RU2644887C1 - Вибрационная мельница - Google Patents

Вибрационная мельница Download PDF

Info

Publication number
RU2644887C1
RU2644887C1 RU2017102547A RU2017102547A RU2644887C1 RU 2644887 C1 RU2644887 C1 RU 2644887C1 RU 2017102547 A RU2017102547 A RU 2017102547A RU 2017102547 A RU2017102547 A RU 2017102547A RU 2644887 C1 RU2644887 C1 RU 2644887C1
Authority
RU
Russia
Prior art keywords
conical
grinding
disks
vibration
damping
Prior art date
Application number
RU2017102547A
Other languages
English (en)
Inventor
Олег Савельевич Кочетов
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2017102547A priority Critical patent/RU2644887C1/ru
Application granted granted Critical
Publication of RU2644887C1 publication Critical patent/RU2644887C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/14Mills in which the charge to be ground is turned over by movements of the container other than by rotating, e.g. by swinging, vibrating, tilting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/16Mills provided with vibrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)

Abstract

Изобретение относится к измельчительным устройствам, в частности к многокамерным вибромельницам с цилиндрическими мелющими телами, и может быть использовано для тонкого измельчения и гомогенизации строительных смесей, в том числе пигментов. Вибрационная мельница содержит горизонтально установленный на опоре через виброизоляторы корпус с приводным дебалансным вибратором и измельчительными камерами, в которых свободно размещены мелющие цилиндрические тела. Мелющие тела выполнены в виде свободно установленных одна в другую труб и стержня. Опора установлена на демпфирующие устройства. Каждый из виброизоляторов выполнен на базе кольцевой конусной пружины, состоящей из набора последовательно чередующихся конусных дисков большего и меньшего диаметров с отогнутыми в противоположные стороны краями по радиусу. При этом каждый из внешних и внутренних кольцевых упругих конусных дисков выполнен в виде усеченных конусных поверхностей и содержит по крайней мере три радиальных паза, направленных от большего основания усеченного конуса к меньшему основанию, причем каждый из радиальных пазов заканчивается отверстием для снятия напряжений, а сопряжение боковых конусных поверхностей внешних кольцевых упругих конусных дисков с боковыми конусными поверхностями внутренних кольцевых упругих конусных дисков выполнено в виде сферических сегментов радиусом R. Сферические сегменты выполнены заедино с коническими поверхностями каждого из дисков и направлены в разные стороны от образующей конической поверхности. Боковые конусные поверхности внутренних кольцевых упругих конусных дисков и сферических сегментов покрыты вибродемпфирующим материалом, а поверхности сопряжения боковых конусных поверхностей внутреннего кольцевого упругого конусного диска с основанием, выполненные в виде сферических сегментов радиусом R, покрыты фрикционным материалом. Фрикционный материал выполнен из композиции, включающей следующие компоненты при их соотношении, мас. %: смесь резольной и новолачной фенолоформальдегидных смол в соотношении 1:(0,2-1,0) 28÷34%, волокнистый минеральный наполнитель, содержащий стеклоровинг или смесь стеклоровинга и базальтового волокна в соотношении 1:(0,1-1,0) 12÷19%, графит 7÷18%, модификатор трения, содержащий технический углерод в виде смеси с каолином и диоксидом кремния 7÷15%, баритовый концентрат 20÷35%, тальк 1,5÷3,0%. В мельнице обеспечивается повышение производительности и степени измельчения. 1 з.п. ф-лы, 5 ил.

