RU2651212C1 - Method of reparation of cadmium sulfide films on a monocrystalline silicon - Google Patents

Method of reparation of cadmium sulfide films on a monocrystalline silicon Download PDF

Info

Publication number
RU2651212C1
RU2651212C1 RU2017109759A RU2017109759A RU2651212C1 RU 2651212 C1 RU2651212 C1 RU 2651212C1 RU 2017109759 A RU2017109759 A RU 2017109759A RU 2017109759 A RU2017109759 A RU 2017109759A RU 2651212 C1 RU2651212 C1 RU 2651212C1
Authority
RU
Russia
Prior art keywords
cadmium
solution
aerosol
monocrystalline silicon
pyrolysis
Prior art date
Application number
RU2017109759A
Other languages
Russian (ru)
Inventor
Александр Владимирович Наумов
Анастасия Валерьевна Сергеева
Виктор Николаевич Семенов
Светлана Юрьевна Васильева
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ")
Priority to RU2017109759A priority Critical patent/RU2651212C1/en
Application granted granted Critical
Publication of RU2651212C1 publication Critical patent/RU2651212C1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1678Heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
    • C30B29/50Cadmium sulfide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

FIELD: chemistry.
SUBSTANCE: invention relates to the production of polycrystalline films of sulfide and cadmium oxide on monocrystalline silicon by means of an aerosol pyrolysis technique of a solution on a heated substrate at a constant temperature in the range of 450–500 °C. According to the invention, the pyrolysis of the aerosol is carried out in two steps: on the former, a 0.03 mol/l aqueous solution of cadmium chloride or nitride is used as the spray solution, and on the second – 0.15 mol/l aqueous solution of thiourea.
EFFECT: technical result of the invention consists in the deposition of mirror-smooth polycrystalline films of hexagonal modification of cadmium sulfide up to 250 nm thick in monocrystalline silicon, which have good adhesion to the substrate.
1 cl, 2 dwg, 2 ex

Description

Изобретение относится к получению поликристаллических пленок сульфида и оксида кадмия на монокристаллическом кремнии с помощью техники пиролиза аэрозоля раствора на нагретой подложке.The invention relates to the production of polycrystalline films of sulfide and cadmium oxide on monocrystalline silicon using the technique of pyrolysis of aerosol solution on a heated substrate.

Сульфид кадмия является одним из перспективных материалов для создания тонкопленочных фотопреобразователей, сенсоров, датчиков и других устройств (Фотопроводящие пленки (типа CdS) / Под ред. З.И. Киръяшкиной, А.Г. Рокаха. Саратов: Изд-во Сарат.ун-та, 1979. - 195 с.). Актуальной задачей для создания фотоэлектронных устройств является синтез пленок сульфида кадмия с контролируемыми свойствами на поверхности монокристаллических полупроводников, в частности кремния. Варьирование оптических, электрических и фотоэлектрических свойств, а также кристаллической структуры сульфида кадмия возможно с помощью метода пиролиза аэрозоля на нагретой подложке.Cadmium sulfide is one of the promising materials for the creation of thin-film photoconverters, sensors, sensors and other devices (Photoconductive films (CdS type) / Edited by ZI Kiryashkina , AG Rokakha . Saratov: Publishing house Sarat.un- that, 1979. - 195 p.). An urgent task for the creation of photoelectronic devices is the synthesis of cadmium sulfide films with controlled properties on the surface of single-crystal semiconductors, in particular silicon. Varying the optical, electrical, and photoelectric properties, as well as the crystal structure of cadmium sulfide, is possible using the aerosol pyrolysis method on a heated substrate.

