RU2657052C1 - Способ испытания и освоения флюидонасыщенного пласта-коллектора трещинного типа (варианты) - Google Patents

Способ испытания и освоения флюидонасыщенного пласта-коллектора трещинного типа (варианты) Download PDF

Info

Publication number
RU2657052C1
RU2657052C1 RU2017114085A RU2017114085A RU2657052C1 RU 2657052 C1 RU2657052 C1 RU 2657052C1 RU 2017114085 A RU2017114085 A RU 2017114085A RU 2017114085 A RU2017114085 A RU 2017114085A RU 2657052 C1 RU2657052 C1 RU 2657052C1
Authority
RU
Russia
Prior art keywords
reservoir
fluid
pressure
saturated
well
Prior art date
Application number
RU2017114085A
Other languages
English (en)
Inventor
Владимир Мирославович Иванишин
Андрей Гелиевич Вахромеев
Сергей Александрович Сверкунов
Рафаил Улфатович Сираев
Иван Владимирович Горлов
Юрий Константинович Ланкин
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт Земной коры Сибирского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт Земной коры Сибирского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт Земной коры Сибирского отделения Российской академии наук
Priority to RU2017114085A priority Critical patent/RU2657052C1/ru
Application granted granted Critical
Publication of RU2657052C1 publication Critical patent/RU2657052C1/ru

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

Группа изобретений относится к технологии строительства глубоких скважин и, в частности, к скважинным способам испытания и/или освоения продуктивных флюидопроявляющих пластов-коллекторов трещинного типа с пластовым давлением флюидной системы от аномально низкого до аномально высокого. Технический результат - повышение эффективности обработки флюидопроявляющего трещинного пласта-коллектора. По способу в скважину, характеризующуюся наличием природного карбонатного трещинного флюидонасыщенного пласта-коллектора с естественными трещинами, спускают компоновку с гидромеханическим пакером. Выполняют тест на приемистость трещинной фильтрационной системы. При этом определяют давление начала открытия естественных трещин. Выполняют процедуру закрепления фильтрующих - проницаемых трещин призабойной зоны флюидонасыщенного пласта-коллектора с медленной закачкой проппанта. Закачку осуществляют с расходом 5-10 л/сек и с применением стойкого проппанта трех фракций: мелкая 0,21-0,42 мм, средняя 0,42-0,85 мм, крупная 0,85-1,7 мм. Фракции подбирают по результатам исследования керна и с превышением давления на 1,5-2,5 МПа пластового давления. Затем снижают забойное давление до величины пластового и переходят к созданию депрессии на пласт и очистке скважины. После этого осуществляют гидродинамические исследования флюидонасыщенного пласта-колллектора в открытом стволе скважины. Исследования осуществляют методом установившихся отборов по стандартной штуцерной программе с созданием депрессий от величины пластового давления на флюидную систему на заданных режимах. Выбирают режим последующей эксплуатации – депрессии, и освоения скважины с добычей жидкого и газообразного полезного ископаемого. 2 н.п. ф-лы.