Description

Изобретение относится к измельчительным устройствам, в частности к многокамерным вибромельницам с цилиндрическими мелющими телами. Наиболее широко оно может быть использовано для тонкого измельчения и гомогенизации строительных смесей, в том числе пигментов.
Наиболее близким техническим решением, принимаемым за прототип, является вибрационная мельница (а.с. СССР №559725 - прототип), содержащая горизонтально установленный на опору через эластичные амортизаторы корпус с приводным дебалансным вибратором и измельчительными камерами, в которых свободно размещены мелющие цилиндрические тела и которые соединены друг с другом течками для межкамерной перегрузки измельчаемого материала. Мельница отличается простотой, надежностью и компактностью, однако, при этом для нее характерны низкая производительность и степень измельчения из-за малой рабочей площади мелющих тел.
Недостатком прототипа является сравнительно невысокая производительность и степень измельчения из-за невысокого демпфирования системы виброизоляции корпуса вибрационной мельницы.
Технически достижимый результат - повышение производительности и степени измельчения.
Это достигается тем, что в вибрационной мельнице, содержащей горизонтально установленный на опору через эластичные амортизаторы корпус с приводным дебалансным вибратором и измельчительными камерами, в которых свободно размещены мелющие цилиндрические тела и которые соединены друг с другом течками для межкамерной перегрузки измельчаемого материала, в которой в соответствии с настоящим изобретением мелющие тела выполнены в виде свободно установленных одна в другую труб и стержня, при этом двойной радиальный зазор В между контактирующими поверхностями мелющей камеры, труб и стержня находится в пределах зависимости: В=(0,7÷1,0)2А, где А - амплитуда круговых колебаний корпуса, при этом вал соединен с электродвигателем, который установлен на опоре с вибродемпфирующей пластиной, через компенсационную муфту, при этом опора установлена на демпфирующие устройства.
На фиг. 1 представлен фронтальный разрез вибрационной мельницы, на фиг. 2 - разрез А-А фиг. 1, на фиг. 3 - разрез С-С фиг. 1, на фиг. 4, 5 - схема виброизоляторов 2.
Вибрационная мельница содержит горизонтально установленный на опору 1 через эластичные виброизоляторы 2 корпус 3 со сквозными цилиндрическими измельчительными камерами 4, размещенными по окружности корпуса 3. Внутри камер 4 свободно размещены комплексные мелющие тела 5. Корпус 3 с обеих сторон закрыт торцевыми крышками 6, в которых выполнены перегрузочные пазы 7, размещенные между торцами камер.
В подшипниках 8 корпуса 3 установлен вал 9, на обоих концах которого смонтированы дебалансные вибраторы 10. Вал 9 соединен с электродвигателем 11, установленным на опоре 1 с вибродемпфирующей пластиной 19, через компенсационную муфту 12, при этом опора 1 установлена на демпфирующие устройства 20. В верхней части торцевой крышки корпуса 3 закреплена приемная воронка 13 с центральной перегородкой 14, а на нижней части другой торцевой крышки смонтирована разгрузочная течка 15. Комплексные мелющие тела 5 (фиг. 3) состоят из наружной трубы 16, внутренней трубы 17 с размещенным внутри нее стержнем 18, причем суммарный радиальный зазор В между их рабочими поверхностями находится в зависимости: В=(0,7÷1,0)2А, где А - амплитуда корпуса 3.
При использовании коэффициента менее 0,7 технологический эффект резко снижается из-за уменьшения мелющей силы, а при превышении его значения более 1,0 затрудняется равномерная обкатка тел друг по другу, что также приводит к ухудшению технологических показателей.
Каждый из виброизоляторов 2, на котором установлен корпус 3 с приводными дебалансными вибраторами 10, выполнен на базе кольцевой конусной пружины, состоящей из набора, включающего, по крайней мере, один внешний 21 и два внутренних 22 и 24 кольцевых упругих конусных дисков (фиг. 4, 5), размещенных между основанием 32 и крышкой 37 пружины. Каждый из внешних 22, 23, 25 и внутренних 22, 24, 26, 27 кольцевых упругих конусных дисков выполнен в виде усеченных конусных поверхностей и содержит, по крайней мере, три радиальных паза 28, направленных от большего основания 31 усеченного конуса к меньшему основанию 30.
