RU2657484C1 - Сейсмостойкое здание со стенами блочной конструкции - Google Patents

Сейсмостойкое здание со стенами блочной конструкции Download PDF

Info

Publication number
RU2657484C1
RU2657484C1 RU2017118962A RU2017118962A RU2657484C1 RU 2657484 C1 RU2657484 C1 RU 2657484C1 RU 2017118962 A RU2017118962 A RU 2017118962A RU 2017118962 A RU2017118962 A RU 2017118962A RU 2657484 C1 RU2657484 C1 RU 2657484C1
Authority
RU
Russia
Prior art keywords
vibration
cylindrical
elastic
base plate
cavities
Prior art date
Application number
RU2017118962A
Other languages
English (en)
Inventor
Олег Савельевич Кочетов
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2017118962A priority Critical patent/RU2657484C1/ru
Application granted granted Critical
Publication of RU2657484C1 publication Critical patent/RU2657484C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

Изобретение относится к области строительства, а именно к реконструкции, восстановлению или возведению сейсмостойких зданий и сооружений. Технический результат - усиление конструкций зданий или сооружений, снижение их уязвимости при воздействии ветровых нагрузок и землетрясений, повышение их сейсмической безопасности, долговечности и остаточного ресурса. Это достигается тем, что в сейсмостойком здании со стенами блочной конструкции, содержащем виброизолированный фундамент, горизонтальные и вертикальные несущие конструкции с системой виброизоляции, внутренние перегородки, кровлю здания, а также дверные и оконные проемы с усилением, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером, упругое основание пола выполнено из жесткого пористого вибропоглощающего материала, например эластомера, или полиуретана со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, в полостях базовой плиты размещены вибродемпфирующие вставки, выполненные в виде цилиндрического демпфирующего элемента, внутренняя полость которого заполнена вибродемпфирующим материалом, а к концам которого жестко присоединены плоские упругие упоры, диаметр которых на 5÷10% меньше диаметра полостей базовой плиты, а длина цилиндрического демпфирующего элемента на 5÷10% меньше длины полостей базовой плиты, при этом после установки вибродемпфирующей вставки упругие упоры заделываются вспененным полимером заподлицо с торцевыми поверхностями базовой плиты. 7 ил.

