 производит больше энергии, чем необходимо одному турбокомпрессору, содержит два консольных турбокомпрессора, соответственно примыкающих к первой и второй группе подшипников 11, 12. В качестве разновидности последнего варианта осуществления узел 1 турбомашины содержит один консольный турбокомпрессор и один консольный электрический генератор, соответственно примыкающие к первой и второй группе подшипников 11, 12.
Во всех вариантах осуществления компрессоры, будучи установленными на одном и том же валу 10 турбодетандера 2, работают с одной и той же скоростью n турбодетандера 2. Значение скорости n может быть постоянным или переменным.
Варианты осуществления на фиг. 2 и 3 могут работать с постоянной скоростью. В таких вариантах осуществления входные направляющие лопатки 5а, 5b и входные сопла 20 дают возможностью изменять рабочую точку турбодетандера 2 и турбокомпрессора 3, соответственно, для того, чтобы изменять, например, давление на входе/выходе или массовый расход каждого газа в турбодетандере 2 и в турбокомпрессоре 3. Рабочие точки турбодетандера 2 и турбокомпрессора 3 изменяются, следовательно, независимо друг от друга, без необходимости дифференцировать соответствующие скорости, тем самым давая возможность использовать один вал как для турбодетандера 2, так и для турбокомпрессора 3.
В других вариантах осуществления (не показаны), где отсутствуют подвижные входные сопла 20, рабочая точка турбокомпрессора может быть изменена посредством изменения скорости n вращения вала 10, в то время как рабочая точка турбодетандера 2 изменяется за счет использования входных направляющих лопаток 5а, 5b, соответственно. Рабочие точки турбодетандера 2 и турбокомпрессора 3, следовательно, изменяются независимо также в этих вариантах осуществления.
Между радиальным газовым турбодетандером 2 и турбокомпрессором 3 узел 1 турбомашины содержит два уплотнения 15, установленных на валу 10 в соответствующем положении, примыкающем к рабочим колесам турбокомпрессора ступени турбодетандера, которая находится ближе к турбокомпрессору (ступень высокого давления в варианте осуществления на фиг. 2, ступень низкого давления в варианте осуществления на фиг. 3). Уплотнения 15, которые являются традиционными и известными в данной области, позволяют отделять друг от друга два газа, соответственно протекающих в турбодетандере 2 и турбокомпрессоре 3, тем самым давая возможность использовать разные газы в турбодетандере 2 и в турбокомпрессоре 3.
Со ссылкой на фиг. 2 и 3, на аксиальном конце вала 10, напротив турбокомпрессора 3, узел 1 турбомашины дополнительно содержит балансировочный цилиндр 19 для компенсации суммы аксиальных усилий, создаваемых при работе турбодетандером 2 и турбокомпрессором.
Хотя раскрытые варианты осуществления изобретения, описанные в настоящем документе, были показаны на чертежах и подробно описаны выше с деталями в отношении нескольких примеров осуществления, для специалистов в данной области техники будет очевидно, что возможны многочисленные модификации, изменения или исключения без существенного отхода от принципов и концепций изобретения, изложенных в настоящем документе, и преимуществ изобретения, выполненного согласно приложенной формуле изобретения. Следовательно, должный объем раскрытого изобретения следует определять только с помощью самой широкой интерпретации приложенной формулы изобретения таким образом, чтобы охватывать все такие модификации, изменения и исключения.

Claims (14)