Каждый из радиальных пазов 28 заканчивается отверстием 29 для снятия напряжений. Сопряжение боковых конусных поверхностей внешних 21, 32, 25 кольцевых упругих конусных дисков с боковыми конусными поверхностями внутренних 22, 24, 26, 27 кольцевых упругих конусных дисков выполнено в виде сферических сегментов радиусом R, имеющихся на каждом из дисков в количестве двух, расположенных соответственно у большего основания 31 усеченного конуса и меньшего основания 30 каждого из дисков. При этом сферические сегменты выполнены заедино с коническими поверхностями каждого из дисков и направлены в разные стороны от образующей конической поверхности, т.е. один сферический сегмент каждого диска направлен внутрь конической поверхности, а другой - наружу. Высота внутреннего конуса f1 внешнего кольцевого конусного диска 21 выполнена по расчету, а высота f2 внутреннего конуса внутреннего кольцевого конусного диска 22 выполнена, например, несколько больше, чем f1.
Для создания опоры пружины при выборе хода ее на максимальную величину и для ограничения перемещения кольцевого упругого конусного диска 23 он имеет высоту H1, например, несколько большую высоты Н2 кольцевого упругого конусного диска 25.
Для фиксации пружины на вибрирующем основании (на чертеже не показано) служит центральное отверстие 36 в основании 32 пружины, а для крепления виброизолируемого объекта (на чертеже не показан) - центральное резьбовое отверстие 34 в крышке 37 пружины, собранной, например, как показано на фиг. 2, из семи кольцевых конусных дисков, находящихся в свободном состоянии. Число внешних и внутренних дисков может быть различным в зависимости от жесткости и величины хода пружины.
Для использования кольцевой конусной пружины без направляющей гильзы или центрирующей оправки внутренний диаметр Д1 кольцевого упругого конусного диска 21 и наружный диаметр Д2 кольцевого упругого конусного диска 22, а также внутренний диаметр d2 кольца 27 и наружный диаметр d1 кольцевого упругого конусного диска 22 выполнены, например, по подвижной посадке. Возможен вариант выполнения боковых конусных поверхностей внешних и внутренних кольцевых упругих конусных дисков без радиальных пазов 28 (фиг. 3). Сопряжение боковых конусных поверхностей внутренних 22, 24, 26, 27 кольцевых упругих конусных дисков с основанием 32 и крышкой 37 выполнено в виде сферических сегментов соответственно 33 и 35 радиусом R.
Возможен вариант выполнения боковых конусных поверхностей внутренних кольцевых упругих конусных дисков и сферических сегментов с покрытием их с двух сторон вибродемпфирующим материалом, например полиуретаном (на чертеже не показано).
Возможен вариант выполнения боковых конусных поверхностей внутренних и внешних кольцевых упругих конусных дисков и сферических сегментов с покрытием их с двух сторон вибродемпфирующим материалом, например полиуретаном (на чертеже не показано).
Возможен вариант выполнения поверхностей сопряжения боковых конусных поверхностей внутреннего 22 кольцевого упругого конусного диска с основанием 32, выполненных в виде сферических сегментов 33 радиусом R, покрытых фрикционным материалом, выполненным из композиции, включающей следующие компоненты при их соотношении, мас. %: смесь резольной и новолачной фенолоформальдегидных смол в соотношении 1:(0,2-1,0) 28÷34%, волокнистый минеральный наполнитель, содержащий стеклоровинг или смесь стеклоровинга и базальтового волокна в соотношении 1:(0,1-1,0) 12÷19%, графит 7÷18%, модификатор трения, содержащий технический углерод в виде смеси с каолином и диоксидом кремния 7÷15%, баритовый концентрат 20÷35%, тальк 1,5÷3,0%.
Кольцевая конусная пружина с демпфирующим основанием работает следующим образом.