Известны способы получения пленок сульфидов ряда металлов (Zn, Cd, Ga, In, Pb, Bi, Cr, Mn и др.) с использованием тиокарбамидных координационных соединений как прекурсоров (Наумов А.В., Семенов В.К., Авербах Е.М. Тиомочевинные координационные соединения в процессах синтеза сульфидов металлов // Химическая промышленность. 2003. Т. 80, №2. С. 17-26). К ним относятся метод пиролиза аэрозоля (англ. Spray Pyrolysis Deposition, Chemical Spray Deposition) (Chamberlin R.R., Skarman J.S. Chemical spray deposition process for inorganic films // J. Electrochem. Soc. 1966. V. 113, N 1. P. 86-89), методы химического осаждения из растворов (метод «химической ванны» (англ. Chemical Bath Deposition), «метод погружения» (англ. Dip Method)). Одним из недостатков этих методов является невозможность получения пленок с хорошей адгезией на полупроводниковых подложках, в том числе подложках mono-Si. Эпитаксиальные пленки сульфидов на Si и АIIIВV можно получать методом вакуумного распыления (Fuke S., Araki H., Kuwahara K. et al. Indium doping effects on vapor-phase growth of ZnS on GaP // J. Appl. Phys. V. 59. 1986. P. 1761-1763). К числу недостатков в этом случае относятся сложность технологического процесса, высокая стоимость оборудования, а также трудности в управлении отклонениями от стехиометрии фаз переменного состава.Known methods for producing sulfide films of a number of metals (Zn, Cd, Ga, In, Pb, Bi, Cr, Mn, etc.) using thiocarbamide coordination compounds as precursors ( Naumov A.V., Semenov V.K., Averbakh E. M. Thiourea coordination compounds in the synthesis of metal sulfides // Chemical Industry. 2003. V. 80, No. 2, P. 17-26). These include aerosol pyrolysis (Spray Pyrolysis Deposition, Chemical Spray Deposition) ( Chamberlin RR, Skarman JS . Chemical spray deposition process for inorganic films // J. Electrochem. Soc. 1966. V. 113, N 1. P. 86-89), methods of chemical deposition from solutions (method of "chemical bath" (Eng. Chemical Bath Deposition), "immersion method" (Eng. Dip Method)). One of the drawbacks of these methods is the impossibility of producing films with good adhesion on semiconductor substrates, including mono- Si substrates. Epitaxial sulfide films on Si and A III B V can be obtained by vacuum spraying ( Fuke S., Araki H., Kuwahara K. et al . Indium doping effects on vapor-phase growth of ZnS on GaP // J. Appl. Phys. V. 59. 1986. P. 1761-1763). Among the disadvantages in this case are the complexity of the process, the high cost of equipment, as well as difficulties in managing deviations from stoichiometry of phases of variable composition.

Наиболее близким к предлагаемому способу является способ получения пленок CdS на стеклообразных подложках распылением растворов тиокарбамидных комплексов кадмия (Наумов А.В., Семенов В.Н, Гончаров Е.Г. Свойства пленок CdS, полученных из координационных соединений кадмия с тиомочевиной // Неорган. материалы. 2001. Т. 37, №6. С. 647-652). Способ предполагает синтез исходного координационного соединения кадмия (II) с тиокарбамидом, а затем пиролиз аэрозоля водного раствора этого соединения на нагретой подложке, в результате чего образуются слои сульфида кадмия. Недостатком способа является избирательная адгезия к стеклообразным подложкам (кварцевое и силикатное стекло, ситалл) и невозможность осаждения качественных слоев на монокристаллах кремния.Closest to the proposed method is a method for producing CdS films on glassy substrates by spraying solutions of cadmium thiourea complexes ( Naumov A.V., Semenov V.N., Goncharov E.G. Properties of CdS films obtained from cadmium coordination compounds with thiourea // Neorgan. materials. 2001. V. 37, No. 6. S. 647-652). The method involves the synthesis of the initial coordination compound of cadmium (II) with thiocarbamide, and then the pyrolysis of the aerosol of an aqueous solution of this compound on a heated substrate, resulting in the formation of layers of cadmium sulfide. The disadvantage of this method is the selective adhesion to glassy substrates (quartz and silicate glass, glass) and the impossibility of deposition of high-quality layers on silicon single crystals.

Задачей изобретения является разработка процесса осаждения пленок сульфида кадмия на поверхности mono-Si без предварительной обработки подложки.The objective of the invention is to develop a process for the deposition of films of cadmium sulfide on the surface of mono- Si without preliminary processing of the substrate.

Технический результат изобретения заключается в осаждении зеркально гладких поликристаллических пленок гексагональной модификации сульфида кадмия толщиной до 250 нм на монокристаллическом кремнии, обладающих хорошей адгезией к подложке.The technical result of the invention consists in the deposition of mirror-smooth polycrystalline films of hexagonal modification of cadmium sulfide with a thickness of up to 250 nm on monocrystalline silicon, which have good adhesion to the substrate.

