RU2653842C1 - Синхронный электродвигатель с анизотропной магнитной проводимостью ротора - Google Patents

Синхронный электродвигатель с анизотропной магнитной проводимостью ротора Download PDF

Info

Publication number
RU2653842C1
RU2653842C1 RU2016149697A RU2016149697A RU2653842C1 RU 2653842 C1 RU2653842 C1 RU 2653842C1 RU 2016149697 A RU2016149697 A RU 2016149697A RU 2016149697 A RU2016149697 A RU 2016149697A RU 2653842 C1 RU2653842 C1 RU 2653842C1
Authority
RU
Russia
Prior art keywords
rotor
conductive
magnetic
stator
sheets
Prior art date
Application number
RU2016149697A
Other languages
English (en)
Inventor
Фёдор Андреевич Гельвер
Original Assignee
Общество с ограниченной ответственностью "Научно-производственный центр "Судовые электротехнические системы" (ООО "НПЦ "СЭС")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Научно-производственный центр "Судовые электротехнические системы" (ООО "НПЦ "СЭС") filed Critical Общество с ограниченной ответственностью "Научно-производственный центр "Судовые электротехнические системы" (ООО "НПЦ "СЭС")
Priority to RU2016149697A priority Critical patent/RU2653842C1/ru
Application granted granted Critical
Publication of RU2653842C1 publication Critical patent/RU2653842C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/14Synchronous motors having additional short-circuited windings for starting as asynchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/18Synchronous generators having windings each turn of which co-operates only with poles of one polarity, e.g. homopolar generators
    • H02K19/20Synchronous generators having windings each turn of which co-operates only with poles of one polarity, e.g. homopolar generators with variable-reluctance soft-iron rotors without winding

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Изобретение относится к области электротехники, в частности к синхронным реактивным электрическим двигателям. Технический результат - повышение пускового момента, обеспечение возможности реверса, уменьшение пульсации электромагнитного момента, упрощение конструкции и технологии изготовления ротора. Синхронный электродвигатель содержит статор с магнитопроводом и обмотками, подшипниковые щиты и цилиндрический ротор, состоящий из вала ротора, крепежных шпилек и магнитопровода ротора, набранного из листов ферромагнитного материала с промежутками, проложенными изоляцией, и шихтовкой, выполненной вдоль оси вала машины. Ротор дополнительно содержит токопроводящие немагнитные шины, количество которых равно числу полюсов электрической машины, и два соединительных кольца. Вал ротора и крепежные шпильки выполнены из немагнитного не токопроводящего материала. Листы ферромагнитного материала имеют симметричную форму в поперечной плоскости машины. Каждая из токопроводящих шин расположена по всему объему в крепежных выемках последних листов каждого пакета полюса ротора. Два соединительных кольца электрически объединяют токопроводящие шины в основаниях цилиндрической части ротора. 3 з.п. ф-лы, 11 ил.

