RU2655140C1 - Половолоконная композитная газоразделительнгая мембрана и способ ее получения - Google Patents

Половолоконная композитная газоразделительнгая мембрана и способ ее получения Download PDF

Info

Publication number
RU2655140C1
RU2655140C1 RU2017103391A RU2017103391A RU2655140C1 RU 2655140 C1 RU2655140 C1 RU 2655140C1 RU 2017103391 A RU2017103391 A RU 2017103391A RU 2017103391 A RU2017103391 A RU 2017103391A RU 2655140 C1 RU2655140 C1 RU 2655140C1
Authority
RU
Russia
Prior art keywords
hollow fiber
solution
membrane
support
polyvinylamine
Prior art date
Application number
RU2017103391A
Other languages
English (en)
Inventor
Никита Николаевич Фатеев
Константин Олегович Красновский
Original Assignee
Публичное акционерное общество криогенного машиностроения (ПАО "Криогенмаш")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество криогенного машиностроения (ПАО "Криогенмаш") filed Critical Публичное акционерное общество криогенного машиностроения (ПАО "Криогенмаш")
Priority to RU2017103391A priority Critical patent/RU2655140C1/ru
Application granted granted Critical
Publication of RU2655140C1 publication Critical patent/RU2655140C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/60Polyamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Изобретение относится к области некриогенного разделения газовых смесей. Половолоконная композитная газоразделительная мембрана включает полимерный суппорт и как минимум два слоя, при этом суппорт выполнен из полиарилсульфона или полиарилсульфона, поливиниламина и/или поливинилпирролидона, первый слой выполнен из поливинилтриметилсилана и/или полидиметилсилоксана, а второй слой выполнен из поливиниламина и/или поливинилпирролидона. Изобретение также относится к способу получения половолоконной композитной газоразделительной мембраны, включающему изготовление прядильного раствора, изготовление раствора внутреннего осадителя, формование суппорта половолоконной мембраны, сушку суппорта половолоконной мембраны, изготовление покрывного раствора, нанесение покрывного раствора на суппорт, при этом прядильный раствор изготавливают из полиарилсульфона или полиарилсульфона, поливиниламина или полиарилсульфона, поливинилпирролидона или полиарилсульфона, поливиниламина, поливинилпирролидона, формование суппорта половолоконной мембраны производится в осадительную ванну через воздушный зазор, суппорт половолоконной мембраны покрывают покрывными растворами, один покрывной раствор изготавливают из поливинилтриметилсилана и/или полидиметилсилоксана, другой покрывной раствор изготавливают из поливиниламина и/или поливинилпирролидона. Технический результат - повышение селективности и проницаемости половолоконной композитной газоразделительной мембраны. 2 н. и 5 з.п. ф-лы, 2 ил.