Description

Изобретение относится к технологии строительства глубоких скважин, в частности к скважинным способам испытания и освоения (добычи) продуктивных флюидонасыщенных пластов-коллекторов трещинного типа с пластовым давлением флюидной системы от аномально-низкого (АНПД) до аномально-высокого (АВПД).
Основной проблемой, возникающей при испытании и в последующем при освоении (добыче) флюидонасыщенных (фонтанирующих нефтью и газом, промышленными или минеральными водами, рапогазопроявляющих с барическими условиями от АНПД до АВПД) пластов-коллекторов со сложным трещинным типом проницаемости является деформация, смыкание проницаемых трещин в призабойной зоне пласта при изменении текущего забойного давления от пластового в область депрессии. Это обуславливает постепенное или резкое снижение дебита пластовой жидкости из скважины. Снижение дебита скважины по нефти или другому флюиду обусловлено рядом причин, где базовой является геомеханическая характеристика пласта-коллектора, реология при депрессии на пласт-коллектор, а следствием - изменение температурного (термобарического) режима, которым обусловлены фазовые переходы в пластовой многофазной системе (природные минеральные воды или промышленные концентрированные рассолы, углеводородная газоконденсатная или нефтегазовая пластовая система). Дебит фонтанирования флюида при деформации трещинной системы ПЗП (сжимание, «схлапывание» открытых проницаемых трещин) в цикле испытания и освоения флюидонасыщенных пластов-коллекторов с трещинным типом может снижаться до нуля. Таким образом, сегодня для конкретных объектов с трещинным типом пласта-коллектора экспериментально доказано изменение (снижение) проницаемости и связанное с этим падение дебитов фонтанирования флюидов при испытании и освоении скважины, причем необратимое [Боревский Л.В. Анализ влияния физических деформаций коллекторов на оценку эксплуатационных запасов подземных вод в глубоких водоносных горизонтах// Методы изучения и оценка ресурсов глубоких подземных вод // Под ред. Бондаренко С.С., Вартаняна Г.С. - М.: Недра, 1986. - 479 с.; Кашников Ю.А., Гладышев С.В., Разяпов Р.К., и др. Гидродинамическое моделирование первоочередного участка разработки Юрубчено-Тохомского месторождения с учетом гидродинамического эффекта смыкания трещин // Разработка и эксплуатация нефтяных месторождений. 2011. №4. с. 104-107].
Действительно, согласно исследованиям Г.Т. Овнатанова (Овнатанов Г.Т. Вскрытие и обработка пласта. - М.: Недра. 1979. 312 с.); Б.А. Фукса с соавт. (Промысловая характеристика продуктивных пластов юга Сибирской платформы // Б.А. Фукс, В.А. Ващенко, А.Г. Москалец и др. - М.: Недра, 1982. 184 с.); Ю.А. Кашникова с соавт., (Кашников Ю.А., Гладышев С.В., Разяпов Р.К., и др. Гидродинамическое моделирование первоочередного участка разработки Юрубчено-Тохомского месторождения с учетом гидродинамического эффекта смыкания трещин // Разработка и эксплуатация нефтяных месторождений. 2011. №4. с. 104-107), процесс изменения (снижения) проницаемости призабойной зоны пласта в трещинных коллекторах при создании депрессии на продуктивный флюидонасыщенный пласт проходит необратимо. Этот вывод применительно к трещинным продуктивным объектам Лено-Тунгусской НГП имеет принципиальное значение и крайне важен, поскольку деформация, сжатие проницаемых трещин имеет системный характер, вызывая искажение, занижение гидродинамических параметров и в итоге коэффициента продуктивности по флюиду в поисковых, разведочных и эксплуатационных скважинах.
Деформация трещин в призабойной зоне скважины приводит к изменению перепада сечения фильтрационного потока от трещиноватого блока флюидонасыщенного коллектора в естественном, раскрытом состоянии к зоне сжатия, деформации фильтрующих трещин и снова к расширению потока в стволе скважины. Это провоцирует адиабатический процесс, резкое охлаждение флюида при расширении фильтрующего сечения, и, как следствие, - условия, благоприятные для кристаллизации солей при охлаждении потока концентрированных рассолов, формирования АСПО, либо для гидратообразования, если пласт-коллектор имеет углеводородное (нефть и газ) насыщение. Таким образом, теоретически и экспериментально доказано, что деформация, смыкание проницаемых трещин в призабойной зоне флюидонасыщенного пласта при изменении текущего забойного давления в область депрессии относительно значения пластового давления - явление нежелательное и требует разработки самостоятельного технического решения, которое обеспечит постоянство проницаемости трещинного коллектора на этапах очистки пласта, испытания скважины на режимах и в последующем при освоении (добычи) жидкого или газообразного полезного ископаемого.
Известны технические решения в исследуемой области, в которых разработаны те или иные подходы, предупреждающие формирование солевых или гидратных, парафиновых пробок в стволе скважины, в лифтовых трубах. Способы эти основаны: на принципе термостатирования колонны лифтовых труб в интервале вероятных фазовых переходов (см. Вахромеев А.Г. Способ добычи полезного ископаемого, склонного к температурному фазовому переходу. Патент №2229587 // Бюллетень. 27.05.2004. №15; а также патент РФ №244911, опубл. 27.04.2012; патент РФ №2229587, опубл. 27.05.2004, патент РФ №0002591325 от 27.07.2016, Патент РФ 2361067, 2009); на применении ингибитора солеобразования (см. патент РФ №2531298, опубл. 20.10.2014) либо на периодической прокачке реагентов, растворяющих солевые пробки, гидраты и АСПО (Иванова И.К., Шиц Е.Ю. Известно использование газового конденсата для борьбы с органическими отложениями в условиях аномально низких пластовых температур // Нефт. хоз-во. 2009. №12. С. 99-101; Эффективность применения растворителей асфальтосмолопарафиновых отложений в добыче нефти / Головко С.Н., Шамрай Ю.В., Гусев В.И., Люшин С.Ф. и др. М., 1984. - 85 с. (Обзор. информ. / ВНИИОЭНГ. Сер. «Нефтепромысловое дело»); Калинкина Н.В., и др. Организация эффективной защиты скважин от солеотложений химическими методами на примере Верхнечонского нефтегазоконденсатного месторождения// Научно-Технический вестник «РОСНЕФТЬ», №1 (42), 2016, с. 52-57, см. патент РФ №2183255, опубл. 10.06.2002 Бюл. №16 и др.).