Description

Предложение относится к электрическим машинам и может быть использовано в качестве синхронного реактивного электрического двигателя.
Известна конструкция синхронной реактивной машины с анизотропной магнитной проводимостью ротора [патент ФРГ №871183, класс 21 d2 группа 16, от 08.07.1949, дата публикации 27.04.1953, Ernst Massar, Laufer fur reak-tionsmaschinen], содержащая статор с магнитопроводом и статорными электрическими обмотками, подшипниковые щиты и ротор, выполненный цилиндрическим, набранным из листов ферромагнитного материала с шихтовкой вдоль оси вала машины и скрепленных в основаниях цилиндрической активной части, с фланцами вала, выполненными из диамагнитного материала. Недостатками известной конструкции являются сложная конструкция ротора электрической машины, а также малое значение пускового момента и, как следствие, необходимость использования электрического преобразователя для работы предложенной электрической машины.
Известна конструкция синхронной реактивной машины с анизотропной магнитной проводимостью ротора [патент №2541513, класс Н02K 19/20, Н02K 1/20, авторы: Гельвер Ф.А., Самосейко В.Ф., Лазаревский Н.А., Хомяк В.А., Гагаринов И.В., Синхронная машина с анизотропной магнитной проводимостью ротора], содержащая статор с магнитопроводом и статорными электрическими обмотками, подшипниковые щиты и ротор, выполненный цилиндрическим, набранным из листов ферромагнитного материала. Достоинством предложенной конструкции является большая технологичность при изготовлении ротора и простота его конструкции. Основным же недостатком предложенной конструкции остается малое значение величины пускового момента.
Наиболее близким по технической сущности к заявляемому устройству является выбранное в качестве прототипа устройство реактивного синхронного электродвигателя [патент SU 1374354 А1, МПК Н02K 19/14, от 24.09.1986, дата публикации 15.02.1988, автор Манатейкин Г.А., Реактивный синхронный электродвигатель], содержащее статор с обмоткой и четырехполюсный ротор, выполненный из V-образных ферромагнитных слоев, расположенных вдоль оси вращения, выполненных ассиметрично под разными углами к плоскостям, проходящим через оси полюсов. Технический результат такой конструкции обеспечивает улучшение использования активных материалов и пусковых характеристик двигателя. Недостатком такого устройства является сложная несимметричная конструкция ротора, эффективная работа электродвигателя возможна только в одном направлении, то есть электродвигатель нереверсивный. К недостаткам такой конструкции следует отнести и низкую эффективность работы немагнитных электропроводящих слоев пакета ротора, расположенных ближе к центру.
Предлагаемая конструкция синхронного электродвигателя с анизотропной магнитной проводимостью ротора позволит увеличить величину пускового момента, обеспечить возможность реверса, а так же значительно упростить конструкцию и технологию изготовления ротора. К достоинствам предлагаемого электродвигателя можно отнести то, что ротор конструктивно может содержать любое требуемое число пар полюсов. Использование скоса пакетов полюсов ротора относительно пакета статора в предлагаемом синхронном электродвигателе с анизотропной магнитной проводимостью ротора позволит уменьшить величину пульсации электромагнитного момента.
Поставленная задача решается благодаря тому, что в конструкции синхронного электродвигателя с анизотропной магнитной проводимостью ротора, содержащего статор с магнитопроводом и статорными электрическими обмотками, подшипниковые щиты и цилиндрический ротор, состоящий из вала ротора, крепежных шпилек и магнитопровода ротора, набранного из листов ферромагнитного материала с промежутками, проложенными изоляцией и шихтовкой, выполненной вдоль оси вала машины, причем листы ферромагнитного материала имеют форму, зависящую от числа пар полюсов статора и обеспечивающую минимальную длину замыкания линий магнитного поля, создаваемого статорной обмоткой, предусмотрены следующие отличия: ротор дополнительно содержит токопроводящие немагнитные шины, количество которых равно числу полюсов электрической машины и два соединительных кольца, а вал ротора и крепежные шпильки выполнены из немагнитного не токопроводящего материала, причем листы ферромагнитного материала имеют симметричную форму в поперечной плоскости машины, а каждая из токопроводящих шин расположена по всему объему в крепежных выемках последних листов каждого пакета полюса ротора, а два соединительных кольца электрически объединяют токопроводящие шины в основаниях цилиндрической части ротора.