Description

Группа изобретений относится к области некриогенного разделения газовых смесей.
Известна композитная мембрана, а также способ ее получения из документа СА 1104008 А1, опубл. 30.06.1981, имеющая гидрофильную поверхность, включающую пористую подложку (суппорт) из фторорганического полимера, поры которого содержат, как минимум, один водорастворимый полимер. В качестве водорастворимого полимера используется поливиниловый спирт, полиэтиленоксид или полиакриловая кислота. Водорастворимый полимер переходит в нерастворимое состояние при термической обработке, химической реакции этерификации под действием катализатора, химической реакции с бихроматом калия или путем перекрестного сшивания ионизирующим излучением. К недостаткам данной композитной мембраны стоит отнести высокие температуры сшивки необходимые для ее образования, т.к. они могут привести к деформации подложки (суппорта) мембраны. Ионизирующие излучения также могут нарушить морфологию пористой подложки (суппорта).
Известна композитная мембрана, а также способ ее получения из документа ЕР 0186758 В2, опубл. 28.05.1997, получающаяся путем покрытия пористой подложки полимеризующимся мономером, инициатором образования свободных радикалов и сшивающим соединением. Мономер полимеризуется и сшивается непосредственно на подложке и служит субстратом для нанесения следующего полимерного слоя. К недостаткам данной композитной мембраны стоит отнести то, что образовавшиеся в результате сшивания связи могут разрушаться со временем, что приведет к потере мембраной селективного поверхностного слоя.
Известна половолоконная композитная газоразделительная мембрана, а также способ ее получения из документа RU 2388527 C2, опубл. 10.05.2010, принята за прототип, включающая в себя полимерную подложку (суппорт), покрытую сшитым поливиниламином, где сшивающий агент представляет собой соединение, содержащее фтор. В качестве подложки (суппорта) используются полиэфирсульфон, полиакрилонитрил, ацетат целлюлозы или полисульфон. Одним из недостатков данной мембраны является отсутствие кремнийорганического слоя на ее поверхности, в результате мембрана сохраняет свои свойства только при низких давлениях, до 5 бар, также использование фторсодержащего агента в качестве сшивающего компонента для поливиниламина негативно сказывается на морфологии полимерной подложки (суппорта).
Целью группы изобретений является получение композитной половолоконной газоразделительной мембраны.
Техническим результатом является повышение селективности и проницаемости композитной половолоконной газоразделительной мембраны.
Технический результат для половолоконной композитной газоразделительной мембраны достигается за счет того, что мембрана включает полимерный суппорт и как минимум два слоя, суппорт выполнен из полиарилсульфона или полиарилсульфона, поливиниламина и/или поливинилпирролидона, первый слой выполнен из поливинилтриметилсилана и/или полидиметилсилоксана, а второй слой выполнен из поливиниламина и/или поливинилпирролидона.
Технический результат для способа получения половолоконной композитной газоразделительной мембраны достигается за счет того, что способ включает изготовление прядильного раствора из полиарилсульфона или полиарилсульфона, поливиниламина или полиарилсульфона, поливинилпирролидона или полиарилсульфона, поливиниламина, поливинилпирролидона, изготовление раствора внутреннего осадителя, формование суппорта половолоконной мембраны в осадительную ванну через воздушный зазор, сушку суппорта половолоконной мембраны, изготовление покрывных растворов, нанесение, как минимум, двух покрывных растворов на суппорт, первый покрывной раствор изготавливается из поливинилтриметилсилана и/или полидиметилсилоксана, второй покрывной изготавливается из поливиниламина и/или поливинилпирролидона.
Композитная половолоконная мембрана может быть использована в очистке газовых смесей от диоксида углерода и сероводорода, а также разделение смеси водорода и углекислого газа.
Изобретение поясняется чертежами:
Фиг. 1 - схема половолоконной композитной газоразделительной мембраны.
Фиг. 2 - схема транспорта через композитную мембрану.
Предложенная половолоконная газоразделительная мембрана, изображенная на фиг. 1, представляет собой четырехслойную композитную мембрану, первым слоем которой является ассиметричная подложка (суппорт) из полиарилсульфона, вторым - слой высокопроницаемого кремнийорганического полимера, третьим - слой поливиниламина и/или поливинилпирролидона, а четвертым - слой высокопроницаемого кремнийорганического полимера.