Сложившаяся методология испытания напорных нефтяных, газовых, газоконденсатных, водонапорных (парогидротермы, минеральные и промышленные воды) флюидных систем, вскрываемых глубокими скважинами, традиционно предполагает очистку пласта и опытно-фильтрационные гидродинамические исследования «методом установившихся отборов» путем «выпусков» на разных режимах (дебитах фонтанирования) с фиксацией забойных и устьевых значений давления и температуры, а также запись кривой восстановления пластового давления (Горная энциклопедия. / Гл. ред. Е.А. Козловский. - М.: Сов. Энциклопедия. Т. 2. Геосферы - Кенай, 1985, 575 с.; Соколов В.Л., и др. Поиски и разведка нефтяных и газовых месторождений. М., «Недра», 1974, 296 с.; Инструкция по комплексному исследованию газовых и газоконденсатных пластов и скважин. Под ред. Г.А. Зотова, З.С. Алиева, М., «Недра», 1980, 301 с). Способ испытания флюидонасыщенного пласта на основе сложившейся методологии «методом установившихся отборов» примем за прототип.
Этот сложившийся подход (способ) имеет существенный недостаток, поскольку не учитывает возможное смыкание, деформацию проницаемых трещин в призабойной зоне флюидонасыщенного пласта-коллектора при очистке и при создании расчетной депрессии. При этом смыкание трещин в призабойной зоне пласта может носить необратимый характер, влечет падение дебита флюида, а также их «залечивание» раскристаллизовавшейся солью, содержащейся в рапе (минерализация более 600 г/л). Сходный процесс формирования гидратных пробок, т.е. зарастания сечения лифтовых труб в скважине гидратами и (или) АСПО наблюдается при нефтегазовом насыщении пласта-коллектора. Важно, что соляные пробки могут формироваться не только в трубах, но и в призабойной зоне флюидонасыщенного пласта-коллектора. Аналогичный по механизму адиабатический процесс резкого охлаждения потока нефтяного или газового приводит к формированию асфальтосмолопарафиновых отложений (АСПО) и гидратов в призабойной зоне пласта-коллектора.
Для трещинной фильтрационной системы, которая является превалирующим типом емкостного и транзитного пространства природного карбонатного пласта-коллектора, необходимо разработать способ испытания и освоения скважины, который сохранит проницаемость трещинной системы в области призабойной зоны при воздействии сжимающих напряжений (массива горных пород), возрастающих при формировании воронки депрессии, в первую очередь в призабойной зоне пласта-коллектора при росте депрессии (ΔP) выше критических значений, которая не позволит естественным проницаемым трещинам сомкнуться. Такой областью является призабойная зона в радиусе первых метров вокруг скважины, вскрывшей трещинный пласт-коллектор.
Задачей заявленного способа является разработка опережающего закрепления естественных фильтрующих трещин в проницаемой части пласта-коллектора природного резервуара в призабойной зоне, которое выполняют до создания депрессии на продуктивный пласт при очистке призабойной зоны от фильтрата бурового раствора, что позволяет исключить в дальнейшем необратимое смыкание фильтрующих трещин на этапе очистки пласта и испытания (разведочная скважина), или очистки и освоения (эксплуатационная скважина), т.е. скважинной добычи жидкого или газообразного полезного ископаемого при создании первой и последующих депрессий на флюидную систему и продуктивный пласт - коллектор.
Техническим результатом являются: высокая технологическая надежность стабилизации проницаемости призабойной зоны в процессе создания депрессии - в циклах очистки, испытания, освоения продуктивного флюидонасыщенного трещинного пласта-коллектора, т.е. надежность первичных данных, получаемых по результатам испытания и освоения скважины. Ведь при геологоразведочном бурении в первую очередь требуется геологическая достоверность первичных данных опытно-фильтрационных работ и сохранение истинной продуктивности по флюиду (по нефти, по газу, по рассолу) трещинного пласта-коллектора на разных режимах испытания и освоения, т.е. при разной депрессии. При освоении, т.е. добыче жидкого и газообразного полезного ископаемого, важно гарантировать постоянство дебита скважины, т.е. ее продуктивность.
В работе [Blanton T.L. Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs // SPE 15261, presented at the SPE/DOE unconventional gas technology symposium, Louisville, 18-21 May 1986.] проведены эксперименты, показывающие, что гидравлическая трещина при искусственном гидроразрыве пласта (ГРП) является устойчивой и пересекает существующие трещины только в условиях большого отношения между действующими напряжениями и большого угла между направлениями трещин. При средних и низких отношениях напряжений и малых углах между направлениями трещин гидравлическая трещина раскрывает существующие трещины и разворачивает поток флюида в направлении естественной трещиноватости. Согласно результатам численных расчетов [de Pater C.J., Beugelsdijk L.J.L. Experiments and numerical simulation of hydraulic fracturing in naturally fractured rock / In: Proceedings of the US Rock Mechanics Symposium, Anchorage, Alaska, 25-29 June 2005; Dong C.Y., de Pater C.J. Numerical implementation of displacement discontinuity method and its application in hydraulic fracturing // Comput Methods Appl Mech Eng 2001, 191: 745-60], основанным на экспериментальных данных, низкая скорость потока жидкости приводит к тому, что гидравлическая трещина раскрывает существующие трещины, в то время как высокая скорость потока и вязкость рабочего флюида приводят к тому, что трещина «не замечает» естественные трещины, встречающиеся на пути ее развития.
Геологическая достоверность первичных данных опытно-фильтрационных работ и более высокая технологическая надежность сохранения природной проницаемости естественных фильтрующих трещин в призабойной зоне флюидонасыщенного трещинного пласта-коллектора в условиях переменной депрессии на продуктивный пласт по предлагаемому способу достигаются тем, что заявляемый