Кроме того, в конструкции синхронного электродвигателя с анизотропной магнитной проводимостью ротора предусмотрены следующие отличия: магнитная система синхронного электродвигателя выполнена со скосом пакетов полюсов ротора относительно пакета магнитопровода статора.
Кроме того, в конструкции синхронного электродвигателя с анизотропной магнитной проводимостью ротора предусмотрены следующие отличия: дополнительно содержит два токопроводящих кольца, расположенных на валу ротора, и лопатки расположенные радиально, количество которых равно удвоенному числу числа полюсов электрической машины, электрически соединяющие токопроводящие шины с токопроводящими кольцами в основаниях цилиндрической части ротора.
Кроме того, в конструкции синхронного электродвигателя с анизотропной магнитной проводимостью ротора предусмотрены следующие отличия: основания цилиндрической части ротора и крепежные выемки листов пакета полюса ротора залиты электропроводящим материалом.
Сущность изобретения поясняется чертежами. На Фиг. 1 - Фиг. 8 представлена конструкция синхронного электродвигателя и ротора с анизотропной магнитной проводимостью на примере шестиполюсной машины. На Фиг. 9 - Фиг. 11 изображены конструкции пусковой (демпферной) обмотки синхронного электродвигателя с анизотропной магнитной проводимостью ротора.
Синхронный электродвигатель с анизотропной магнитной проводимостью ротора, содержит статор 1 с магнитопроводом 2 и статорными электрическими обмотками 3, подшипниковые щиты 4 и 5 и цилиндрический ротор 6 (Фиг. 1). Ротор 6 состоит из вала ротора 7, крепежных шпилек 8 и магнитопровода ротора 9, набранного из листов ферромагнитного материала 10 с промежутками, проложенными изоляцией 11 и шихтовкой, выполненной вдоль оси вала машины (Фиг. 2, Фиг. 3). Листы ферромагнитного материала 10 имеют форму, зависящую от числа пар полюсов статора 1 и обеспечивающую минимальную длину замыкания линий магнитного поля, создаваемого статорной обмоткой 3 (Фиг. 3). Ротор 6 дополнительно содержит токопроводящие немагнитные шины 12, количество которых равно числу полюсов электрической машины и два соединительных кольца 13 и 14 (Фиг. 2). Вал ротора 7 и крепежные шпильки 8 выполнены из немагнитного не токопроводящего материала. Листы ферромагнитного материала 10 имеют симметричную форму в поперечной плоскости машины, а каждая из токопроводящих шин 12, расположена по всему объему в крепежных выемках последних листов каждого пакета полюса 15 ротора 6 (Фиг. 3). Два соединительных кольца 13 и 14 электрически объединяют токопроводящие шины 12 в основаниях цилиндрической части ротора 6 (Фиг. 2).
Синхронный электродвигатель с анизотропной магнитной проводимостью ротора может быть конструктивно выполнен так, что магнитная система синхронного электродвигателя выполнена со скосом пакетов полюсов 15 ротора 6 относительно пакета магнитопровода 2 статора 1. Ротор 6 синхронного электродвигателя с анизотропной магнитной проводимостью ротора со скосом пакетов полюсов 15 ротора 6 относительно пакета магнитопровода 2 статора 3 изображен на Фиг. 4.
Синхронный электродвигатель с анизотропной магнитной проводимостью ротора может быть конструктивно выполнен так, что дополнительно содержит два токопроводящих кольца 16, 17, расположенных на валу 7 ротора 6, и лопатки 18 расположенные радиально, количество которых равно удвоенному числу числа полюсов электрической машины, электрически соединяющие токопроводящие шины 12 с токопроводящими кольцами 16 и 17 в основаниях цилиндрической части ротора 6 (Фиг. 5).
Синхронный электродвигатель с анизотропной магнитной проводимостью ротора может быть конструктивно выполнен так, что основания цилиндрической части ротора 6 и крепежные выемки листов пакета полюса 15 ротора 6 залиты электропроводящим материалом 19 (Фиг. 6).
Синхронная электрическая машина с анизотропной магнитной проводимостью ротора работает следующим образом.
Статор 1 предлагаемой электрической машины выполнен так же, как и в обычной электрической машине переменного тока (Фиг. 1). Обмотка статора 3 может быть выполнена m - фазной, при этом оси катушек сдвинуты в пространстве на углы 360°/m относительно друг друга в поперечном разрезе машины и на статоре 3 содержится требуемое количество пар полюсов. Для представленных рисунков (Фиг. 1 - Фиг. 11) число пар полюсов равно трем. При подаче переменного питающего напряжения одинакового по амплитуде, но сдвинутого на 360°/m электрических градусов, по обмоткам статора 3 потекут токи, которые создадут вращающееся магнитное поле. Ротор 6 двигателя может иметь различное конструктивное исполнение (Фиг. 1 - Фиг. 8) с числом полюсов, соответствующих числу полюсов статорной обмотки 3.