В композитных мембранах молекулы газа диффундируют из зоны высокого давления в зону низкого. Перенос молекулы газа через композитную мембрану представляет собой сочетание механизмов транспорта в пористых и непористых мембранах, а также иногда облегченный транспорт. Тем не менее поверхностный непористый слой в большинстве случаев ограничивает скорость процесса.
Облегченный транспорт - это обратимый процесс комплексообразования с последующей диффузией. Он возникает в результате взаимодействия компонента газовой смеси и мембраны-носителя с образованием комплекса способного диффундировать через мембрану. Данные процессы приводят к тому, что входной поток больше не пропорционален движущей силе. Скорость транспорта через мембрану в таком случае представляет собой сумму проницаемости, вызванной процессом растворение-диффузия и облегченным транспортом. Причем растворение-диффузия имеет место для всех компонентов смеси, а облегченный транспорт только для компонентов способных к комплексообразованию. Мембраны-носители, в состав которых входит полимер с аминогруппой, могут быть использованы для отделения диоксида углерода и сероводорода. Так в этих целях на мембрану может быть нанесен селективный слой поливиниламина или поливинилпирролидона. На фиг. 2 схематично изображен облегченный транспорт углекислого газа при помощи мембраны носителя с использованием поливиниламина. Диоксид углерода реагирует с первичным амином поливиниламина и водой, образуя бикарбонат НСО3-, и в этой форме углекислый газ транспортируется через мембрану. Вода служит медиатором данного процесса, сохраняя аминогруппы поливиниламина в активном состоянии, поэтому поток влажного газа обеспечивает лучшую селективность процесса. Молекулы диоксида углерода транспортируются, как при помощи растворения-диффузии, так и облегченного транспорта, в то время транспорт молекул азота и метана обеспечивается только механизмом растворение-диффузия.
Полиарилсульфон представляет собой полимер с высокой химической, термической стабильностью и температурой стеклования 210°С. Поэтому полиарилсульфон используется как суппорт для композитных мембран.
Полиарилсульфоны служат хорошими материалами в качестве подложки (суппорта), обеспечивающими необходимую механическую прочность и химическую устойчивость композитной мембраны. Конечные газоразделительные свойства мембраны зависят как от селективного слоя, так и от пористого суппорта. Селективность и проницаемость композитной мембраны может быть увеличена путем оптимизации технологии формования полиарилсульфонового суппорта. Подложка (суппорт) для композитной мембраны не должна содержать каких-либо дефектов на внешней поверхности для успешной фиксации селективного слоя поливиниламина и/или поливинилпирролидона. Добавление сурфактанта Triton х-100 и универсального пластификатора трикрезилфосфата в прядильный раствор, добавление сурфактанта додецилсульфат натрия в осадительную ванну, а также нанесение слоя высокопроницаемого кремнийорганического полимера на полиарилсульфоновый суппорт позволяет минимизировать количество дефектов в полиарилсульфоновой подложке (суппорте), и соответственно повысить селективность и проницаемость композитной половолоконной газоразделительной мембраны.
Критическая концентрация полиарилсульфона в прядильном растворе для формования бездефектной подложки (суппорта) половолоконной мембраны с высокой скоростью намотки составляет 29,5 масс. %. Критическая концентрация существует из-за межмолекулярных взаимодействий цепей полимера ограничивающим их степень компоновки. При концентрации полимера ниже критической полимерные цепи имеют высокую степень свободы, и молекулы нерастворителя могут проникать диффузионным и конвективным током в пространство между цепями полимеров, образуя дефекты. Лучшими растворителями для полиарилсульфона служат н-метилпирролидон, диметилформамид и диметилсульфоксид. Нерастворители и полимерные добавки сдвигают раствор полимера ближе к точке осаждения, что увеличивает селективность мембраны. Добавление нерастворителя в раствор полимера облегчает процесс осаждения и ведет к образованию мембран с более однородной структурой и ультратонким внешним поверхностным слоем с минимальным количеством дефектов. Для увеличения концентрации полимера в поверхностном слое мембраны, не жертвуя пористой подструктурой, в состав раствора полимера вводятся легколетучие растворители, такие как тетрагидрофуран. Увеличение концентрации тетрагидрофурана в составе прядильного приводит к увеличению толщины диффузионного слоя. Также легколетучий компонент существенно уменьшает поглощение паров воды, деформирующих диффузионный слой половолоконной мембраны, в воздушном зазоре над осадительной ванной, что приводит к увеличению селективности половолоконной мембраны.