1. Узел (1) турбомашины, содержащий:
вал (10),
радиальный газовый детандер (2), удерживаемый на валу (10) между по меньшей мере одним первым подшипником (11) и по меньшей мере одним вторым подшипником, и
компрессор (3), удерживаемый на валу (10) в консольном положении рядом с одним или другим из упомянутых первого и второго подшипников (11, 12),
при этом упомянутый радиальный газовый детандер (2) содержит множество подвижных направляющих лопаток (5а, 5b).
2. Узел (1) турбомашины по п. 1, в котором упомянутый компрессор (3) содержит множество подвижных входных сопел (20).
3. Узел (1) турбомашины по п. 1 или 2, в котором радиальный газовый детандер (2) содержит по меньшей две радиальные ступени (2а, 2b).
4. Узел (1) турбомашины по п. 3, в котором по меньшей мере одна из радиальных ступеней (2а, b) содержит подвижный набор входных направляющих лопаток (5а, 5b).
5. Узел (1) турбомашины по п. 4, в котором каждая радиальная ступень (2а, 2b) содержит соответствующий подвижный набор входных направляющих лопаток (5а, 5b) и каждый набор приводится в действие независимо от другого набора.
6. Узел (1) турбомашины по любому предыдущему пункту, в котором на упомянутом валу (10) между компрессором (3) и радиальным газовым детандером (2) имеется по меньшей мере уплотнение (15).
7. Узел (1) турбомашины по любому предыдущему пункту, в котором первый технологический газ сжимается в упомянутом компрессоре (3), а второй технологический газ расширяется в упомянутом радиальном газовом детандере (2).
8. Узел (1) турбомашины по любому предыдущему пункту, в котором упомянутый радиальный газовый детандер (2) является частью органического цикла Ренкина.
9. Узел (1) турбомашины по любому предыдущему пункту, в котором упомянутый вал (10) работает с переменной скоростью.
10. Узел (1) турбомашины по любому из пп. 1-8, в котором упомянутый вал (10) работает с постоянной скоростью.
RU2016135342A 2014-03-11 2015-03-09 Узел турбомашины RU2668185C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITCO2014A000004 2014-03-11
ITCO20140004 2014-03-11
PCT/EP2015/054848 WO2015135878A1 (en) 2014-03-11 2015-03-09 Turbomachine assembly

Publications (3)

Publication Number Publication Date
RU2016135342A RU2016135342A (ru) 2018-04-13
RU2016135342A3 RU2016135342A3 (ru) 2018-08-06
RU2668185C2 true RU2668185C2 (ru) 2018-09-26

Family

ID=50630869

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016135342A RU2668185C2 (ru) 2014-03-11 2015-03-09 Узел турбомашины

Country Status (6)

Country Link
US (1) US11067096B2 (ru)
EP (1) EP3117079B1 (ru)
JP (1) JP6736469B2 (ru)
CN (1) CN106062316B (ru)
RU (1) RU2668185C2 (ru)
WO (1) WO2015135878A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727945C1 (ru) * 2019-12-12 2020-07-27 Общество С Ограниченной Ответственностью "Аэрогаз" Турбодетандерная энергетическая установка

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6762948B2 (ja) * 2015-02-09 2020-09-30 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータNuovo Pignone Tecnologie S.R.L. ターボエキスパンダ発電装置および発電方法
DE102016107341A1 (de) * 2016-04-20 2017-10-26 Atlas Copco Energas Gmbh Turbomaschinenanordnung
US10823191B2 (en) * 2018-03-15 2020-11-03 General Electric Company Gas turbine engine arrangement with ultra high pressure compressor
JP7493346B2 (ja) * 2020-02-03 2024-05-31 三菱重工コンプレッサ株式会社 回転機械
CN113417826B (zh) * 2021-07-02 2022-10-04 青岛海尔能源动力有限公司 一种基于动态矩阵的空压机自动控制装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3289436A (en) * 1964-04-29 1966-12-06 Hawker Siddeley Dynamics Ltd Air condition systems
US20060086090A1 (en) * 2004-10-21 2006-04-27 Kilkenny Jonathan P Vibration limiter for coaxial shafts and compound turbocharger using same
EP2400117A1 (en) * 2010-06-24 2011-12-28 Nuovo Pignone S.p.A. Turboexpander and method for using moveable inlet guide vanes at compressor inlet