Технический результат изобретения достигается тем, что в способе получения пленок сульфида кадмия на монокристаллическом кремнии используется техника пиролиза аэрозоля раствора на нагретой подложке при постоянной температуре в интервале 450-500°С, согласно изобретению пиролиз аэрозоля проводится в два этапа, на первом в качестве распыляемого раствора используется 0.03 моль/л водный раствор хлорида или нитрида кадмия, а на втором - 0.15 моль/л водный раствор тиомочевины.The technical result of the invention is achieved by the fact that in the method for producing cadmium sulfide films on monocrystalline silicon, the technique of pyrolysis of an aerosol of a solution on a heated substrate at a constant temperature in the range of 450-500 ° C is used, according to the invention, aerosol pyrolysis is carried out in two stages, the first as a spray solution a 0.03 mol / L aqueous solution of cadmium chloride or nitride is used, and in the second, 0.15 mol / L an aqueous solution of thiourea.

На фиг. 1 приведен спектр отражения сульфидизированного слоя, осажденного при пиролизе аэрозоля раствора Сd(NO3)2 на монокристаллическом кремнии.In FIG. Figure 1 shows the reflection spectrum of a sulfidized layer deposited during pyrolysis of the aerosol of a solution of Cd (NO 3 ) 2 on single-crystal silicon.

На фиг. 2 приведены дифрактограммы слоев: 1 - осажденного при распылении раствора CdCl2 на нагретую подложку Si (100); 2 - сформированного при последующей сульфидизации.In FIG. Figure 2 shows the diffraction patterns of the layers: 1 — a solution of CdCl 2 deposited upon spraying onto a heated Si (100) substrate; 2 - formed during subsequent sulfidization.

Способ позволяет сформировать пленки CdS на поверхности mono-Si путем проведения процесса в два разделенных этапа с помощью пиролиза аэрозоля раствора, при этом не требует специальной подготовки подложек, в качестве подложек используются готовые пластины монокристаллического кремния. На первом этапе осаждается слой оксида кадмия за счет высокотемпературного гидролиза соли кадмия. На втором этапе этот слой превращается в сульфид под действием тиокарбамида как сульфидизирующего агента. Такой двухстадийный процесс отличается от обычного метода пиролиза аэрозоля тем, что обходится без образования тиокарбамидных комплексов в растворе, а слой сульфида формируется на подложке в результате взаимодействия с тиокарбамидом заранее осажденного твердофазного продукта. Осаждение ведется на воздухе. Растворы распыляются с помощью пневматической форсунки, газ-распылитель - воздух.The method allows the formation of CdS films on a mono- Si surface by carrying out the process in two separated stages using solution aerosol pyrolysis, without requiring special preparation of substrates, ready-made single-crystal silicon wafers are used as substrates. At the first stage, a cadmium oxide layer is deposited due to the high-temperature hydrolysis of the cadmium salt. In the second stage, this layer is converted to sulfide by the action of thiocarbamide as a sulfidizing agent. Such a two-stage process differs from the usual method of aerosol pyrolysis in that it dispenses with the formation of thiocarbamide complexes in solution, and a sulfide layer is formed on the substrate as a result of interaction with a thiocarbamide of a pre-deposited solid-phase product. Precipitation is carried out in air. The solutions are sprayed using a pneumatic nozzle, the gas spray is air.

С использованием этого метода были сформированы зеркально гладкие слои (CdS, CdO)/Si(100) толщиной до 250 нм с коэффициентом отражения в видимой области до 25%, имеющие интерференционную окраску (спектр отражения приведен на фиг. 1). Оптическая ширина запрещенной зоны варьируется в пределах 2.45-2.48 эВ в зависимости от исходной соли кадмия. Пленки дают четкую рентгенодифракционную картину (фиг. 2), позволяющую говорить о хорошо сформированной кристаллической структуре твердых фаз. Оксид кадмия имеет кубическую структуру (структурный тип NaCl, пространственная группа

Figure 00000001
), сульфид кадмия имеет гексагональную структуру (структурный тип вюрцита, Р6 3 mc).Using this method, specularly smooth (CdS, CdO) / Si (100) layers with a thickness of up to 250 nm with a reflectance in the visible region of up to 25% having interference color were formed (the reflection spectrum is shown in Fig. 1). The optical band gap varies between 2.45–2.48 eV, depending on the initial cadmium salt. The films give a clear x-ray diffraction pattern (Fig. 2), which allows us to speak of a well-formed crystalline structure of solid phases. Cadmium oxide has a cubic structure (structural type NaCl, space group
Figure 00000001
), cadmium sulfide has a hexagonal structure (structural type of wurtzite, P6 3 mc ).