- по варианту 1 в способе освоения флюидонасыщенного пласта-коллектора трещинного типа, включающем очистку и далее гидродинамические исследования флюидонасыщенного пласта-колллектора в открытом стволе скважины «методом установившихся отборов» по стандартной штуцерной программе с созданием депрессий от величины пластового давления на флюидную систему на заданных режимах, выбор режима последующей эксплуатации (депрессии) и освоение скважины с добычей жидкого и газообразного полезного ископаемого, согласно изобретению перед очисткой природного карбонатного трещинного флюидонасыщенного пласта-коллектора с естественными трещинами спускают компоновку с гидромеханическим пакером, выполняют тест на приемистость трещинной фильтрационной системы, при этом определяют давление начала открытия естественных трещин и выполняют процедуру закрепления фильтрующих (проницаемых) трещин призабойной зоны трещинного флюидонасыщенного пласта-коллектора с медленной закачкой с расходом 5-10 л/сек стойкого проппанта трех фракций (мелкая 0,21-0,42 мм, средняя 0,42-0,85 мм, крупная 0,85-1,7 мм), подобранного по результатам исследования керна под разницей давлений с превышением на 1,5-2,5 МПа от пластового давления, после чего снижают забойное давление до величины пластового и переходят к созданию депрессии на пласт и очистке скважины;
- по варианту 2 в способе освоения флюидонасыщенного пласта-коллектора трещинного типа, включающем очистку и далее гидродинамические исследования флюидонасыщенного пласта-колллектора в скважине в обсадной колонне после ее перфорации «методом установившихся отборов» по стандартной штуцерной программе с созданием депрессий от величины пластового давления на флюидную систему на заданных режимах, выбор режима последующей эксплуатации (депрессии) и освоение скважины с добычей жидкого и газообразного полезного ископаемого, согласно изобретению перед очисткой природного карбонатного трещинного флюидонасыщенного пласта-коллектора с естественными трещинами спускают насосно-компрессорные трубы в скважину, выполняют тест на приемистость трещинной фильтрационной системы, при этом определяют давление начала открытия естественных трещин и выполняют процедуру закрепления фильтрующих (проницаемых) трещин призабойной зоны трещинного флюидонасыщенного пласта-коллектора с медленной закачкой с расходом 5-10 л/сек стойкого проппанта трех фракций (мелкая 0,21-0,42 мм, средняя 0,42-0,85 мм, крупная 0,85-1,7 мм), подобранного по результатам исследования керна под разницей давлений с превышением на 1,5-2,5 МПа от пластового давления, после чего снижают забойное давление до величины пластового и переходят к созданию депрессии на пласт и очистке скважины.
Заявляемый способ позволяет исключить необратимое смыкание трещин в призабойной зоне при создании депрессии во время очистки и гидродинамических исследований на этапах испытания и освоения скважины при снижении забойного давления ниже значений пластового. После очистки призабойной зоны в разведочной скважине испытание флюидонасыщенного пласта-колллектора ведут «методом установившихся отборов» по стандартной штуцерной программе путем создания депрессий от величины пластового давления на флюидную систему, значимо отличающихся от режима к режиму, после чего обоснованно готовят «Заключение по результатам испытания продуктивного пласта». Далее выбирают режим последующей эксплуатации (депрессию) и реализуют освоение скважины с добычей жидкого или газообразного полезного ископаемого. В эксплуатационной скважине после цикла очистки скважину переводят в режим освоения (эксплуатации).
Сущность изобретения: сохранение естественной (природной) проницаемости трещинной фильтрационной системы пласта-коллектора в призабойной зоне через опережающее (до цикла очистки продуктивного пласта и его испытания/освоения на режимах) закрепление трещин проппантом, то есть удержание от смыкания естественных фильтрующих трещин в призабойной зоне флюидонасыщенного продуктивного (нефтегазоносного, водоносного или рапоносного) трещинного пласта-коллектора в природном открытом (исходном) состоянии, которое сохраняется на протяжении циклов очистки трещинного пласта-коллектора, при испытании на режимах «методом установившихся отборов» и во время всей дальнейшего освоения продуктивного пласта скважины.
ПРИМЕР
(на основе геологических данных по одному из продуктивных флюидонасыщенных пластов-коллекторов, Лено-Тунгусской нефтегазоносной провинции)
Рассмотрим горно-геологические условия для освоения флюидонасыщенного пласта по варианту 1. Пластовое давление флюида 23,0 МПа. Вертикальная глубина залегания кровли пласта-коллектора 1620 м. Производят бурение по флюидонасыщенному пласту, далее в процессе его испытания/освоения в открытом стволе сразу производят тест на приемистость пласта с применением гидромеханического пакера, определяют давление открытия естественных трещин, проводят закачку проппанта трех фракций (мелкая 0,21-0,42 мм, средняя 0,42-0,85 мм, крупная 0,85-1,7 мм), подобранного по результатам исследования керна, с расходом 5-10 л/сек. Забойное давление в процессе закачки кольматанта составляет 24,5-25,5 МПа. Далее переходят к очистке пласта и испытанию «методом установившихся отборов»
Рассмотрим горно-геологические условия для освоения флюидонасыщенного пласта по варианту 2. Пластовое давление флюида 23,0 МПа. Вертикальная глубина залегания кровли пласта-коллектора 1620 м. Производят бурение по флюидонасыщенному пласту, обсаживают пласт обсадной колонной, далее в процессе его испытания сразу после вторичного вскрытия перфорацией в скважину спускают насосно-компрессорные трубы, производят тест на приемистость пласта, производят закачку проппанта трех фракций (мелкая 0,21-0,42 мм, средняя 0,42-0,85 мм, крупная 0,85-1,7 мм), подобранного по результатам исследования керна, с расходом 5-10 л/сек. Забойное давление в процессе закачки кольматанта составляет 24,5-25,5 МПа. Далее переходят к очистке пласта и испытанию «методом установившихся отборов»