Под нагрузкой Р кольцевые конусные диски взаимодействуют один с другим одновременно как внешними, так и внутренними рабочими поверхностями своих сферических сегментов. В процессе работы энергия от воспринимаемых пружиной нагрузок расходуется на упругую деформацию каждого кольцевого конусного диска, например по аналогии как с каждым витком винтовой пружины, а также на рассеивание энергии за счет трения при перемещении их сферических сегментов, например по аналогии как осуществляется демпфирование при «сухом трении». Кроме того, в предлагаемой конструкции значительно уменьшается напряжение на кромках колец пружины по сравнению с тарельчатыми пружинами, что позволяет повысить допускаемые напряжения в материале и, следовательно, нагрузку, а также несколько увеличить величину хода. Перемещение кольцевых конусных дисков обеспечивает разность нагрузочных и разгрузочных характеристик пружины за один ход ее под нагрузкой, что, в свою очередь, обеспечивает, например, некоторое повышенное затухание механических колебаний системы в целом. Пружина выполнена так, что изготовление ее кольцевых конусных дисков можно осуществить из разных материалов и различных заготовок, например, из листовых стальных и цветных литейных сплавов, а также из соответствующих неметаллических материалов, в том числе и из пластических масс и им подобных материалов.
Возможен вариант (фиг. 2), когда к нижней части основания 12 пружины присоединен демпфирующий элемент 18, состоящий из трех промежуточных вибродемпфирующих слоев: первый слой - из дисперсного упругодемпфирующего материала, в котором может быть использована крошка, например следующих материалов: резины, пробки, пенопласта, капрона, вспененного полимера, а также крошка твердых вибродемпфирующих материалов, например таких как пластикат типа «Агат», «Антивибрит», «Швим» с размером фракций крошки 1,5÷2,5 мм, второй слой - из вязаных упругих синтетических нитей, причем размер ячеек, вязаных из упругих синтетических нитей, на 10÷15% меньше размеров фракций крошки вибродемпфирующих материалов; и третий слой - из сплошного демпфирующего материала, в котором может быть использована губчатая резина, иглопробивной материал типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, а также нетканый вибродемпфирующий материал.
Вибрационная мельница работает следующим образом.
Исходный материал загружается в приемную воронку 13 под навалом и благодаря центральной перегородке 14 разделяется на два равных потока, которые по перегрузочным пазам 7 в торцевых крышках 6 проходят последовательно по левому и правому ряду измельчительных камер 4. От электродвигателя 11 крутящий момент передается валу 9 через муфту 12. При вращении сидящих на валу 9 дебалансных вибраторов 10 создается центробежная сила, заставляющая корпус 3 совершать на виброизоляторах 2 круговые колебания с амплитудой А. При этом комплексные мелющие тела 5 получают круговые колебания по стенкам камер 4 через слой измельчаемого материала. Материал получает псевдоожиженное состояние и подобно жидкости перемещается от входа камеры к ее выходу и далее к входу следующей камеры. Псевдоожиженный материал проходит также в зазоры между мелющими трубами 16, 17 и стержнем 18, что приводит к существенному увеличению поверхности помола и проскальзыванию мелющих тел относительно друг друга, что приводит к повышению производительности и степени измельчения на 50%.
Проведенные испытания показали, что при измельчении кварца с частицами размером 6 мм получен продукт, содержащий 90% частиц мельче 3 мкм при производительности 15 кг/ч и двигателе 6 кВт. Таким образом, степень измельчения достигает 1500, что невозможно осуществить ни в одной из известных мельниц.
Мельница имеет один вал с симметричными вибраторами, не требующими самосинхронизации или специальных кинематических связей между собой. Этим определяется простота конструкции.
Наконец, одинаковые условия работы камер обеспечивают одинаковый износ мелющих тел, что повышает стабильность технологических показателей.