Параметры прядения подложки (суппорта) мембраны в основном влияют на геометрию волокон, их внешний и внутренний диаметр, а также толщину стенки. Отмечено, что существует критическая величина воздушного зазора. Только при величине воздушного зазора выше критической возможно формование бездефектного суппорта половолоконной мембраны. Критическая величина воздушного зазора для полиарилсульфона - 5 см. Это объясняется тем, что сильное вытягивание мембраны ведет к более плотной упаковке цепей полимера, так замедляется проникновение молекул внешнего коагулянта в структуру мембраны и подавляется процесс дефектообразования. Вытягивание мембраны также зависит от скорости намотки волокна. При выходе из фильеры половолоконная мембрана находится в переходном состоянии геля, это подавляет фазоразделение и образование дефектов. При высоте воздушного зазора менее 5 см и более 50 см гелеобразование не происходит, что приводит к множественным дефектам во внешнем слое мембраны. Температура осадительной ванны также является важным параметров для контроля при формовании подложки (суппорта) мембраны. При уменьшении температуры ниже 18°С селективность мембраны из полиарилсульфона уменьшается. Отмечено, что при температуре осадительной ванны ниже 10°С на поверхности мембраны образуется так много дефектов, что они не могут быть закрыты кремнийорганическим покрытием. Повышение температуры осадительной ванны ведет к увеличению селективности мембраны, но при этом уменьшается вязкость раствора полимера. Вязкость полимерного раствора должна быть достаточной для экструзии полимерного раствора из фильеры в форме полого волокна и является лимитирующим фактором при повышении температуры осадительной ванны. Максимально возможная скорость намотки бездефектной мембраны составляет 50 м/мин. Напряжение, возникающее при вытяжке полого волокна, приводит к дополнительной фазовой нестабильности мембраны, объединению пор в ее структуре, препятствует проникновению внешних осадителей внутрь структуры волокна и улучшает отток растворителей из мембраны.
Пример получения половолоконной композитной газоразделительной мембраны с высокой селективностью и проницаемостью состоит из десяти испытаний.
Прядильный раствор для изготовления подложки (суппорта) мембраны перемешивается механической лопастной мешалкой в течение 24 часов со скоростью 120 об/мин. Далее фильтруется через 1 мк бумажный фильтр и находится под вакуумом 2 суток. Прядильный раствор подается методом коэкструзии с внутренним осадителем из фильеры через воздушное пространство в осадительную ванну, заполненную водой 15-70°С, далее сформировавшееся полое волокно поступает в промывочную ванну заполненную водой с температурой 20-70°С, для удаления оставшихся растворителей и нерастворителей из структуры волокна. Подложка (суппорт) композитной газоразделительной мембраны находится в резервуаре с водой 3 суток до полного вытеснения остаточных растворителей и нерастворителей из ее структуры молекулами воды. Полученная подложка (суппорт) пропускается через сушильный шкаф со скоростью 5 м/мин при температуре 70°С для удаления молекул воды из структуры суппорта. После этого пакуется в металлический модуль. Модуль заполняется раствором поливинилтриметилсилана и/или полидиметилсилоксана в гептане на 5 минут, который затем откачивается под вакуумом при температуре 60°С до полного испарения гептана. Далее в модуль поступает раствор поливиниламина и/или поливинилпирролидона в дистиллированной воде, раствор находится в модуле 7 минут, а затем откачивается под вакуумом при температуре 75°С до полного испарения воды. Далее модуль снова заполняется раствором поливинилтриметилсилана и/или полидиметилсилоксана в гептане на 5 минут с последующим его откачиванием под вакуумом при температуре 60°С до полного испарения гептана. Далее измеряется селективность мембраны по паре газов углекислый газ азот при разных давлениях исходной смеси.
В испытании 1 прядильный раствор содержит: полиарилсульфон 33 масс. %, имеющий следующую общую химическую формулу:
Figure 00000001
диметилсульфоксид 31 масс. %, диметилформамид 21 масс. %, тетрагидрофуран 6 масс. % и пропионовую кислоту 9 масс. %. Раствор внутреннего осадителя содержит н-метилпирролидон 90 масс. % и дистиллированную воду 10 масс. %. Прядение суппорта половолоконной мембраны осуществляется через воздушный зазор 16 см в осадительную ванну, заполненную водопроводной водой 25°С. Половолоконный суппорт сначала покрывается 2 масс. % раствором поливинилтриметилсилана в гептане, а затем 3 масс. % раствором поливиниламина в дистиллированной воде. Полученная половолоконная композитная мембрана имеет селективность по паре газов углекислый газ азот равную 44 при давлении исходной смеси 5 бар.