Claims (2)

1. Способ испытания и освоения флюидонасыщенного пласта-коллектора трещинного типа, включающий очистку и далее гидродинамические исследования флюидонасыщенного пласта-колллектора в открытом стволе скважины методом установившихся отборов по стандартной штуцерной программе с созданием депрессий от величины пластового давления на флюидную систему на заданных режимах, выбор режима последующей эксплуатации - депрессии, и освоения скважины с добычей жидкого и газообразного полезного ископаемого, отличающийся тем, что перед очисткой природного карбонатного трещинного флюидонасыщенного пласта-коллектора с естественными трещинами спускают компоновку с гидромеханическим пакером, выполняют тест на приемистость трещинной фильтрационной системы, при этом определяют давление начала открытия естественных трещин и выполняют процедуру закрепления фильтрующих - проницаемых трещин призабойной зоны трещинного флюидонасыщенного пласта-коллектора с медленной закачкой с расходом 5-10 л/сек стойкого проппанта трех фракций: мелкой 0,21-0,42 мм, средней 0,42-0,85 мм, крупной 0,85-1,7 мм, подобранных по результатам исследования керна, под разницей давлений с превышением на 1,5-2,5 МПа от пластового давления, после чего снижают забойное давление до величины пластового и переходят к созданию депрессии на пласт и очистке скважины.
2. Способ испытания и освоения флюидонасыщенного пласта-коллектора трещинного типа, включающий очистку и далее гидродинамические исследования флюидонасыщенного пласта-коллектора с естественными трещинами в скважине в обсадной колонне после ее перфорации методом установившихся отборов по стандартной штуцерной программе с созданием депрессий от величины пластового давления на флюидную систему на заданных режимах, выбор режима последующей эксплуатации - депрессии, и освоения скважины с добычей жидкого и газообразного полезного ископаемого, отличающийся тем, что перед очисткой природного карбонатного трещинного флюидонасыщенного пласта-коллектора спускают насосно-компрессорные трубы в скважину, выполняют тест на приемистость трещинной фильтрационной системы, при этом определяют давление начала открытия естественных трещин и выполняют процедуру закрепления фильтрующих - проницаемых трещин призабойной зоны трещинного флюидонасыщенного пласта-коллектора с медленной закачкой с расходом 5-10 л/сек стойкого проппанта трех фракций: мелкой 0,21-0,42 мм, средней 0,42-0,85 мм, крупной 0,85-1,7 мм, подобранных по результатам исследования керна, под разницей давлений с превышением на 1,5-2,5 МПа от пластового давления, после чего снижают забойное давление до величины пластового и переходят к созданию депрессии на пласт и очистке скважины.
RU2017114085A 2017-04-21 2017-04-21 Способ испытания и освоения флюидонасыщенного пласта-коллектора трещинного типа (варианты) RU2657052C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017114085A RU2657052C1 (ru) 2017-04-21 2017-04-21 Способ испытания и освоения флюидонасыщенного пласта-коллектора трещинного типа (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017114085A RU2657052C1 (ru) 2017-04-21 2017-04-21 Способ испытания и освоения флюидонасыщенного пласта-коллектора трещинного типа (варианты)

