RU2655200C1 - Способ реабилитации больных в различных стадиях нарушений центральной или периферической нервной системы с использованием виртуальной реальности - Google Patents

Способ реабилитации больных в различных стадиях нарушений центральной или периферической нервной системы с использованием виртуальной реальности Download PDF

Info

Publication number
RU2655200C1
RU2655200C1 RU2016152265A RU2016152265A RU2655200C1 RU 2655200 C1 RU2655200 C1 RU 2655200C1 RU 2016152265 A RU2016152265 A RU 2016152265A RU 2016152265 A RU2016152265 A RU 2016152265A RU 2655200 C1 RU2655200 C1 RU 2655200C1
Authority
RU
Russia
Prior art keywords
virtual
patient
virtual reality
movement
rehabilitation
Prior art date
Application number
RU2016152265A
Other languages
English (en)
Inventor
Александр Владимирович Захаров
Василий Федорович Пятин
Сергей Сергеевич Чаплыгин
Александр Владимирович Колсанов
Original Assignee
Александр Владимирович Захаров
Василий Федорович Пятин
Сергей Сергеевич Чаплыгин
Александр Владимирович Колсанов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Владимирович Захаров, Василий Федорович Пятин, Сергей Сергеевич Чаплыгин, Александр Владимирович Колсанов filed Critical Александр Владимирович Захаров
Priority to RU2016152265A priority Critical patent/RU2655200C1/ru
Priority to PCT/RU2017/000962 priority patent/WO2018124940A1/ru
Application granted granted Critical
Publication of RU2655200C1 publication Critical patent/RU2655200C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Rehabilitation Therapy (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Rehabilitation Tools (AREA)

Abstract

Изобретение относится к медицине, а именно к неврологии, и может быть использовано при реабилитации больных в различные сроки после возникшей патологии опорно–двигательного аппарата. Используют виртуальную среду с элементами управления и сенсорного взаимодействия с виртуальным объектом. С учетом полученной с регистрирующих электроэнцефалографических и электромиографических датчиков информации, установленных на голове и пораженной конечности соответственно, а также способности пациента к движениям, регулируют объем управляющих виртуальных движений таким образом, что дает ощущение завершенности выполняемого движения при демонстрации заданий виртуальной реальности. Причем сенсорное взаимодействие с виртуальными объектами посредством использования зрительного, слухового канала, а также тактильной и проприорецептивной стимуляции рецепторов конечности проводят таким образом, чтобы обеспечить ассоциирование пациента с виртуальным аватаром, с очувствлением тактильного и проприоцептивного контакта с виртуальными объектами и ощущением завершенности выполняемого движения. Способ позволяет обеспечить восстановление движения рук и функций ходьбы пациентов на фоне поражения центральной или периферической нервной системы, а также при патологии опорно–двигательного аппарата за счет использования виртуальной реальности с учетом полученной с регистрирующих электроэнцефалографических и электромиографических датчиков информации.