В испытании 2 прядильный раствор содержит: полиарилсульфон 34,5 масс. %, имеющий следующую общую химическую формулу:
Figure 00000002
диметилсульфоксид 29 масс. %, диметилформамид 20 масс. %, тетрагидрофуран 7,5 масс. % и пропионовую кислоту 9 масс. %. Раствор внутреннего осадителя содержит н-метилпирролидон 90 масс. % и дистиллированную воду 10 масс. %. Прядение суппорта половолоконной мембраны осуществляется через воздушный зазор 15 см в осадительную ванну, заполненную водопроводной водой 21°С. Половолоконный суппорт сначала покрывается 2 масс. % раствором поливинилтриметилсилана в гептане, потом 3 масс. % раствором поливиниламина в дистиллированной воде, а затем 2 масс. % раствором поливинилтриметилсилана в гептане. Полученная половолоконная композитная мембрана имеет селективность по паре газов углекислый газ азот равную 45 при давлении исходной смеси 6 бар.
В испытании 3 прядильный раствор содержит: полиарилсульфон 34 масс. %, имеющий следующую общую химическую формулу:
Figure 00000003
диметилсульфоксид 31 масс. %, диметилформамид 20 масс. %, тетрагидрофуран 5 масс. %» и пропионовую кислоту 10 масс. %. Раствор внутреннего осадителя содержит н-метилпирролидон 90 масс. % и дистиллированную воду 10 масс. %. Прядение суппорта половолоконной мембраны осуществляется через воздушный зазор 14 см в осадительную ванну, заполненную водопроводной водой 21°С. Половолоконный суппорт сначала покрывается 4 масс. % раствором полидиметилсилоксана в гептане, потом 3,5 масс. % раствором поливинилпирролидона в дистиллированной воде, а затем 4 масс. % раствором полидиметилсилоксана в гептане. Полученная половолоконная композитная мембрана имеет селективность по паре газов углекислый газ азот равную 35 при давлении исходной смеси 6 бар.
В испытании 4 прядильный раствор содержит: полиарилсульфон 34,5 масс. %, имеющий следующую общую химическую формулу:
Figure 00000004
диметилсульфоксид 31 масс. %, диметилформамид 21 масс. %, тетрагидрофуран 4,5 масс. %) и пропионовую кислоту 9 масс. %. Раствор внутреннего осадителя содержит н-метилпирролидон 90 масс. % и дистиллированную воду 10 масс. %. Прядение суппорта половолоконной мембраны осуществляется через воздушный зазор 15 см в осадительную ванну, заполненную водопроводной водой 21°С. Половолоконный суппорт сначала покрывается раствором, содержащим 2 масс. %) поливинилтриметилсилана, 3,5 масс. % полидиметилсилоксана и 94,5 масс. % гептана, потом 3 масс. % раствором поливиниламина в дистиллированной воде, а затем 2 масс. % раствором поливинилтриметилсилана в гептане. Полученная половолоконная композитная мембрана имеет селективность по паре газов углекислый газ азот равную 50 при давлении исходной смеси 6 бар.
В испытании 5 прядильный раствор содержит: полиарилсульфон 33,5 масс. %, имеющий следующую общую химическую формулу:
Figure 00000005
диметилсульфоксид 31 масс. %, диметилформамид 21,5 масс. %, тетрагидрофуран 4 масс. % и пропионовую кислоту 10 масс. %. Раствор внутреннего осадителя содержит поливинилпирролидон 0,5 масс. %, н-метилпирролидон 80,5 масс. % и дистиллированную воду 19 масс. %. Прядение суппорта половолоконной мембраны осуществляется через воздушный зазор 15 см в осадительную ванну, заполненную водопроводной водой 20°С. Половолоконный суппорт сначала покрывается 4 масс. % раствором полидиметилсилоксана в гептане, потом раствором, содержащим поливинилпирролидона 2 масс. %, поливиниламин 2 масс. % и дистиллированную воду 96 масс. %, а затем 4 масс. % раствором полидиметилсилоксана в гептане. Полученная половолоконная композитная мембрана имеет селективность по паре газов углекислый газ азот равную 55 при давлении исходной смеси 9 бар.
В испытании 6 прядильный раствор содержит: полиарилсульфон 34 масс. %, имеющий следующую общую химическую формулу:
Figure 00000006
поливиниламин 0,4 масс. %, поливинилпирролидон 0,3 масс. %, диметилсульфоксид 31 масс. %), диметилформамид 19,3 масс. %, тетрагидрофуран 5,5 масс. % и пропионовую кислоту 9,5 масс. %. Раствор внутреннего осадителя содержит поливиниламин 0,5 масс. %, поливинилпирролидон 0,5 масс. %, н-метилпирролидон 78 масс. % и дистиллированную воду 21 масс. %. Прядение суппорта половолоконной мембраны осуществляется через воздушный зазор 15 см в осадительную ванну, заполненную водопроводной водой 22°С. Половолоконный суппорт сначала покрывается 2 масс. % раствором поливинилтриметилсилана в гептане, потом 3 масс. % раствором поливиниламина в дистиллированной воде, а затем 2 масс. % раствором поливинилтриметилсилана в гептане. Полученная половолоконная композитная мембрана имеет селективность по паре газов углекислый газ азот равную 60 при давлении исходной смеси 13 бар.