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1276967B (de) * 1965-11-06 1968-09-05 Stroemungsmasch Veb Klein-Gasturbinentriebwerk
US3966362A (en) * 1973-08-24 1976-06-29 Airco, Inc. Process air compression system
CH578068A5 (ru) 1974-05-24 1976-07-30 Sulzer Ag
DE2731387A1 (de) * 1976-07-19 1978-01-26 Hydragon Corp Gasturbinen-kraftmaschine mit abgas-rezirkulation
JPS62243997A (ja) * 1986-04-15 1987-10-24 Ebara Corp 遠心羽根車翼端隙間制御装置
US5014518A (en) * 1989-06-23 1991-05-14 Allied-Signal Inc. ECS with advanced air cycle machine
US7553127B2 (en) * 2006-06-13 2009-06-30 Honeywell International Inc. Variable nozzle device
DE102006027738A1 (de) * 2006-06-16 2007-12-20 Daimlerchrysler Ag Brennkraftmaschine mit einem Abgasturbolader und einer Compound-Turbine
JP5058606B2 (ja) 2007-01-10 2012-10-24 文化シヤッター株式会社 複合シャッター
JP2011132877A (ja) * 2009-12-24 2011-07-07 Mitsubishi Heavy Ind Ltd 多段ラジアルタービン
US8878372B2 (en) * 2010-01-15 2014-11-04 Dresser-Rand Company Integral compressor-expander
JP2013526672A (ja) * 2010-05-14 2013-06-24 ボーグワーナー インコーポレーテッド 排気ガスターボチャージャ
JP2012002140A (ja) * 2010-06-17 2012-01-05 Ihi Corp タービン及び過給機
IT1406472B1 (it) * 2010-12-22 2014-02-28 Nuovo Pignone Spa Prova per similitudine di prestazione di compressore
FR2976018B1 (fr) * 2011-06-01 2014-12-05 Turbomeca Distributeur de turbine radiale a calage variable, en particulier de turbine de source de puissance auxiliaire
DE102012215412A1 (de) * 2012-08-30 2014-03-06 Rolls-Royce Deutschland Ltd & Co Kg Baugruppe einer Axialturbomaschine und Verfahren zur Herstellung einer solchen Baugruppe
ITFI20120196A1 (it) * 2012-10-01 2014-04-02 Nuovo Pignone Srl "a turboexpander and driven turbomachine system"

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3289436A (en) * 1964-04-29 1966-12-06 Hawker Siddeley Dynamics Ltd Air condition systems
US20060086090A1 (en) * 2004-10-21 2006-04-27 Kilkenny Jonathan P Vibration limiter for coaxial shafts and compound turbocharger using same
EP2400117A1 (en) * 2010-06-24 2011-12-28 Nuovo Pignone S.p.A. Turboexpander and method for using moveable inlet guide vanes at compressor inlet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2727945C1 (ru) * 2019-12-12 2020-07-27 Общество С Ограниченной Ответственностью "Аэрогаз" Турбодетандерная энергетическая установка

Also Published As

Publication number Publication date
CN106062316B (zh) 2019-10-11
RU2016135342A (ru) 2018-04-13
RU2016135342A3 (ru) 2018-08-06
EP3117079A1 (en) 2017-01-18
US11067096B2 (en) 2021-07-20
US20170023011A1 (en) 2017-01-26
JP6736469B2 (ja) 2020-08-05
EP3117079B1 (en) 2019-12-18
WO2015135878A1 (en) 2015-09-17
JP2017517664A (ja) 2017-06-29
CN106062316A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
RU2668185C2 (ru) Узел турбомашины
Weiß Volumetric expander versus turbine–which is the better choice for small ORC plants
US20210102552A1 (en) Axi-centrifugal compressor with variable outlet guide vanes
US9726047B2 (en) Method and turbine for expanding an organic operating fluid in a rankine cycle
CN107429567B (zh) 涡轮机、有机朗肯循环或卡林那循环或水蒸气循环设备
EP2737179B1 (en) Centrifugal impeller and turbomachine
JP6087351B2 (ja) 多段遠心ターボ機械
JP2016050494A5 (ru)
WO2016160393A1 (en) Diffuser having multiple rows of diffuser vanes with different solidity
EP3155225B1 (en) Turbine and method for expanding an operating fluid
RU181041U1 (ru) Силовая турбина с двухступенчатым ротором
RU164736U1 (ru) Силовая роторная турбина
Larralde et al. Selection of gas compressors: part 6
RU2311565C1 (ru) Высоконапорный компрессор газотурбинного двигателя
CN112236580B (zh) 航改式气体涡轮引擎和操作航改式气体涡轮引擎的方法
US20220154638A1 (en) Multistage compressor-expander turbomachine configuration
Tibrewala et al. Flow analysis of upstream fluid flow using simulation for different positions of optimized inlet guide vane in centrifugal air compressor
WO2024083762A1 (en) Pressure compounded radial flow re-entry turbine
RU2253759C1 (ru) Управляемое рабочее колесо компрессора
RU2243418C2 (ru) Осевой многоступенчатый компрессор газотурбинного двигателя
RU2243419C2 (ru) Высоконапорный компрессор газотурбинного двигателя
RU2654304C2 (ru) Многоступенчатая газовая силовая турбина с консольным расположением
Cich et al. DESIGN OF A SUPERCRITICAL CO
RU2391516C2 (ru) Парогазовая установка
Schobeiri et al. Introduction, Turbomachinery, Applications, Types