Description

Изобретение относится к медицине, а именно к неврологии, и может быть использовано при реабилитации больных в различные сроки после возникшей патологии центральной, периферической системы или опорно–двигательного аппарата.
Известен способ и система для лечения дисфункции нейромоторного аппарата по патенту US 201361774207P 20130307, включающий первый сигнал-предоставление компонент, настроен для предоставления периферической стимуляции импульсных сигналов в периферической части тела, второй сигнал-предоставление компонент сконфигурирован для передачи импульсного сигнала стимуляции моторной коры в моторной коре зоны, по существу, постоянного тока, сигнал-предоставление компонент настроен для предоставления постоянного тока спинномозговой стимуляции сигнала в нейронной спинномозговой узел и контроллер компонент настроен на контроль сроков импульсной периферической стимуляции сигналов и импульсной стимуляции моторной коры сигнала.
Но данный способ не обеспечивает ощущения прямохождения и не позволяет пациенту воздействовать на объекты виртуальной реальности.
Самым близким по своей технической сущности является способ реабилитации больных в острой стадии инсульта с использованием биологической обратной связи и виртуальной реальности по патенту РФ №2432971 с приоритетом от 02.04.2010 г., опубл. 10.11.2011 г., где используют биологическую обратную связь (БОС) и виртуальную реальность, для чего проводят установку очков и шлема виртуальной реальности на голову пациента, установку датчиков движения на голову, туловище и тазовую область пациента, загрузку программного обеспечения, состоящего из виртуальной среды и элементов управления, и направленную тренировку координированных движений головы, туловища и тазовой области посредством среды виртуальной реальности и датчиков движения. В качестве виртуальной среды применяется подводный мир, виртуальный объект управления - дельфин. Чувствительность и симметричность управляющих движений регулируется в зависимости от состояния пациента и его способности к движениям. БОС осуществляют посредством зрительного канала в ассоциированном (глазами дельфина) и диссоциированном (глазами внешнего наблюдателя за его действиями) состоянии. Способ обеспечивает восстановление контроля базовых произвольных движений туловища, головы и шеи у этой группы пациентов.
Данный способ направлен на восстановление контроля базовых произвольных движений туловища, головы и шеи, а не конечностей. Данный способ не обеспечивает восстановление движение рук и ног и не даёт пациенту ощущения прямохождения, и пациент не может воздействовать на объекты виртуальной реальности, а только может их видеть, и так же данный способ не позволяет пациенту использовать биологическую обратную связь от первого лица, с использованием мультисенсорных анализаторов, т.е. зрительного, слухового, кожно-кинестетического.
Предлагаемое техническое решение направлено на получение следующего технического результата: обеспечение восстановления движения рук и функций ходьбы пациентов на фоне поражения центральной или периферической нервной системы, а также при патологии опорно–двигательного аппарата с использованием виртуальной реальности.
Поставленная задача решается за счёт того, что способ реабилитации больных в различных стадиях нарушений центральной или периферической нервной системы с использованием виртуальной реальности включает виртуальную среду с элементами управления и сенсорное взаимодействие на виртуальный объект, причём на основании полученной с регистрирующих датчиков информации производят регулировку объема виртуальных движений, а по средствам использования зрительного, слухового канала и устройств, производящих проприоцептивную и тактильную стимуляцию рецепторов конечностей, обеспечивают пациенту очувствление тактильного и проприоцептивного контакта с виртуальными объектами и ощущение завершенности выполняемого движения. Для реабилитации больных в различных стадиях нарушений центральной или периферической нервной системы с использованием виртуальной реальности пациента обеспечивают устройством, создающим виртуальную реальность окружающей среды. Вид устройства определяется врачом на основании состояния пациента либо устанавливают на голову пациента шлем и очки виртуальной реальности, либо помещают его в комнату виртуальной реальности. Загружают необходимую программу, состоящую из виртуальной среды с элементами управления, направленными на восстановление активных движений в конечностях пациента. Устанавливают устройства, оказывающие проприоцептивное и тактильное воздействие на рецепторы конечностей, а так же устройства, регистрирующие электромиографические (ЭМГ), электроэнцефалографические (ЭЭГ) или биологические сигналы. Сигналы электроэнцефалографии регистрируются электродами, располагаемыми на голове пациента, и демонстрируют изменение потенциала действия, возникающее в нейронах головного мозга, и сигналы электромиографии, оценивающие электрический потенциал, возникающий при сокращении мышцы. На основании полеченных сигналов производят регулировку объема виртуальных движений. При выраженной двигательной патологии и значительном силовом парезе пациент находится в пассивном контакте с виртуальной средой и не оказывает непосредственного воздействия на объекты виртуальной реальности. По мере нарастания силы и восстановления объема движений в конечностях пациент начинает оказывать непосредственное воздействие на объекты виртуальной реальности. В качестве виртуальной среды для восстановления функций ходьбы применяется, например, лесопарковое окружение, где пациент