В испытании 7 прядильный раствор содержит: полиарилсульфон 31 масс. %, имеющий следующую общую химическую формулу:
Figure 00000007
поливиниламин 0,6 масс. %, трикрезилфосфат 1 масс. %, Triton Х-100 1,4 масс. %, диметилсульфоксид 31 масс. %, диметилформамид 20.5 масс. %, тетрагидрофуран 5 масс. %) и пропионовую кислоту 9,5 масс. %. Раствор внутреннего осадителя содержит поливиниламин 0,5 масс. %, н-метилпирролидон 80 масс. % и дистиллированную воду 19,5 масс. %. Прядение суппорта половолоконной мембраны осуществляется через воздушный зазор 15 см в осадительную ванну, заполненную водопроводной водой 20°С. Половолоконный суппорт сначала покрывается 2 масс. % раствором поливинилтриметилсилана в гептане, потом 3 масс. % раствором поливиниламина в дистиллированной воде, а затем 2 масс. % раствором поливинилтриметилсилана в гептане. Полученная половолоконная композитная мембрана имеет селективность по паре газов углекислый газ азот равную 47 при давлении исходной смеси 15 бар.
В испытании 8 прядильный раствор содержит: полиарилсульфон 31 масс. %, имеющий следующую общую химическую формулу:
Figure 00000008
поливинилпирролидон 0,6 масс. %, трикрезилфосфат 1 масс. %, Triton Х-100 1,4 масс. %, диметилсульфоксид 29 масс. %, диметилформамид 19,5 масс. %, тетрагидрофуран 8 масс. % и пропионовую кислоту 9,5 масс. %. Раствор внутреннего осадителя содержит поливинилпирролидон 0,5 масс. %, н-метилпирролидон 80 масс. % и дистиллированную воду 19,5 масс. %. Прядение суппорта половолоконной мембраны осуществляется через воздушный зазор 15 см в осадительную ванну, заполненную водопроводной водой 20°С. Половолоконный суппорт сначала покрывается 2 масс. % раствором поливинилтриметилсилана в гептане, потом 3 масс. % раствором поливиниламина в дистиллированной воде, а затем 2 масс. % раствором поливинилтриметилсилана в гептане. Полученная половолоконная композитная мембрана имеет селективность по паре газов углекислый газ азот равную 49 при давлении исходной смеси 25 бар.
В испытании 9 прядильный раствор содержит: полиарилсульфон 32 масс. %, имеющий следующую общую химическую формулу:
Figure 00000009
поливинилпирролидон 1 масс. %, трикрезилфосфат 1 масс. %, Triton Х-100 1,4 масс. %, диметилсульфоксид 32 масс. %, диметилформамид 15,6 масс. %, тетрагидрофуран 7 масс. % и пропионовую кислоту 10 масс. %. Раствор внутреннего осадителя содержит поливинилпирролидон 0,5 масс. %, н-метилпирролидон 80 масс. % и дистиллированную воду 19,5 масс. %. Прядение суппорта половолоконной мембраны осуществляется через воздушный зазор 14 см в осадительную ванну, заполненную 1,5 масс. % раствором додецилсульфат натрия в водопроводной воде 20°С. Половолоконный суппорт сначала покрывается 2 масс. % раствором поливинилтриметилсилана в гептане, потом 3 масс. % раствором поливинилпирролидона в дистиллированной воде, а затем 2 масс. % раствором поливинилтриметилсилана в гептане. Полученная половолоконная композитная мембрана имеет селективность по паре газов углекислый газ азот равную 42 при давлении исходной смеси 33 бар.
В испытании 10 прядильный раствор содержит: полиарилсульфон 31 масс. %, имеющий следующую общую химическую формулу:
Figure 00000010
поливиниламин 0,7 масс. %, трикрезилфосфат 1 масс. %, Triton Х-100 1,5 масс. %, диметилсульфоксид 29 масс. %, диметилформамид 18,8 масс. %, тетрагидрофуран 9 масс. %) и пропионовую кислоту 9 масс. %. Раствор внутреннего осадителя содержит поливиниламин 0,5 масс. %, н-метилпирролидон 80 масс. % и дистиллированную воду 19,5 масс. %. Прядение суппорта половолоконной мембраны осуществляется через воздушный зазор 14 см в осадительную ванну, заполненную 1,5 масс. % раствором додецилсульфат натрия в водопроводной воде 21°С. Половолоконный суппорт сначала покрывается 2 масс. % раствором поливинилтриметилсилана в гептане, потом 3 масс. % раствором поливиниламина в дистиллированной воде, а затем 2 масс. % раствором поливинилтриметилсилана в гептане. Полученная половолоконная композитная мембрана имеет селективность по паре газов углекислый газ азот равную 53 при давлении исходной смеси 33 бар.
Из результатов испытаний видно, что половолоконные композитные газоразделительные мембраны, полученные из полиарилсульфона или поливиниламина и/или поливинилпирролидона в качестве материалов суппорта, поливинилтриметилсилана и/или полидиметилсилоксана, входящих в состав первого слоя, а также поливиниламина и/или поливинилпирролидона, представляющих второй слой мембраны, обладают высокой селективностью и проницаемостью.