Publications (1)

Publication Number Publication Date
RU2657052C1 true RU2657052C1 (ru) 2018-06-08

Family

ID=62560732

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017114085A RU2657052C1 (ru) 2017-04-21 2017-04-21 Способ испытания и освоения флюидонасыщенного пласта-коллектора трещинного типа (варианты)

Country Status (1)

Country Link
RU (1) RU2657052C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2738147C1 (ru) * 2020-04-14 2020-12-08 Ильдар Зафирович Денисламов Способ ингибирования скважины от асфальтосмолопарафиновых отложений

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411086A (en) * 1993-12-09 1995-05-02 Mobil Oil Corporation Oil recovery by enhanced imbitition in low permeability reservoirs
RU2072030C1 (ru) * 1993-06-03 1997-01-20 Западно-Сибирский научно-исследовательский и проектно-конструкторский институт технологии глубокого разведочного бурения Способ вскрытия продуктивных пластов
RU2462590C1 (ru) * 2011-04-12 2012-09-27 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ улучшения гидродинамической связи скважины с продуктивным пластом
RU2495999C1 (ru) * 2012-05-10 2013-10-20 Общество С Ограниченной Ответственностью "Волго-Уральский Центр Научно-Технических Услуг "Нейтрон" Способ и устройство для интенсификации работы нефтегазовых скважин (варианты)
RU2515651C1 (ru) * 2013-05-20 2014-05-20 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины
RU2602437C1 (ru) * 2015-09-11 2016-11-20 Федеральное государственное бюджетное учреждение науки Институт Земной коры Сибирского отделения Российской академии наук Способ первичного вскрытия бурением горизонтального ствола в трещинном типе нефтегазонасыщенного карбонатного коллектора в условиях аномально низких пластовых давлений