может произвольно выбирать направление прогулки и темп движения. Для отработки утерянных моторных навыков базовых движений верхних конечностей используется, например, виртуальный кухонный стол и кухонные предметы, причем объектом управления являются виртуальные конечности пациента при взгляде от первого лица. Сенсорное взаимодействие с объектами виртуальной реальности осуществляется посредством зрительного и слухового канала, и так же тактильной и проприоцептивной стимуляции, при этом происходит ассоциирование с виртуальным аватаром, что позволяет пациенту достичь очувствления тактильного контакта с объектами виртуальной реальности, а также достичь максимального когнитивного и эмоционального погружения в виртуальную реальность. На основании полученных с ЭЭГ и ЭМГ сигналов и в зависимости от способности пациента к движениям регулируется объем управляющих виртуальных движений таким образом, что даёт ощущение завершенности выполняемого движения, например пинать мяч. Интенсивность удара по мячу регулируется в зависимости от изменения ЭЭГ и ЭМГ сигналов. Очувствление тактильного контакта позволяет зарегистрировать факт касания с объектом и даёт возможность пациенту, используя мультисенсорную связь, выполнять технологические и другие задачи, аналогичные тем, которые выполняет при тех же действиях здоровый человек. Это дает пациенту ощущение завершенности выполняемого в реальности движения, несмотря на то, что конечность может лишь незначительно двигаться или вовсе не двигаться на первоначальном этапе реабилитации. Восстановление активных движений в конечностях с использованием виртуальной реальности окружающей среды с элементами управления посредством сенсорного взаимодействия с виртуальными объектами происходит за счет активизации вторичных моторных центров и ассоциативных зон коры головного мозга для формирования новых моторных формул движения (моторных энграмм), позволяющих активировать те или иные группы мышцы для выполнения успешного и запланированного движения с учетом наличия пораженных участков нервной системы. Формируются новые нейронные сети, в коре головного мозга отвечающие за движение и приводящие к восстановлению движения.
Способ реабилитации больных в различных стадиях нарушений центральной или периферической нервной системы с использованием виртуальной реальности для восстановления движений в нижних и верхних конечностях осуществляется следующим образом. Занятие происходит в комнате реабилитации. Сроки реабилитации не ограничены (любая длительность заболевания, повлекшая за собой нарушение локомоторной функции верхних и нижних конечностей). Пациент находится в положении сидя в кресле для восстановления движений в нижних конечностях. Пациенту производится установка на голову очков виртуальной реальности, электроэнцефалографических датчиков, на пораженную ногу пациента устанавливаются электромиографические датчики, на область бедра и голени. В проекции подошвенных поверхностей стоп устанавливаются четыре пневмоманжеты на каждую подошвенную поверхность. Запускается программа, демонстрирующая пациенту парковую зону, где он может перемещаться по дорожкам для прогулки. На первоначальном этапе пациент движется в пассивном состоянии, т.е. не регулирует направление и скорость движения. При этом каждый виртуальный шаг пациента синхронизирован с последовательным раздуванием пневмоманжеток той же стороны, что дает пациенту тактильное ощущение контакта с дорожкой для прогулки в виртуальной реальности. Длительность занятий в течение 10-15 минут, ежедневно в утренние часы, общим количеством до 7-10 сеансов. Далее пациенту предлагается представлять движение парализованной конечности, а именно совершать намерение совершать шаг или на выбор выбирать направление движения. Данное намерение сопряжено с подачей звукового сигнала, с целью точной временной фиксации начала планирования. При этом записывается ЭЭГ и строится классификатор, который в дальнейшем будет давать управляющий сигнал для выбора направления движения в виртуальной среде или начала виртуального движения пораженной конечности. После обучения классификатора (программа на компьютере) пациент самостоятельно может выбирать направление движения и совершать шаг пораженной конечностью, только если он об этом подумал. ЭМГ регистрирует минимальные мышечные сокращения на пораженной конечности и дает управляющий сигнал для регулирования скорости ходьбе в виртуальной реальности. При этом, чем выше амплитуда сигнала ЭМГ, тем больше скорость движения в виртуальной реальности. Все это необходимо для усиления когнитивного и сенсорного погружения в виртуальную реальность и ускорения двигательной реабилитации. При наличии нарушений чувствительности или при длительном времени после полученного поражения центральной или периферической нервной системы пациенту помимо дополнительных устройств, описанных выше, устанавливают роботизированный экзоскелет на пораженную конечность с несколькими степенями свободы, позволяющий совершать пассивные движения в тазобедренном, коленном и голеностопном суставе. Пациент при этом уже будет поддерживаться в вертикальном состоянии (за счет специального подвешивающего устройства) на беговой дорожке. Управляющие сигналы ЭЭГ и ЭМГ помимо влияния на действия, происходящие в виртуальной среде, будут регулировать движение сервоприводов экзоскелета, регулируя изменения углов в тазобедренном, коленном и голеностопном суставах, а также их угловую скорость. В другом случае пациенту можно не устанавливать очки виртуальной реальности, а демонстрировать виртуальную среду в специально оборудованной комнате виртуальной реальности, демонстрирующей пациенту ту же обстановку парковой зоны. Для восстановления движений в верхних конечностях пациента размещают в положении сидя в кресле за столом. Производится установка на голову пациента очков виртуальной реальности, электроэнцефалографических датчиков, на пораженную руку пациента устанавливаются электромиографические датчики, на область плеча и предплечья. Запускается программа, демонстрирующая пациенту кухонный стол с приборами, которые он может перемещать по виртуальному столу, брать в руки. На первоначальном этапе пациент находится в пассивном состоянии и наблюдает за содружественными движениями виртуальных рук, выполняющих манипуляции со столовыми приборами, имитирующие прием пищи, т.