Вращающий момент в таком двигателе будет создан из-за разницы в магнитных проводимостях по продольной и поперечной осям. Для увеличения разницы между магнитными проводимостями по продольной и поперечной осям ротор 6 выполнен набранным из листов ферромагнитного материала 10 с изоляцией 11 между собой и с шихтовкой вдоль оси вала машины. При этом явно выраженные полюса ротора 6 стремятся сориентироваться относительно поля так, чтобы магнитное сопротивление для силовых линий поля было бы минимальным. Вследствие чего появляются силы, образующие вращающий момент, и ротор 6 вращается в том же направлении и с той же скоростью, что и поле. Следует отметить, что силы, стремящиеся сориентировать ротор относительно поля, будут действовать на каждую из пластин 10 ротора 6, каждая из которых будет создавать свой вращающий момент.
Для пуска в ход предлагаемого электродвигателя и успокоения колебаний ротора при работе электрической машины в конструкции ротора предусмотрена короткозамкнутая пусковая обмотка, выполненная в различных конструктивных вариантах (Фиг. 9 - Фиг. 11). Первый вариант пусковой обмотки, изображенный на Фиг. 9, состоит из токопроводящих шин 12 и двух соединительных колец 13 и 14, электрически объединяющих токопроводящие шины 12 в основаниях цилиндрической части ротора 6. Второй вариант пусковой обмотки, изображенный на Фиг. 10, состоит из токопроводящих шин 12, двух токопроводящих колец 16, 17, расположенных на валу 7 ротора 6, и лопаток 18. Причем число лопаток 18 равно удвоенному числу числа полюсов электрической машины. Лопатки 18 расположены радиально и электрически соединяют токопроводящие шины 12 с токопроводящими кольцами 16 и 17 в основаниях цилиндрической части ротора 6. Третий вариант пусковой обмотки, изображенный на Фиг. 11, выполнен таким образом, что основания цилиндрической части ротора 6 и крепежные выемки листов пакета полюса 15 ротора 6 залиты электропроводящим материалом 19.
Принцип действия такой обмотки заключается в следующем: при подаче переменного питающего напряжения на статорные электрические обмотки 3 по ним потечет ток, который в магнитопроводе 2 статора 1 создаст круговое вращающееся поле, которое, пересекая неподвижный ротор 6, наведет в его токопроводящих шинах 12 электродвижущую силу. С учетом того, что токопроводящие шины 12 электрически замкнуты накоротко между собой, это приведет к протеканию тока по токопроводящим шинам 12 и элементам, соединяющим их между собой. Протекание тока по токопроводящим шинам 12 приведет к появлению поля вокруг токопроводящих шин 12. Взаимодействие поля статора 1 и поля ротора 6 приведет к созданию вращающего момента, и предлагаемый электродвигатель будет запущен в асинхронном режиме. После втягивания ротора в синхронизм линии электромагнитного поля, создаваемого электрической обмоткой 3 статора 1, будут замыкаться через листы ферромагнитного материала 10, при этом они не пересекают токопроводящие шины 12 и соответственно в них не будет наводиться электродвижущая сила. Следовательно, в рабочем режиме в токопроводящих шинах 12 не будет протекать ток, а соответственно потери в короткозамкнутой обмотке ротора 6 отсутствуют. Потери в короткозамкнутой обмотке ротора 6 будут происходить только при пуске электрической машины в ход. Для создания значительной величины пускового момента токопроводящие шины 12 должны быть выполнены из материала с повышенным удельным сопротивлением.
Следует отметить, что такая пусковая обмотка ротора 6 будет выполнять функцию и успокоительной или демпферной обмотки для успокоения электромеханических колебаний машины в динамических режимах при ее работе.
Использование скоса пакетов полюсов ротора 6, изображенного на Фиг. 4, Фиг. 7, Фиг. 8 относительно пакета статора 1 в предлагаемом синхронном электродвигателе с анизотропной магнитной проводимостью ротора позволит сгладить индуктивности статорных обмоток 3, которые позволят уменьшить величину пульсации электромагнитного момента. При этом скос пакета полюса 13 ротора 6 должен быть выполнен на одно зубцовое деление магнитопровода 2 статора 1.
Таким образом, предлагаемый синхронный электродвигатель с анизотропной магнитной проводимостью ротора позволяет увеличить величину пускового момента, обеспечить возможность реверса, уменьшить пульсации электромагнитного момента, а так же значительно упростить конструкцию и технологию изготовления ротора.