Пример 1. Пленки оксида кадмия получали пневматическим распылением раствора CdCl2 на нагретые подложки, представляющие собой полированные пластины кремния ЭКЭФ-20 ориентации (100). Температура подложки составляла 500.0±0.1°С и контролировалась с помощью терморегулятора ТРМ-101, управляющего плоской печью резистивного нагрева. Концентрация соли кадмия составляла 0.030 моль/л, расход раствора (плотность потока аэрозоля) - в интервале от 0.1⋅10-8 до 0.5⋅10-8 л/(мм2⋅с), время напыления - от 10 до 30 мин.Example 1. Films of cadmium oxide were obtained by pneumatic spraying of a solution of CdCl 2 on heated substrates, which are polished silicon wafers of EKEF-20 orientation (100). The substrate temperature was 500.0 ± 0.1 ° С and was controlled using a ТРМ-101 thermostat controlling a flat resistive heating furnace. The concentration of cadmium salt was 0.030 mol / L, solution flow rate (spray flux density) - ranging from 0.1⋅10 -8 to 0.5⋅10 -8 l / (mm 2 ⋅s), sputtering time - from 10 to 30 minutes.

Осажденные слои подвергали дальнейшей сульфидизации, обрабатывая их аэрозолем раствора 0.150 моль/л тиокарбамида при температуре 500°С, в результате чего оксид кадмия превращался в сульфид гексагональной вюрцитной модификации. Таким образом были получены зеркально гладкие поликристаллические слои 250 нм, обладающие хорошей адгезией к подложке. Параметры решеток кубического CdO (

Figure 00000001
) а=0.4685 нм, гексагонального CdS (Р63mc) а=0.4130 нм, с=0.6707 нм, оптическая ширина запрещенной зоны 2.45 эВ.The deposited layers were subjected to further sulfidization, treating them with an aerosol of a solution of 0.150 mol / L thiocarbamide at a temperature of 500 ° С, as a result of which cadmium oxide turned into hexagonal wurtzite sulfide. Thus, mirror-smooth polycrystalline layers of 250 nm were obtained, which have good adhesion to the substrate. Lattice parameters of cubic CdO (
Figure 00000001
) а = 0.4685 nm, hexagonal CdS (Р6 3 mc) а = 0.4130 nm, с = 0.6707 nm, optical band gap 2.45 eV.

Пример 2. Пневматическим распылением раствора 0.030 моль/л Cd(NO3)2 на нагретые до 500°С полированные пластины кремния ЭКЭФ-20 ориентации (100) осаждали слои, представляющие собой смесь оксида кадмия и стеклообразной фазы предположительно на основе силиката кадмия CdSiO3. Сульфидизация в аэрозоле раствора 0.150 моль/л тиокарбамида при 500°С на втором этапе привела к полному исчезновению стеклообразной фазы и превращению оксида кадмия в сульфид гексагональной модификации. Таким образом были сформированы поликристаллические слои толщиной 250 нм с хорошей адгезией к подложке, со структурными параметрами CdO 0.4684 нм, CdS 0.4130 нм (а), 0.6707 нм (с), оптической шириной запрещенной зоны 2.48 эВ.Example 2. Pneumatic spraying of a solution of 0.030 mol / L Cd (NO 3 ) 2 onto heated (500) orientation polished silicon wafers of EEC-20 orientation (100) to 500 ° C precipitated layers consisting of a mixture of cadmium oxide and a glassy phase, presumably based on cadmium silicate CdSiO 3 . The aerosol sulfidization of a solution of 0.150 mol / L thiocarbamide at 500 ° С in the second stage led to the complete disappearance of the glassy phase and the conversion of cadmium oxide to hexagonal sulfide. Thus, polycrystalline layers 250 nm thick were formed with good adhesion to the substrate, with the structural parameters CdO 0.4684 nm, CdS 0.4130 nm ( a ), 0.6707 nm ( s ), and an optical band gap of 2.48 eV.