е. не регулирует направление и скорость движения. Длительность занятий в течение 10-15 минут, ежедневно в утренние часы, общим количеством до 7-10 сеансов. Далее пациенту предлагается представлять движение парализованной рукой. Данное намерение сопряжено с подачей звукового сигнала с целью точной временной фиксации начала планирования. При этом записывается ЭЭГ и строится классификатор, который в дальнейшем будет давать управляющий сигнал для выбора направления движения в виртуальной среде или начала виртуального движения пораженной конечности. После обучения нейронной сети пациент самостоятельно может произвести движение пораженной конечностью, только если он об этом подумал, при этом программа будет «достраивать» движение в виртуальной среде до его полного завершения, например поднести ложку или стакан ко рту виртуального аватара. ЭМГ регистрирует минимальные мышечные сокращения на пораженной конечности и дает управляющий сигнал для регулирования скорости и выбора предмета, который пациент захочет взять в данный конкретный момент с виртуального стола. При этом, чем выше амплитуда ЭМГ, тем больше скорость движения в виртуальной реальности. Все это необходимо для усиления когнитивного и сенсорного погружения в виртуальную реальность и ускорения двигательной реабилитации. При наличии нарушений чувствительности или при длительном времени после полученного поражения центральной или периферической нервной системы пациенту помимо дополнительных устройств, описанных выше, устанавливается роботизированный экзоскелет на пораженную конечность с несколькими степенями свободы, позволяющий совершать пассивные движения в плечевом, локтевом и лучезапястном суставах. Пациент при этом может находиться в положении сидя или стоя самостоятельно или за счет специального вертикализирующего устройства, если имеется выраженное снижение силы в нижних конечностях. Сигналы ЭЭГ и ЭМГ помимо влияние на действия, происходящие в виртуальной среде, будут регулировать движение сервоприводов экзоскелета, регулируя изменения углов в плечевом, локтевом и лучезапястном суставах, а также их угловую скорость. В другом случае пациенту можно не устанавливать очки виртуальной реальности, а демонстрировать виртуальную среду в специально оборудованной комнате виртуальной реальности, демонстрирующей пациенту уже более сложную обстановку помещения, где он может взаимодействовать с находящимися в ней предметами, не только бытовыми, например уборка по дому, но и профессиональными, вождение автомобиля, работа на станке и др.
Пациент Н., 64 года. Поступил в неврологическое отделение для больных острым нарушением мозгового кровообращения 30.09.2016 г. с диагнозом «Острое нарушение мозгового кровообращения – ишемический инсульт в бассейне правой средней мозговой артерии от 30.09.2016 г.» На момент поступления в неврологическом статусе у пациента выраженные двигательные нарушения в виде плегии левых конечностей. Пациент получал терапию в рамках федерального стандарта оказания медицинской помощи больным с острым нарушением мозгового кровообращения. С пятого дня после возникновения инсульта пациенту начали проводиться реабилитационные мероприятия. К данному времени пациент с посторонней помощью мог сидеть в течение 10-15 минут. Анкетирование пациента на данный момент по шкале двигательной активности (шкала Берга) составляло 1 балл. Самообслуживание пациента полностью нарушено. С данного времени пациенту также начата терапия с применением виртуальной реальности с демонстрацией ходьбы от первого лица по горизонтальной поверхности с тактильным ощущением шага. Для этого персонал отделения доставлял пациента на кресле–каталке в кабинет медицинской реабилитации. Пациент во время реабилитации находился в кресле–каталке. На голову пациенту надевались очки виртуальной реальности, на ноги, а именно на стопы, устанавливались пневмоманжеты с четырьмя пневмокамерами на каждую ногу. Затем производился запуск программы, демонстрирующей пациенту движение по футбольному полю. При этом каждый шаг виртуального аватара был сопряжен с последовательным раздуванием пневмоманжеток, установленных на подошвенной поверхности стопы, что давало пациенту тактильные ощущения шага. Длительность реабилитации занимала от 10 минут в начале курса, до 15 минут по его окончании. В общей сложности с пациентом было проведено семь занятий, проходивших ежедневно. К концу реабилитации на нейротренажере пациент смог совершать большинство заданий при анкетировании по шкале Берга. При этом пациент мог самостоятельно сидеть, пересаживаться в кресло с постели, вставать с кровати, безопасно стоять в течение как минимум 2 минут и поднять предмет с пола. Таким образом, у пациента к концу проведенных занятий на нейротренажере восстановилось большинство двигательных навыков, необходимых для восстановления локомоторной функции ходьбы.