Claims (4)

1. Синхронный электродвигатель с анизотропной магнитной проводимостью ротора, содержащий статор с магнитопроводом и статорными электрическими обмотками, подшипниковые щиты и цилиндрический ротор, состоящий из вала ротора, крепежных шпилек и магнитопровода ротора, набранного из листов ферромагнитного материала с промежутками, проложенными изоляцией и шихтовкой, выполненной вдоль оси вала машины, причем листы ферромагнитного материала имеют форму, зависящую от числа пар полюсов статора и обеспечивающую минимальную длину замыкания линий магнитного поля, создаваемого статорной обмоткой, отличающийся тем, что ротор дополнительно содержит токопроводящие немагнитные шины, количество которых равно числу полюсов электрической машины и два соединительных кольца, а вал ротора и крепежные шпильки выполнены из немагнитного не токопроводящего материала, причем листы ферромагнитного материала имеют симметричную форму в поперечной плоскости машины, а каждая из токопроводящих шин расположена по всему объему в крепежных выемках последних листов каждого пакета полюса ротора, а два соединительных кольца электрически объединяют токопроводящие шины в основаниях цилиндрической части ротора.
2. Синхронный электродвигатель с анизотропной магнитной проводимостью ротора по п. 1, отличающийся тем, что магнитная система синхронного электродвигателя выполнена со скосом пакетов полюсов ротора относительно пакета магнитопровода статора.
3. Синхронный электродвигатель с анизотропной магнитной проводимостью ротора по п. 1, отличающийся тем, что дополнительно содержит два токопроводящих кольца, расположенных на валу ротора, и лопатки, расположенные радиально, количество которых равно удвоенному числу числа полюсов электрической машины, электрически соединяющие токопроводящие шины с токопроводящими кольцами в основаниях цилиндрической части ротора.
4. Синхронный электродвигатель с анизотропной магнитной проводимостью ротора по п. 1, отличающийся тем, что основания цилиндрической части ротора и крепежные выемки листов пакета полюса ротора залиты электропроводящим материалом.
RU2016149697A 2016-12-16 2016-12-16 Синхронный электродвигатель с анизотропной магнитной проводимостью ротора RU2653842C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016149697A RU2653842C1 (ru) 2016-12-16 2016-12-16 Синхронный электродвигатель с анизотропной магнитной проводимостью ротора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016149697A RU2653842C1 (ru) 2016-12-16 2016-12-16 Синхронный электродвигатель с анизотропной магнитной проводимостью ротора

Publications (1)

Publication Number Publication Date
RU2653842C1 true RU2653842C1 (ru) 2018-05-15

Family

ID=62152954

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016149697A RU2653842C1 (ru) 2016-12-16 2016-12-16 Синхронный электродвигатель с анизотропной магнитной проводимостью ротора

Country Status (1)

Country Link
RU (1) RU2653842C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU198522U1 (ru) * 2020-04-07 2020-07-14 Евгений Николаевич Коптяев Улучшенный генератор с продольным возбуждением