Description

Изобретение относится к области строительства, а именно к реконструкции, восстановлению или возведению сейсмостойких зданий и сооружений.
Задачей изобретения является усиление существующих зданий и сооружений или возведение усиленных зданий и сооружений с повышенной устойчивостью к воздействиям ветровых нагрузок и землетрясениям за счет размещения в них многослойных виброизолирующих опор, воспринимающих вертикальные нагрузки во время использования и активно воспринимающих горизонтальные нагрузки во время сейсмической активности без необратимых и критических разрушений или с минимальными деформациями, что повышает сейсмическую надежность и безопасность здания или сооружения.
Наиболее близким техническим решением является сейсмостойкое здание, содержащее горизонтальные и вертикальные несущие конструкции, причем в, по меньшей мере, одной несущей вертикальной конструкции выполнен, по крайней мере, один проем, а предпочтительно несколько проемов, в каждом из которых размещена демпферная многослойная виброизолирующая опора, состоящая из верхней и нижней опорных пластин и размещенных между ними чередующихся между собой металлических и эластомерных слоев, причем упомянутые пластины жестко связаны с вертикальной конструкцией посредством соединительных элементов или усиливающих поясов, расположенных в проемах [патент РФ №120447 на полезную модель - прототип].
Недостатком указанных известных технических решений являются: техническая сложность устройства виброизоляторов при высоких уровнях нагружения на вертикальные конструкции (высокие здания) для реконструируемых, восстанавливаемых объектов, а также вновь возводимых опасных, технически сложных и уникальных зданий и сооружений, когда использование предложенных способов недостаточно квалифицированными специалистами может привести к повреждению конструкций, а иногда и к прогрессирующему обрушению целого здания (сооружения) или его части. Кроме того, известные способы установки виброизоляторов отличаются высокой трудоемкостью и сложностью, что делает их экономически неэффективными при использовании для реконструкции и восстановления (сейсмоусиления) существующих зданий и сооружений массовой застройки.
Технически достижимый результат - усиление конструкций зданий или сооружений, снижение их уязвимости при воздействии ветровых нагрузок и землетрясений, повышение их сейсмической безопасности, долговечности и остаточного ресурса.
Это достигается тем, что в сейсмостойком здании со стенами блочной конструкции, содержащем виброизолированный фундамент, горизонтальные и вертикальные несущие конструкции с системой виброизоляции, внутренние перегородки, кровлю здания, а также дверные и оконные проемы с усилением, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером, упругое основание пола выполнено из жесткого пористого вибропоглощающего материала, например эластомера, или полиуретана со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, в полостях базовой плиты размещены вибродемпфирующие вставки, выполненные в виде цилиндрического демпфирующего элемента, внутренняя полость которого заполнена вибродемпфирующим материалом, а к концам которого жестко присоединены плоские упругие упоры, диаметр которых на 5÷40% меньше диаметра полостей базовой плиты, а длина цилиндрического демпфирующего элемента на 5÷40% меньше длины полостей базовой плиты, при этом после установки вибродемпфирующей вставки упругие упоры заделываются вспененным полимером заподлицо с торцевыми поверхностями базовой плиты.
На фиг. 1 изображен общий вид сейсмостойкой конструкции здания со стенами блочной конструкции, на фиг. 2 - разрез междуэтажного перекрытия здания, на фиг. 3 - общий вид вибродемпфирующей вставки в полостях базовой плиты межэтажного перекрытия, на фиг. 4 - общий вид соединительного элемента для блочной замкнутой конструкции, на фиг. 5 и 6 - аксонометрические проекции блоков с пазами и шипами для быстровозводимой сейсмостойкой блочной конструкции стен здания, на фиг. 7 - вариант соединительного элемента блочной конструкции стен здания.
Сейсмостойкое здание со стенами блочной конструкции (фиг. 1) содержит виброизолированный фундамент 1, горизонтальные 3 и вертикальные 2 несущие конструкции с системой виброизоляции, внутренние перегородки 4, кровлю здания 5, а также дверные 6 и оконные 7 проемы с усилением.
Конструкция пола выполнена на упругом основании (фиг. 2) и содержит установочную плиту 8, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите 9 межэтажного перекрытия с полостями 10 через слои вибродемпфирующего материала 11 и гидроизоляционного материала 12 с зазором 13 относительно несущих стен 2 здания. Чтобы обеспечить эффективную виброизоляцию установочной плиты 8 по всем направлениям слои вибродемпфирующего материала 11 и гидроизоляционного материала 12 выполнены с отбортовкой 17, плотно прилегающей к несущим конструкциям стен 2 и базовой несущей плите 9 перекрытия.
Для повышения эффективности виброизоляции и сейсмостойкости здания базовые несущие плиты 9 перекрытия (на фиг. 2 показана плита 9 перекрытия только для одного этажа здания и с одной стороны несущих стен 2) снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов 14 и 15, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов 16, воспринимающих горизонтальные статические и динамические нагрузки.
Сейсмостойкое здание со стенами блочной конструкции работает следующим образом.