Claims (1)

  1. Способ реабилитации больных с двигательными нарушениями функций конечностей с использованием виртуальной реальности, включающий использование виртуальной среды с элементами управления и сенсорное взаимодействие с виртуальным объектом, отличающийся тем, что с учетом полученной с регистрирующих электроэнцефалографических и электромиографических датчиков информации, установленных на голове и пораженной конечности соответственно, а также способности пациента к движениям, регулируют объем управляющих виртуальных движений таким образом, что дает ощущение завершенности выполняемого движения при демонстрации заданий виртуальной реальности, причем сенсорное взаимодействие с виртуальными объектами посредством использования зрительного, слухового канала, а также тактильной и проприорецептивной стимуляции рецепторов конечности проводят таким образом, чтобы обеспечить ассоциирование пациента с виртуальным аватаром, с очувствлением тактильного и проприоцептивного контакта с виртуальными объектами и ощущением завершенности выполняемого движения.
RU2016152265A 2016-12-29 2016-12-29 Способ реабилитации больных в различных стадиях нарушений центральной или периферической нервной системы с использованием виртуальной реальности RU2655200C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2016152265A RU2655200C1 (ru) 2016-12-29 2016-12-29 Способ реабилитации больных в различных стадиях нарушений центральной или периферической нервной системы с использованием виртуальной реальности
PCT/RU2017/000962 WO2018124940A1 (ru) 2016-12-29 2017-12-22 Способ реабилитации больных в различных стадиях нарушений центральной или периферической нервной системы с использованием виртуальной реальности