Claims (1)

Способ получения пленок сульфида кадмия на монокристаллическом кремнии, заключающийся в использовании техники пиролиза аэрозоля раствора на нагретой подложке при постоянной температуре 450-500°С, отличающийся тем, что пиролиз аэрозоля проводится в два этапа, на первом используется 0,03 моль/л водный раствор хлорида или нитрида кадмия, на втором – 0,15 моль/л водный раствор тиомочевины.A method of producing cadmium sulfide films on monocrystalline silicon, which consists in using the technique of pyrolysis of an aerosol of a solution on a heated substrate at a constant temperature of 450-500 ° C, characterized in that the pyrolysis of aerosol is carried out in two stages, the first uses 0.03 mol / l aqueous solution cadmium chloride or nitride, in the second - 0.15 mol / l aqueous solution of thiourea.
RU2017109759A 2017-03-23 2017-03-23 Method of reparation of cadmium sulfide films on a monocrystalline silicon RU2651212C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017109759A RU2651212C1 (en) 2017-03-23 2017-03-23 Method of reparation of cadmium sulfide films on a monocrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017109759A RU2651212C1 (en) 2017-03-23 2017-03-23 Method of reparation of cadmium sulfide films on a monocrystalline silicon

Publications (1)

Publication Number Publication Date
RU2651212C1 true RU2651212C1 (en) 2018-04-18

Family

ID=61977123

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017109759A RU2651212C1 (en) 2017-03-23 2017-03-23 Method of reparation of cadmium sulfide films on a monocrystalline silicon

Country Status (1)

Country Link
RU (1) RU2651212C1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU890907A1 (en) * 1980-08-19 1983-09-30 Одесский Ордена Трудового Красного Знамени Государственный Университет Им.И.И.Мечникова Method for preparing photosensitive cadmium sulfide films
US20070020400A1 (en) * 2005-07-22 2007-01-25 State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon Method and apparatus for chemical deposition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU890907A1 (en) * 1980-08-19 1983-09-30 Одесский Ордена Трудового Красного Знамени Государственный Университет Им.И.И.Мечникова Method for preparing photosensitive cadmium sulfide films
US20070020400A1 (en) * 2005-07-22 2007-01-25 State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon Method and apparatus for chemical deposition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
САМОФАЛОВА Т.В. и др., КОНДЕНСИРОВАННЫЕ СРЕДЫ И МЕЖФАЗНЫЕ ГРАНИЦЫ, 2011, Том 13, N 4, стр. 504-509. *

Similar Documents

Publication Publication Date Title
US8366967B2 (en) Metal chalcogenide aqueous precursors and processes to form metal chalcogenide films
US20140144500A1 (en) Semiconductor inks films, coated substrates and methods of preparation
Hollingsworth et al. Spray CVD of copper indium sulfide films: control of microstructure and crystallographic orientation
Caglar et al. Influence of heat treatment on the nanocrystalline structure of ZnO film deposited on p-Si
JP2003031846A (en) Zinc oxide semiconductor member formed on silicon substrate
US10453988B2 (en) Methods for creating cadmium telluride (CdTe) and related alloy film
Salah et al. Preparation and characterization of tin sulphide thin films by a spray pyrolysis technique
Evstropiev et al. Polymer-salt synthesis and characterization of MgO-ZnO ceramic coatings with the high transparency in UV spectral range
Padam et al. Preparation and characterization of chemically deposited CuInS2 thin films
Yang et al. Effects of temperature on properties of ZnS thin films deposited by pulsed laser deposition
Osherov et al. Chemical epitaxy of semiconductor thin films
Raidou et al. Characterization of ZnO thin films grown by SILAR method
Ashith et al. Effect of post-deposition annealing on the properties of ZnO films obtained by high temperature, micro-controller based SILAR deposition
RU2651212C1 (en) Method of reparation of cadmium sulfide films on a monocrystalline silicon
Vargas‐Hernández et al. XPS, SEM and XRD investigations of CdSe films prepared by chemical bath deposition
He et al. Influence of laser pulse energy on the microstructure and optical properties of Cu2ZnSnS4 films by one-step pulsed laser deposition
Khothong et al. Morphology and structure controlled fabrication of Cu2ZnSnS4 thin films by convective assembly deposition
KR102107346B1 (en) Monolithic integrated semiconductor structure
Xavier et al. Th e properties of chemical bath deposited cadmium sulfide thin films with the effect of ammonia sal t concentration
Khalil et al. Influence of post annealing on CBD deposited ZnS thin films
Ho et al. Effect of pH on the synthesis of cobalt selenide films by SILAR method
Ceviz et al. Effect of the substrate temperature on the characterization of spray-deposited ZnS: B films developed in science parks
Luque et al. Role of zinc source in chemical bath deposition of zinc sulfide thin films on Si 3 N 4
Nomura et al. Useful and accessible organometallic precursors for preparation of zinc sulfide and indium sulfide thin films via solution pyrolysis (printing) method
Castelo-Gonzalez et al. Synthesis and characterization of In 2 S 3 thin films deposited by chemical bath deposition on polyethylene naphthalate substrates

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200324