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3614496A (en) * 1969-01-17 1971-10-19 Dordt Electromotoren Synchronous electric motor
SU1374354A1 (ru) * 1986-09-24 1988-02-15 Специальное Проектно-Конструкторское И Технологическое Бюро Электрических Машин Объединения "Сибэлектромотор" Реактивный синхронный электродвигатель
CN103166402A (zh) * 2011-12-08 2013-06-19 沈阳工业大学 隔磁磁阻和短路笼条一体式转子无刷电励磁同步电机
WO2014166555A2 (de) * 2013-04-12 2014-10-16 Siemens Aktiengesellschaft Reluktanzrotor mit anlaufhilfe
RU2541513C2 (ru) * 2013-04-23 2015-02-20 Общество с ограниченной ответственностью "Научно-производственный центр "Судовые электротехнические системы" (ООО "НПЦ "СЭС") Синхронная машина с анизотропной магнитной проводимостью ротора

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3614496A (en) * 1969-01-17 1971-10-19 Dordt Electromotoren Synchronous electric motor
SU1374354A1 (ru) * 1986-09-24 1988-02-15 Специальное Проектно-Конструкторское И Технологическое Бюро Электрических Машин Объединения "Сибэлектромотор" Реактивный синхронный электродвигатель
CN103166402A (zh) * 2011-12-08 2013-06-19 沈阳工业大学 隔磁磁阻和短路笼条一体式转子无刷电励磁同步电机
WO2014166555A2 (de) * 2013-04-12 2014-10-16 Siemens Aktiengesellschaft Reluktanzrotor mit anlaufhilfe
RU2541513C2 (ru) * 2013-04-23 2015-02-20 Общество с ограниченной ответственностью "Научно-производственный центр "Судовые электротехнические системы" (ООО "НПЦ "СЭС") Синхронная машина с анизотропной магнитной проводимостью ротора

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU198522U1 (ru) * 2020-04-07 2020-07-14 Евгений Николаевич Коптяев Улучшенный генератор с продольным возбуждением

Similar Documents

Publication Publication Date Title
RU2707189C2 (ru) Ротор, реактивная синхронная машина и способ изготовления ротора
US10749390B2 (en) Line-start synchronous reluctance motor with improved performance
RU2543992C2 (ru) Реконфигурируемый синхронно-асинхронный двигатель
RU2638826C2 (ru) Реактивный ротор, имеющий пусковое вспомогательное устройство
CN105284033B (zh) 电机
RU2541513C2 (ru) Синхронная машина с анизотропной магнитной проводимостью ротора
RU2437196C1 (ru) Электрическая машина двойного вращения
RU2653842C1 (ru) Синхронный электродвигатель с анизотропной магнитной проводимостью ротора
RU2437202C1 (ru) Магнитоэлектрическая бесконтактная машина с аксиальным возбуждением
TWI555306B (zh) 高效率發電機
RU2653844C1 (ru) Синхронный электродвигатель с анизотропной магнитной проводимостью ротора
CN208241559U (zh) 一种洛仑兹力电机
JP2012147674A (ja) 回転電機及び回転電機の固定子
CN105191088B (zh) 磁铁式发电机
RU105540U1 (ru) Модульная электрическая машина
KR102351855B1 (ko) 다중 도전체 재질의 입력단을 포함하는 6상 구동모터
RU2689319C1 (ru) Синхронная электрическая машина с анизотропной магнитной проводимостью ротора
RU2716489C2 (ru) Электромеханический преобразователь
JP6372970B2 (ja) 電動機
RU2752234C2 (ru) Синхронно-асинхронный электродвигатель
RU2687080C1 (ru) Синхронная электрическая машина с анизотропной магнитной проводимостью ротора
WO2014038971A1 (ru) Электромеханический преобразователь
RU2283527C2 (ru) Низкооборотный асинхронный электродвигатель
RU2286642C2 (ru) Электрический двигатель постоянного тока индукторного типа
CN103516124A (zh) 三相交直流离心发电机

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191217