Claims (7)

1. Половолоконная композитная газоразделительная мембрана, включающая полимерный суппорт, отличающаяся тем, что мембрана включает как минимум два слоя, при этом суппорт выполнен из полиарилсульфона или полиарилсульфона, поливиниламина и/или поливинилпирролидона, первый слой выполнен из поливинилтриметилсилана и/или полидиметилсилоксана, а второй слой выполнен из поливиниламина и/или поливинилпирролидона.
2. Способ получения половолоконной композитной газоразделительной мембраны, включающий изготовление прядильного раствора, изготовление раствора внутреннего осадителя, формование суппорта половолоконной мембраны, сушку суппорта половолоконной мембраны, изготовление покрывного раствора, нанесение покрывного раствора на суппорт, отличающийся тем, что прядильный раствор изготавливается из полиарилсульфона или полиарилсульфона, поливиниламина или полиарилсульфона, поливинилпирролидона или полиарилсульфона, поливиниламина, поливинилпирролидона, формование суппорта половолоконной мембраны производится в осадительную ванну через воздушный зазор, суппорт половолоконной мембраны покрывается покрывными растворами, один покрывной раствор изготавливается из поливинилтриметилсилана и/или полидиметилсилоксана, другой покрывной раствор изготавливается из поливиниламина и/или поливинилпирролидона.
3. Способ получения половолоконной композитной мембраны по п. 2, отличающийся тем, что прядильный раствор изготавливается с использованием пластификатора, такого как трикрезилфосфат, и/или сурфактанта, такого как Triton х-100.
4. Способ получения половолоконной композитной мембраны по п. 2, отличающийся тем, что раствор внутреннего осадителя изготавливается с использованием поливиниламина и/или поливинилпирролидона.
5. Способ получения половолоконной композитной мембраны по п. 2, отличающийся тем, что суппорт половолоконной мембраны покрывается раствором поливинилтриметилсилана и/или полидиметилсилоксана, а затем раствором поливиниламина и/или поливинилпирролидона.
6. Способ получения половолоконной композитной мембраны по п. 2, отличающийся тем, что суппорт половолоконной мембраны покрывается раствором поливинилтриметилсилана и/или полидиметилсилоксана, затем раствором поливиниламина и/или поливинилпирролидона, далее снова раствором поливинилтриметилсилана и/или полидиметилсилоксана.
7. Способ получения половолоконной композитной мембраны по п. 2, отличающийся тем, что формование суппорта половолоконной мембраны производится в осадительную ванну, заполненную раствором сурфактанта, такого как додецилсульфат натрия, в водопроводной воде.
RU2017103391A 2017-02-02 2017-02-02 Половолоконная композитная газоразделительнгая мембрана и способ ее получения RU2655140C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017103391A RU2655140C1 (ru) 2017-02-02 2017-02-02 Половолоконная композитная газоразделительнгая мембрана и способ ее получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017103391A RU2655140C1 (ru) 2017-02-02 2017-02-02 Половолоконная композитная газоразделительнгая мембрана и способ ее получения