Claims (2)

1. Вибрационная мельница, содержащая горизонтально установленный на опоре через виброизоляторы корпус с приводным дебалансным вибратором и измельчительными камерами, в которых размещены мелющие цилиндрические тела и которые соединены друг с другом течками для межкамерной перегрузки измельчаемого материала, мелющие тела выполнены в виде свободно установленных одна в другой труб и стержня, при этом двойной радиальный зазор В между контактирующими поверхностями мелющей камеры, труб и стержня находится в пределах зависимости: В=(0,7÷1,0)2А, где А - амплитуда круговых колебаний корпуса, вал соединен с электродвигателем, который установлен на опоре с вибродемпфирующей пластиной, через компенсационную муфту, при этом опора установлена на демпфирующие устройства, отличающаяся тем, что каждый из виброизоляторов, на котором установлен корпус с приводным дебалансным вибратором, выполнен на базе кольцевой конусной пружины, состоящей из набора конусных дисков, причем набор составлен из последовательно чередующихся дисков большего и меньшего диаметров с отогнутыми в противоположные стороны краями по радиусу, обеспечивающему сопряжение дисков одного с другим, набор состоит по крайней мере из одного внешнего и двух внутренних кольцевых упругих конусных дисков, размещенных между основанием и крышкой пружины, при этом каждый из внешних и внутренних кольцевых упругих конусных дисков выполнен в виде усеченных конусных поверхностей и содержит по крайней мере три радиальных паза, направленных от большего основания усеченного конуса к меньшему основанию, причем каждый из радиальных пазов заканчивается отверстием для снятия напряжений, а сопряжение боковых конусных поверхностей внешних кольцевых упругих конусных дисков с боковыми конусными поверхностями внутренних кольцевых упругих конусных дисков выполнено в виде сферических сегментов радиусом R, имеющихся на каждом из дисков в количестве двух, расположенных соответственно у большего основания усеченного конуса и меньшего основания каждого из дисков, при этом сферические сегменты выполнены заедино с коническими поверхностями каждого из дисков и направлены в разные стороны от образующей конической поверхности, т.е. один сферический сегмент каждого диска направлен внутрь конической поверхности, а другой - наружу, боковые конусные поверхности внутренних кольцевых упругих конусных дисков и сферических сегментов покрыты вибродемпфирующим материалом, например полиуретаном, при этом поверхности сопряжения боковых конусных поверхностей внутреннего кольцевого упругого конусного диска с основанием, выполненные в виде сферических сегментов радиусом R, покрыты фрикционным материалом, выполненным из композиции, включающей следующие компоненты при их соотношении, мас. %: смесь резольной и новолачной фенолоформальдегидных смол в соотношении 1:(0,2-1,0) 28÷34%, волокнистый минеральный наполнитель, содержащий стеклоровинг или смесь стеклоровинга и базальтового волокна в соотношении 1:(0,1-1,0) 12÷19%, графит 7÷18%, модификатор трения, содержащий технический углерод в виде смеси с каолином и диоксидом кремния 7÷15%, баритовый концентрат 20÷35%, тальк 1,5÷3,0%.
2. Вибрационная мельница по п. 1, отличающаяся тем, что к нижней части основания пружины виброизолятора присоединен демпфирующий элемент, состоящий из трех промежуточных вибродемпфирующих слоев: первый слой - из дисперсного упругодемпфирующего материала, в котором может быть использована крошка, например следующих материалов: резины, пробки, пенопласта, капрона, вспененного полимера, а также крошка твердых вибродемпфирующих материалов, например таких как пластикат типа «Агат», «Антивибрит», «Швим» с размером фракций крошки 1,5÷2,5 мм, второй слой - из вязаных упругих синтетических нитей, причем размер ячеек, вязаных из упругих синтетических нитей, на 10÷15% меньше размеров фракций крошки вибродемпфирующих материалов; и третий слой - из сплошного демпфирующего материала, в котором может быть использована губчатая резина, иглопробивной материал типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, а также нетканый вибродемпфирующий материал.
RU2017102547A 2017-01-26 2017-01-26 Вибрационная мельница RU2644887C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017102547A RU2644887C1 (ru) 2017-01-26 2017-01-26 Вибрационная мельница

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017102547A RU2644887C1 (ru) 2017-01-26 2017-01-26 Вибрационная мельница

Publications (1)

Publication Number Publication Date
RU2644887C1 true RU2644887C1 (ru) 2018-02-14

Family

ID=61227111

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017102547A RU2644887C1 (ru) 2017-01-26 2017-01-26 Вибрационная мельница

Country Status (1)