При установке виброактивного оборудования на плиту 8, происходит двухкаскадная виброзащита, за счет вибродемпфирующих вкраплений в саму массу плиты 8, а также за счет слоя вибродемпфирующего материала 11, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.
В полостях 10 базовой плиты 9 размещены вибродемпфирующие вставки 19 (фиг. 3), выполненные в виде цилиндрического демпфирующего элемента, внутренняя полость 20 которого заполнена вибродемпфирующим материалом, а к концам которого жестко присоединены плоские упругие упоры 18, диаметр которых на 5÷10% меньше диаметра полостей 10 базовой плиты 9, а длина цилиндрического демпфирующего элемента на 5÷10% меньше длины полостей 10 базовой плиты 9, при этом после установки вибродемпфирующей вставки 19, упругие упоры 18 заделываются вспененным полимером (на чертеже не показано) заподлицо с торцевыми поверхностями базовой плиты 9.
Возможен вариант, когда несущие конструкции стен 2 здания выполнены в виде блочной быстровозводимой сейсмостойкой конструкции (фиг. 4-7).
Блочная быстровозводимая сейсмостойкая конструкция (фиг. 4-7) несущих конструкций стен 2 здания состоит из элементов, выполненных в виде блоков, одни из которых выполнены в виде прямоугольного параллелепипеда 32 с пазами 33, выполненными в плоскости симметрии на четырех гранях параллелепипеда 32 (на фиг. 5 показан один паз, выполненный на одном из оснований параллелепипеда 32). При этом пазы 33 выполнены с цилиндрическими отверстиями 34 под внешний диаметр цилиндрического корпуса 23 соединительного элемента (фиг. 4).
Другие блоки 35 (фиг. 6) блочной быстровозводимой конструкции, которые сопряжены с первыми, выполнены в виде прямоугольного параллелепипеда с шипами 36, выполненными в плоскости симметрии на четырех гранях параллелепипеда 35 (на фиг. 6 показан один шип, выполненный на одном из оснований параллелепипеда 35). При этом шипы 36 выполнены с цилиндрическими отверстиями 37 под внешний диаметр цилиндрического корпуса 23 соединительного элемента (фиг. 6). Поверхности пазов 33 и шипов 36 являются эквидистантными, конгруэнтными и равновеликими и соединяются в блочную быстровозводимую сейсмостойкую конструкцию посредством соединительных элементов.
Каждый соединительный элемент (фиг. 4) для блоков сейсмостойкого сооружения устанавливается в подготовленные отверстия, выполненные в блоках, причем блоки в ряду чередуются: один блок выполнен с шипами по торцам, а другой с пазами, при этом соединение блоков осуществляется посредством соединительных элементов, в заранее подготовленные и соосно расположенные отверстия.
Соединительный элемент (фиг. 4) состоит из двух фланцевых, оппозитно расположенных, и соосных цилиндрических резьбовых втулок 25 и 26, с жестко прикрепленными к их торцевой части установочными дисками 21 и 22, на которых выполнены элементы для резьбового соединения 24 втулок в единый цилиндрический корпус 23, например лыски под ключ (на чертеже не показано).
Соединительный элемент выполнен демпфирующим, состоящим из упругого цилиндрического корпуса 23 (фиг. 4), выполненного из упругого материала, например из упругой пружинной стали, полость которого заполнена демпфирующим материалом, например вибродемпфирующей мастикой типа «ВД-17».
Возможен вариант выполнения (фиг. 4) соединительного элемента с соосным и коаксиально расположенным внутри корпуса 23 цилиндрическим трубчатым демпфирующим элементом 27, состоящим из цилиндрической оболочки с основаниями 28 и 29, выполненной из жесткого упругого вибродемпфирующего материала, например типа «Агат», внутренняя полость 30 которой заполнена демпфирующим материалом, например песком, или вибродемпфирующей мастикой типа «ВД-17». Внутренняя полость 31 соединительного элемента между цилиндрическим корпусом 23 и внешней поверхностью цилиндрической оболочки цилиндрического трубчатого демпфирующего элемента 30, заполнена менее жестким вибродемпфирующим материалом, например полиуретаном.
Возможен вариант выполнения соединительного элемента для блоков сейсмостойкого сооружения, когда жестко прикрепленные к фланцевым оппозитно расположенным цилиндрическим резьбовым втулкам 25 и 26 установочные диски 21 и 22 выполнены комбинированными, состоящими из, по крайней мере, трех слоев: внешние выполнены жесткими, а третий слой, расположенный между ними, выполнен демпфирующим (на чертеже не показано).
Возможен вариант выполнения соединительного элемента (фиг. 7), когда он выполнен демпфирующим, состоящим из упругой цилиндрической обечайки 23, к концам которой посредством резьбы присоединены плоские жесткие упоры 21 и 22, а внутренняя полость заполнена набором, по крайней мере, из двух демпфирующих дисков 38 и 39, закрепленных на упругой оси 41, коаксиально расположенной с цилиндрической обечайкой 23, а между демпфирующими дисками расположена, по крайней мере, одна цилиндрическая винтовая пружина 39. Полость цилиндрической обечайки 23 заполнена вибродемпфирующим материалом, например полиуретаном или строительно-монтажной пеной.
Соединительный элемент для блоков сейсмостойкого сооружения работает следующим образом. При сейсмических колебаниях происходит смещение блоков, соединенных между собой соединительными элементами, что приводит к упругой деформации их упругого цилиндрического корпуса 23, выполненного из упругого материала, полость которого заполнена демпфирующим материалом, что приводит к уменьшению колебаний блоков даже на резонансных режимах сейсмического или вибрационного воздействия. При этом блоки, за счет гашения колебаний соединительными элементами, сохраняют целостность конструкции.