Publications (1)

Publication Number Publication Date
RU2655140C1 true RU2655140C1 (ru) 2018-05-23

Family

ID=62202373

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017103391A RU2655140C1 (ru) 2017-02-02 2017-02-02 Половолоконная композитная газоразделительнгая мембрана и способ ее получения

Country Status (1)

Country Link
RU (1) RU2655140C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101002999A (zh) * 2006-12-21 2007-07-25 天津大学 界面聚合制备分离co2固定载体复合膜的方法
RU2369429C2 (ru) * 2004-08-10 2009-10-10 Нипро Корпорейшн Модуль половолоконных мембран и способ его изготовления
RU2388527C2 (ru) * 2004-03-22 2010-05-10 ЭнТиЭнЮ ТЕКНОЛОДЖИ ТРАНСФЕР АС Мембрана для отделения co2 и метод ее получения
KR101563881B1 (ko) * 2014-12-02 2015-10-28 주식회사 시노펙스 내압성이 향상된 스폰지구조를 갖는 기체분리막의 제조방법
CA2660161C (en) * 2006-10-18 2015-12-22 Gambro Lundia Ab Hollow fiber membrane and method for manufacturing thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2388527C2 (ru) * 2004-03-22 2010-05-10 ЭнТиЭнЮ ТЕКНОЛОДЖИ ТРАНСФЕР АС Мембрана для отделения co2 и метод ее получения
RU2369429C2 (ru) * 2004-08-10 2009-10-10 Нипро Корпорейшн Модуль половолоконных мембран и способ его изготовления
CA2660161C (en) * 2006-10-18 2015-12-22 Gambro Lundia Ab Hollow fiber membrane and method for manufacturing thereof
CN101002999A (zh) * 2006-12-21 2007-07-25 天津大学 界面聚合制备分离co2固定载体复合膜的方法
KR101563881B1 (ko) * 2014-12-02 2015-10-28 주식회사 시노펙스 내압성이 향상된 스폰지구조를 갖는 기체분리막의 제조방법

Similar Documents

Publication Publication Date Title
Li et al. A review-The development of hollow fibre membranes for gas separation processes
JP2635051B2 (ja) 不均整ガス分離膜
KR930003213B1 (ko) 향상된 가스분리를 위한 투과성 막
JP2566973B2 (ja) 中空繊維不整ガス分離膜の形成方法
US6730145B1 (en) Treating gas separation membrane with aqueous reagent dispersion
KR100644366B1 (ko) 비대칭 기체분리용 고분자 중공사막의 대량 제조방법
CA2145451C (en) Process for producing composite membranes
KR20120120989A (ko) 다공성 실리콘 성형체의 제조 방법
WO2005014151A1 (fr) Procede de preparation de membrane a fibres creuses de poly(fluorure de vinylidene) du type a pression externe filee par un procede d'immersion-coagulation, et produit obtenu
US5910274A (en) Method of preparing membranes from blends of polymers
Zhou et al. Improving bonding strength between a hydrophilic coating layer and poly (ethylene terephthalate) braid for preparing mechanically stable braid‐reinforced hollow fiber membranes
EP3702021A1 (en) Manufacturing method for polyphenyl sulfone hollow-fiber membrane for use in humidification film
US10960361B2 (en) Crosslinked polymer membranes and methods of their production
Ye et al. Preparation and gas separation performance of thermally rearranged poly (benzoxazole-co-amide)(TR-PBOA) hollow fiber membranes deriving from polyamides
CN117138605B (zh) 一种超低压反渗透膜及其制备方法
Liu et al. Effects of spinning temperature on the morphology and performance of poly (ether sulfone) gas separation hollow fiber membranes
US6017474A (en) Highly permeable polyethersulfone hollow fiber membranes for gas separation
Qu et al. PDMS/PVDF microporous membrane with semi‐interpenetrating polymer networks for vacuum membrane distillation
Prajapati et al. Preparation and characterization of an oxygen permselective polydimethylsiloxane hollow fibre membrane
RU2655140C1 (ru) Половолоконная композитная газоразделительнгая мембрана и способ ее получения
KR101729183B1 (ko) 압력지연삼투용 복합분리막의 제조방법
KR20020015749A (ko) 이중 상분리유도 법을 이용한 기체분리막 제조방법
JP2020044523A (ja) 水蒸気分離膜、及び水蒸気分離膜の製造方法
KR20220071138A (ko) 친수화된 다공성 고분자 필터, 이의 제조방법 및 이의 제습 용도
JP5473215B2 (ja) 水処理用多孔質膜の製造方法