Country Link
RU (1) RU2644887C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU208331U1 (ru) * 2021-07-08 2021-12-14 федеральное государственное бюджетное образовательное учреждение высшего образования «Белгородский государственный технологический университет им. В.Г. Шухова» Вибрационное измельчительное устройство
CN117339682A (zh) * 2023-12-06 2024-01-05 浙江艾领创矿业科技有限公司 研磨盘及具有其的搅拌磨机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2319547C1 (ru) * 2006-06-08 2008-03-20 Открытое Акционерное Общество "НПК "Механобр-техника" Вибрационная мельница
RU74580U1 (ru) * 2008-03-31 2008-07-10 Закрытое акционерное общество "САВО" Зернодробилка
EP1474239B1 (en) * 2002-02-01 2009-07-08 Monsanto Technology LLC Axially reciprocating tubular ball mill grinding device and method
RU2582638C1 (ru) * 2015-01-15 2016-04-27 Олег Савельевич Кочетов Пакет кольцевых конусных пружин кочетова
RU2584290C1 (ru) * 2015-01-15 2016-05-20 Олег Савельевич Кочетов Пакет кольцевых конусных пружин
RU2604005C1 (ru) * 2015-07-23 2016-12-10 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Вибрационная измельчительная машина

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1474239B1 (en) * 2002-02-01 2009-07-08 Monsanto Technology LLC Axially reciprocating tubular ball mill grinding device and method
RU2319547C1 (ru) * 2006-06-08 2008-03-20 Открытое Акционерное Общество "НПК "Механобр-техника" Вибрационная мельница
RU74580U1 (ru) * 2008-03-31 2008-07-10 Закрытое акционерное общество "САВО" Зернодробилка
RU2582638C1 (ru) * 2015-01-15 2016-04-27 Олег Савельевич Кочетов Пакет кольцевых конусных пружин кочетова
RU2584290C1 (ru) * 2015-01-15 2016-05-20 Олег Савельевич Кочетов Пакет кольцевых конусных пружин
RU2604005C1 (ru) * 2015-07-23 2016-12-10 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Вибрационная измельчительная машина

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU208331U1 (ru) * 2021-07-08 2021-12-14 федеральное государственное бюджетное образовательное учреждение высшего образования «Белгородский государственный технологический университет им. В.Г. Шухова» Вибрационное измельчительное устройство
CN117339682A (zh) * 2023-12-06 2024-01-05 浙江艾领创矿业科技有限公司 研磨盘及具有其的搅拌磨机
CN117339682B (zh) * 2023-12-06 2024-02-09 浙江艾领创矿业科技有限公司 研磨盘及具有其的搅拌磨机

Similar Documents

Publication Publication Date Title
RU2644887C1 (ru) Вибрационная мельница
RU2606904C2 (ru) Кольцевая конусная пружина
RU2668759C1 (ru) Пакет кольцевых пружин
RU2584290C1 (ru) Пакет кольцевых конусных пружин
RU2636436C1 (ru) Пакет тарельчатых пружин
RU2649977C1 (ru) Кольцевая конусная пружина с демпфирующим основанием
RU2649563C1 (ru) Кольцевая конусная пружина
RU2576835C1 (ru) Пакет тарельчатых пружин
RU2648643C1 (ru) Кольцевая конусная пружина с демпфирующим основанием
RU2582635C1 (ru) Пакет кольцевых пружин кочетова
RU2645454C1 (ru) Пакет тарельчатых пружин
RU2581960C1 (ru) Пакет тарельчатых пружин
RU2649566C1 (ru) Виброзащитная система с механизмом регулирования ее упругодиссипативных свойств
RU2658723C1 (ru) Система виброизоляции тележки транспортного средства
RU2649564C1 (ru) Виброизолятор с конусными пружинами
RU2671127C1 (ru) Виброизолированная платформа с демпфирующей пружиной
RU2019133935A (ru) Виброизолированная платформа с демпфирующей пружиной
RU2672213C1 (ru) Пакет кольцевых пружин с демпфером
RU2020132416A (ru) Виброизолированная платформа
RU2646694C1 (ru) Система виброизоляции
RU2646713C1 (ru) Пакет тарельчатых пружин
RU2671677C2 (ru) Кольцевая конусная пружина
RU2636439C1 (ru) Пакет кольцевых пружин
RU2672211C1 (ru) Пакет кольцевых пружин с демпфером
RU2648645C1 (ru) Пакет кольцевых конусных пружин