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2072030C1 (ru) * 1993-06-03 1997-01-20 Западно-Сибирский научно-исследовательский и проектно-конструкторский институт технологии глубокого разведочного бурения Способ вскрытия продуктивных пластов
US5411086A (en) * 1993-12-09 1995-05-02 Mobil Oil Corporation Oil recovery by enhanced imbitition in low permeability reservoirs
RU2462590C1 (ru) * 2011-04-12 2012-09-27 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ улучшения гидродинамической связи скважины с продуктивным пластом
RU2495999C1 (ru) * 2012-05-10 2013-10-20 Общество С Ограниченной Ответственностью "Волго-Уральский Центр Научно-Технических Услуг "Нейтрон" Способ и устройство для интенсификации работы нефтегазовых скважин (варианты)
RU2515651C1 (ru) * 2013-05-20 2014-05-20 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины
RU2602437C1 (ru) * 2015-09-11 2016-11-20 Федеральное государственное бюджетное учреждение науки Институт Земной коры Сибирского отделения Российской академии наук Способ первичного вскрытия бурением горизонтального ствола в трещинном типе нефтегазонасыщенного карбонатного коллектора в условиях аномально низких пластовых давлений

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЗОТОВ Г.А. и др., Инструкция по комплексному исследованию газовых и газоконденсатных пластов и скважин, Москва, Недра, 1980, с. 116-137, 150-179. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2738147C1 (ru) * 2020-04-14 2020-12-08 Ильдар Зафирович Денисламов Способ ингибирования скважины от асфальтосмолопарафиновых отложений

Similar Documents

Publication Publication Date Title
King Thirty years of gas shale fracturing: what have we learned?
King 60 Years of Multi-Fractured Vertical, Deviated and Horizontal Wells: What Have We Learned?
US7559373B2 (en) Process for fracturing a subterranean formation
Yuan et al. A holistic review of geosystem damage during unconventional oil, gas and geothermal energy recovery
Love et al. Selectively placing many fractures in openhole horizontal wells improves production
US20070023184A1 (en) Well product recovery process
CA3022941A1 (en) Methods and systems for analysis of hydraulically-fractured reservoirs
US10087737B2 (en) Enhanced secondary recovery of oil and gas in tight hydrocarbon reservoirs
RU2375562C2 (ru) Способ разработки нефтяной залежи
US11761315B2 (en) Non-fracturing restimulation of unconventional hydrocarbon containing formations to enhance production
Pandey et al. New fracture-stimulation designs and completion techniques result in better performance of shallow Chittim Ranch wells
Soliman et al. Impact of fracturing and fracturing techniques on productivity of unconventional formations
Weirich et al. Frac packing: best practices and lessons learned from more than 600 operations
RU2743478C1 (ru) Способ добычи трудноизвлекаемого туронского газа
RU2657052C1 (ru) Способ испытания и освоения флюидонасыщенного пласта-коллектора трещинного типа (варианты)
WO2024076442A1 (en) Method and systems for subsurface carbon capture
US11131174B2 (en) Hydraulic fracturing systems and methods
RU2012114259A (ru) Способ повышения добычи нефтей, газоконденсатов и газов из месторождений и обеспечения бесперебойной работы добывающих и нагнетательных скважин
Dehghani Oil well sand production control
RU2637539C1 (ru) Способ формирования трещин или разрывов
Soroush et al. Challenges and potentials for sand and flow control and management in the sandstone oil fields of Kazakhstan: A literature review
RU2510456C2 (ru) Способ образования вертикально направленной трещины при гидроразрыве продуктивного пласта
US20150285049A1 (en) Method of Drilling for and Producing Oil and Gas from Earth Boreholes
Tassone et al. Hydraulic Fracturing Challenges and Solutions for the Development of a Low Permeability Oil Reservoir–Case History from Offshore West Africa
Guan et al. Water injectivity-What we have learned in the past 30 years