Claims (1)

  1. Сейсмостойкое здание со стенами блочной конструкции, содержащее виброизолированный фундамент, горизонтальные и вертикальные несущие конструкции с системой виброизоляции, внутренние перегородки, кровлю здания, а также дверные и оконные проемы с усилением, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером, упругое основание пола выполнено из жесткого пористого вибропоглощающего материала, например эластомера, или полиуретана со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, отличающееся тем, что в полостях базовой плиты размещены вибродемпфирующие вставки, выполненные в виде цилиндрического демпфирующего элемента, внутренняя полость которого заполнена вибродемпфирующим материалом, а к концам которого жестко присоединены плоские упругие упоры, диаметр которых на 5÷10% меньше диаметра полостей базовой плиты, а длина цилиндрического демпфирующего элемента на 5÷10% меньше длины полостей базовой плиты, при этом после установки вибродемпфирующей вставки упругие упоры заделываются вспененным полимером заподлицо с торцевыми поверхностями базовой плиты, при этом несущие конструкции стен здания выполнены в виде блочной быстровозводимой сейсмостойкой конструкции, содержащей, соединенную в единую конструкцию систему блоков, и соединительных элементов, при этом одни из блоков выполнены в виде прямоугольного параллелепипеда с пазами, выполненными на четырех гранях параллелепипеда, в плоскости его симметрии, при этом пазы выполнены с цилиндрическими отверстиями под внешний диаметр цилиндрического корпуса соединительного элемента, а другие блоки сопряжены с первыми, и выполнены в виде прямоугольного параллелепипеда с шипами, выполненными на четырех гранях параллелепипеда, при этом шипы выполнены с цилиндрическими отверстиями под внешний диаметр цилиндрического корпуса соединительного элемента, причем поверхности пазов и шипов являются эквидистантными, конгруэнтными и равновеликими и соединяются в блочную быстровозводимую конструкцию посредством соединительных элементов, а соединительный элемент выполнен демпфирующим, состоящим из упругой цилиндрической обечайки, к концам которой посредством резьбы присоединены плоские жесткие упоры, а внутренняя полость заполнена набором, по крайней мере, из двух демпфирующих дисков, закрепленных на упругой оси, коаксиально расположенной с цилиндрической обечайкой, а между демпфирующими дисками расположена, по крайней мере одна, цилиндрическая винтовая пружина, при этом полость цилиндрической обечайки заполнена вибродемпфирующим материалом, например полиуретаном или строительно-монтажной пеной, или соединительный элемент для блоков сейсмостойкого сооружения состоит из упругого цилиндрического корпуса с закрепленными по его торцам плоскими жесткими упорами, при этом полость цилиндрического корпуса заполнена демпфирующим материалом, а корпус выполнен из двух фланцевых оппозитно расположенных и соосных цилиндрических резьбовых втулок с жестко прикрепленными к их торцевой части плоскими жесткими упорами, на которых выполнены элементы для резьбового соединения втулок в единый цилиндрический корпус, и выполнен из упругого материала, например из упругой пружинной стали, полость которого заполнена демпфирующим материалом, например вибродемпфирующей мастикой типа «ВД-17», или внутри цилиндрического корпуса соединительного элемента соосно и коаксиально ему расположен цилиндрический трубчатый демпфирующий элемент, состоящий из цилиндрической обечайки с основаниями, выполненной из жесткого упругого вибродемпфирующего материала, например типа «Агат», внутренняя полость которой заполнена демпфирующим материалом, например песком, или вибродемпфирующей мастикой типа «ВД-17», при этом внутренняя полость соединительного элемента между цилиндрическим корпусом и внешней поверхностью цилиндрической обечайки цилиндрического трубчатого демпфирующего элемента, заполнена менее жестким вибродемпфирующим материалом, например полиуретаном.
RU2017118962A 2017-05-31 2017-05-31 Сейсмостойкое здание со стенами блочной конструкции RU2657484C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017118962A RU2657484C1 (ru) 2017-05-31 2017-05-31 Сейсмостойкое здание со стенами блочной конструкции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017118962A RU2657484C1 (ru) 2017-05-31 2017-05-31 Сейсмостойкое здание со стенами блочной конструкции