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016152265A RU2655200C1 (ru) 2016-12-29 2016-12-29 Способ реабилитации больных в различных стадиях нарушений центральной или периферической нервной системы с использованием виртуальной реальности

Publications (1)

Publication Number Publication Date
RU2655200C1 true RU2655200C1 (ru) 2018-05-24

Family

ID=62202446

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016152265A RU2655200C1 (ru) 2016-12-29 2016-12-29 Способ реабилитации больных в различных стадиях нарушений центральной или периферической нервной системы с использованием виртуальной реальности

Country Status (2)

Country Link
RU (1) RU2655200C1 (ru)
WO (1) WO2018124940A1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111124102A (zh) * 2019-10-24 2020-05-08 上海市长宁区天山中医医院 混合现实全息头显四肢和脊柱运动康复***及方法
WO2020256577A1 (ru) * 2019-06-17 2020-12-24 Общество С Ограниченной Ответственностью "Сенсомед" Аппаратно-программный комплекс для реабилитации пациентов с когнитивными нарушениями верхних конечностей после инсульта
WO2021158138A1 (ru) 2020-02-07 2021-08-12 Общество с ограниченной ответственностью "АйТи Юниверс" Система нейрореабилитации и способ нейрореабилитации
RU2766044C1 (ru) * 2021-11-16 2022-02-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ формирования фантомной карты кисти у пациентов с ампутацией верхней конечности на основе активации нейропластичности
RU2781674C1 (ru) * 2021-11-25 2022-10-17 Публичное Акционерное Общество "Сбербанк России" (Пао Сбербанк) Способ двигательной реабилитации неврологических пациентов в виртуальной реальности посредством многопользовательской тренировки с учетом психологического профиля пациента

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112085169B (zh) * 2020-09-11 2022-05-20 西安交通大学 肢体外骨骼辅助康复脑-肌电融合感知的自主学习与进化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060079817A1 (en) * 2004-09-29 2006-04-13 Dewald Julius P System and methods to overcome gravity-induced dysfunction in extremity paresis
US20090131225A1 (en) * 2007-08-15 2009-05-21 Burdea Grigore C Rehabilitation systems and methods
CN101961527A (zh) * 2009-07-21 2011-02-02 香港理工大学 一种结合功能性电刺激和机器人的康复训练***和训练方法
RU2432971C1 (ru) * 2010-04-02 2011-11-10 Вероника Игоревна Скворцова Способ реабилитации больных в острой стадии инсульта с использованием биологической обратной связи и виртуальной реальности
US20130035612A1 (en) * 2011-07-29 2013-02-07 Mason Andrea H Hand-Function Therapy System With Sensory Isolation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060079817A1 (en) * 2004-09-29 2006-04-13 Dewald Julius P System and methods to overcome gravity-induced dysfunction in extremity paresis
US20090131225A1 (en) * 2007-08-15 2009-05-21 Burdea Grigore C Rehabilitation systems and methods
CN101961527A (zh) * 2009-07-21 2011-02-02 香港理工大学 一种结合功能性电刺激和机器人的康复训练***和训练方法
RU2432971C1 (ru) * 2010-04-02 2011-11-10 Вероника Игоревна Скворцова Способ реабилитации больных в острой стадии инсульта с использованием биологической обратной связи и виртуальной реальности
US20130035612A1 (en) * 2011-07-29 2013-02-07 Mason Andrea H Hand-Function Therapy System With Sensory Isolation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
УСТИНОВА К. И. и др. Виртуальная реальность в нейрореабилитации. Анналы клинической и экспериментальной неврологии. Т. 2, N4, 2008, С. 34-35. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020256577A1 (ru) * 2019-06-17 2020-12-24 Общество С Ограниченной Ответственностью "Сенсомед" Аппаратно-программный комплекс для реабилитации пациентов с когнитивными нарушениями верхних конечностей после инсульта
CN111124102A (zh) * 2019-10-24 2020-05-08 上海市长宁区天山中医医院 混合现实全息头显四肢和脊柱运动康复***及方法
WO2021158138A1 (ru) 2020-02-07 2021-08-12 Общество с ограниченной ответственностью "АйТи Юниверс" Система нейрореабилитации и способ нейрореабилитации
RU2789261C1 (ru) * 2021-08-17 2023-01-31 Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ) Способ реабилитации верхних конечностей пациентов, перенесших инсульт, с использованием биологической обратной связи и элементами виртуальной реальности
RU2766044C1 (ru) * 2021-11-16 2022-02-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ формирования фантомной карты кисти у пациентов с ампутацией верхней конечности на основе активации нейропластичности
RU2781674C1 (ru) * 2021-11-25 2022-10-17 Публичное Акционерное Общество "Сбербанк России" (Пао Сбербанк) Способ двигательной реабилитации неврологических пациентов в виртуальной реальности посредством многопользовательской тренировки с учетом психологического профиля пациента
RU2805120C2 (ru) * 2022-04-01 2023-10-11 Федеральное государственное бюджетное учреждение "Федеральный научно-клинический центр медицинской реабилитации и курортологии Федерального медико-биологического агентства" (ФГБУ ФНКЦ МРиК ФМБА России) Способ реабилитации пациентов при повреждении головного и спинного мозга с использованием виртуальной реальности и биологической обратной связи

Also Published As

Publication number Publication date
WO2018124940A1 (ru) 2018-07-05

Similar Documents

Publication Publication Date Title
RU2655200C1 (ru) Способ реабилитации больных в различных стадиях нарушений центральной или периферической нервной системы с использованием виртуальной реальности
Suh et al. Effect of rhythmic auditory stimulation on gait and balance in hemiplegic stroke patients
Bayon et al. Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker
Aqueveque et al. After stroke movement impairments: a review of current technologies for rehabilitation
Paik et al. Simple and task-oriented mirror therapy for upper extremity function in stroke patients: a pilot study
Lee et al. Mirror therapy with neuromuscular electrical stimulation for improving motor function of stroke survivors: a pilot randomized clinical study
RU2513418C1 (ru) Способ комплексной реабилитации больных в раннем восстановительном периоде церебрального инсульта
Stein Motor recovery strategies after stroke
Beckers et al. PNF in practice: an illustrated guide
Masiero et al. Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy
Bobrova et al. Use of imaginary lower limb movements to control brain–computer interface systems
JPWO2014136852A1 (ja) 電気刺激装置
De Keersmaecker et al. The effect of optic flow speed on active participation during robot-assisted treadmill walking in healthy adults
Krishnamoorthy et al. Gait training after stroke: a pilot study combining a gravity-balanced orthosis, functional electrical stimulation, and visual feedback
Amin et al. Maximizing stroke recovery with advanced technologies: A comprehensive review of robot-assisted, EMG-Controlled robotics, virtual reality, and mirror therapy interventions
Molinari et al. Rehabilitation technologies application in stroke and traumatic brain injury patients
Sung et al. Feasibility of rehabilitation training with a newly developed, portable, gait assistive robot for balance function in hemiplegic patients
Chernikova et al. Robotic and mechanotherapeutic technology to restore the functions of the upper limbs: prospects for development
RU2632510C1 (ru) Способ лечения патологических двигательных синергий верхних конечностей у больных, перенесших нарушение мозгового кровообращения
Klochkov et al. Modern technologies of functional stimulation in central paresis
Goodworth et al. Physical Therapy and Rehabilitation
Mehrholz Neurorehabilitation practice for stroke patients
RU2813807C1 (ru) Способ мультимодальной коррекции двигательных и когнитивных нарушений у пациентов, перенесших ишемический инсульт
RU2762857C1 (ru) Устройство формирования общей чувствительности в виртуальной среде
Monaco et al. A new robotic platform for gait rehabilitation of bedridden stroke patients

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201230