Publications (1)

Publication Number Publication Date
RU2657484C1 true RU2657484C1 (ru) 2018-06-14

Family

ID=62620026

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017118962A RU2657484C1 (ru) 2017-05-31 2017-05-31 Сейсмостойкое здание со стенами блочной конструкции

Country Status (1)

Country Link
RU (1) RU2657484C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2105613A (en) * 1935-06-17 1938-01-18 Emmett V Poston Fabricated brick construction
RU2045646C1 (ru) * 1992-10-26 1995-10-10 Зональный научно-исследовательский и проектный институт типового и экспериментального проектирования жилых и общественных зданий в г.Новосибирске Сейсмостойкое здание
RU2147655C1 (ru) * 1999-10-12 2000-04-20 Закрытое акционерное общество "Матек" Соединительный элемент
RU2537421C2 (ru) * 2013-02-01 2015-01-10 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) Сейсмостойкая кирпичная стеновая панель
RU2602550C1 (ru) * 2015-10-27 2016-11-20 Олег Савельевич Кочетов Сейсмостойкое здание
RU2610011C1 (ru) * 2015-12-25 2017-02-07 Олег Савельевич Кочетов Блочная быстровозводимая сейсмостойкая конструкция кочетова

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2105613A (en) * 1935-06-17 1938-01-18 Emmett V Poston Fabricated brick construction
RU2045646C1 (ru) * 1992-10-26 1995-10-10 Зональный научно-исследовательский и проектный институт типового и экспериментального проектирования жилых и общественных зданий в г.Новосибирске Сейсмостойкое здание
RU2147655C1 (ru) * 1999-10-12 2000-04-20 Закрытое акционерное общество "Матек" Соединительный элемент
RU2537421C2 (ru) * 2013-02-01 2015-01-10 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) Сейсмостойкая кирпичная стеновая панель
RU2602550C1 (ru) * 2015-10-27 2016-11-20 Олег Савельевич Кочетов Сейсмостойкое здание
RU2610011C1 (ru) * 2015-12-25 2017-02-07 Олег Савельевич Кочетов Блочная быстровозводимая сейсмостойкая конструкция кочетова

Similar Documents

Publication Publication Date Title
RU123433U1 (ru) Сейсмостойкое сооружение
RU120447U1 (ru) Сейсмостойкое здание
RU131037U1 (ru) Сейсмостойкое сооружение
RU2602550C1 (ru) Сейсмостойкое здание
RU2641335C2 (ru) Сейсмостойкое здание кочетова
RU2585768C1 (ru) Сейсмостойкое здание
RU2526940C1 (ru) Сейсмостойкое здание
RU2606884C1 (ru) Сейсмостойкое здание
RU133171U1 (ru) Сейсмостойкое сооружение
RU2615183C1 (ru) Сейсмостойкое сооружение кочетова
RU2568192C1 (ru) Сейсмостойкое здание
RU2658940C2 (ru) Сейсмостойкое малошумное здание
RU2657484C1 (ru) Сейсмостойкое здание со стенами блочной конструкции
RU2651975C1 (ru) Сейсмостойкое здание
RU2641334C2 (ru) Сейсмостойкое здание кочетова
RU2663979C1 (ru) Сейсмостойкое сооружение
RU2612027C1 (ru) Сейсмостойкое здание кочетова
RU131038U1 (ru) Сейсмостойкое здание
RU148123U1 (ru) Сейсмостойкое малошумное производственное здание
RU2611646C1 (ru) Сейсмостойкое здание кочетова
RU2639206C1 (ru) Сейсмостойкое здание
RU131036U1 (ru) Сейсмостойкое сооружение
RU2606887C1 (ru) Малошумное сейсмостойкое производственное здание кочетова
RU2656425C2 (ru) Малошумное сейсмостойкое производственное здание
RU2649698C2 (ru) Производственное сейсмостойкое здание