RU2644869C2 - Способ получения синтез-газа - Google Patents

Способ получения синтез-газа Download PDF

Info

Publication number
RU2644869C2
RU2644869C2 RU2016129750A RU2016129750A RU2644869C2 RU 2644869 C2 RU2644869 C2 RU 2644869C2 RU 2016129750 A RU2016129750 A RU 2016129750A RU 2016129750 A RU2016129750 A RU 2016129750A RU 2644869 C2 RU2644869 C2 RU 2644869C2
Authority
RU
Russia
Prior art keywords
synthetic gas
mixture
conversion
permeable
products
Prior art date
Application number
RU2016129750A
Other languages
English (en)
Other versions
RU2016129750A (ru
Inventor
Владимир Сергеевич Арутюнов
Оксана Вячеславовна Шаповалова
Владимир Михайлович ШМЕЛЕВ
Алексей Витальевич Никитин
Валерий Иванович Савченко
Игорь Владимирович Седов
Кирилл Андреевич Тимофеев
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН)
Priority to RU2016129750A priority Critical patent/RU2644869C2/ru
Publication of RU2016129750A publication Critical patent/RU2016129750A/ru
Application granted granted Critical
Publication of RU2644869C2 publication Critical patent/RU2644869C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к процессам получения синтез-газа путем конверсии углеводородов, а именно к процессам окислительной конверсии. Способ получения синтез-газа основан на горении смеси углеводородного сырья с окислителем с внутри одной или нескольких полостей, образованных материалом, проницаемым для смеси углеводородного сырья с окислителем, на внутреннюю поверхность которого нанесен каталитически активный компонент. Полученный синтез-газ может быть использован в химической промышленности для производства метанола, диметилового эфира, синтетических жидких углеводородов и других продуктов. Полученный водород после его выделения из смеси газов может быть использован для питания топливных элементов транспортных средств и автономных источников электроснабжения, а также в качестве сырья и восстановителя в химической, нефтехимической, металлургической и других отраслях промышленности. Техническим результатом является повышение выхода синтез-газа и снижение содержания углеводородов в получаемом синтез-газе. 10 пр.

Description

Изобретение относится к процессам получения синтез-газа путем конверсии углеводородов, а именно к процессам окислительной конверсии. Полученный синтез-газ может быть использован в химической промышленности для производства метанола, диметилового эфира, синтетических жидких углеводородов и других продуктов. Полученный водород после его выделения из смеси газов может быть использован для питания топливных элементов транспортных средств и автономных источников электроснабжения, а также в качестве сырья и восстановителя в химической, нефтехимической, металлургической и других отраслях промышленности.
Основными промышленными способами получения синтез газа в настоящее время являются паровой, парокислородный и автотермический риформинг природного газа или угля. В случае необходимости промышленного получения водорода его выделяют различными методами из полученного синтез-газа (смеси Н2 и СО). Дополнительное количество водорода получают, конвертируя СО в присутствии водяного пара в водород и СО2. Эти способы требуют применения дорогостоящих катализаторов и отличаются высокой сложностью и громоздкостью оборудования, большими удельными капитальными затратами, что делает их малопригодными для создания небольших автономных источников синтез-газа и водорода.
Известен способ получения синтез-газа при горении, описанный в патенте РФ №2320531, С01В 3/36, B01J 7/00, опубл. 27.03.2008. Горение смеси углеводородного сырья и окислителя, взятых в отношении, соответствующем коэффициенту избытка окислителя менее 1, осуществляют в проточном двухкамерном реакторе в турбулентном режиме. Помимо указанной смеси в зону реакции подают перегретый водяной пар в количестве 5-20 мас.% по отношению к поданному углероду (в виде углеводородного сырья). Воспламенение трехкомпонентной смеси в первой камере сгорания производят струей горячего газа из внешнего источника, давление в котором при осуществлении воспламенения превышает давление в первой камере реактора. Продукты сгорания из первой камеры реактора через сопло с критическим перепадом давления направляют во вторую камеру и продолжают процесс до содержания кислорода в продуктах горения не более 0,3 об.%. Получают синтез-газ, в котором объемное отношение Н2/СО≈2,0.
Недостатком способа является сложность технологического процесса: во-первых, устойчивый режим горения поддерживается за счет струи горячего газа из дополнительного внешнего источника, во-вторых, для предотвращения сажеобразования и достижения требуемого соотношения Н2 и СО в получаемом синтез-газе необходимо подавать большое количество водяного пара в зону реакции. Устройство для осуществления способа-прототипа также отличается высокой сложностью - реактор выполнен по типу двухкамерного реактивного двигателя с высокой теплонапряженностью в камере сгорания, что требует использования специальных конструкционных материалов и сложных методов охлаждения.
Наиболее близким к предлагаемому способу получения синтез-газа является способ, описанный в патенте РФ №2374173, опубл. 27.11.2009, приоритет от 17.06.08 (способ-прототип). Конверсию смеси углеводородного сырья с окислителем с коэффициентом избытка окислителя менее 1 осуществляют при температуре менее 1100°С внутри одной или нескольких полостей, полностью или частично образованных материалом, проницаемым для смеси углеводородного сырья с окислителем, причем ввод смеси углеводородного сырья с окислителем производят через проницаемое дно полости/полостей, или через проницаемые стенки полости/полостей, или через проницаемые стенки и дно полости/полостей, а вывод продуктов горения - через верхнее сечение полости/полостей.
Недостатками способа-прототипа являются невозможность достижения достаточно низких значений коэффициента избытка окислителя, оптимальных для получения синтез-газа, и недостаточно полная конверсия углеводородного сырья, что приводит к снижению выхода синтез-газа и высокому содержанию непрореагировавших углеводородов, прежде всего метана, в получаемом синтез-газе.
Задачей предлагаемого изобретения является разработка такого способа получения синтез-газа, который обеспечит возможность достижения более низких значений коэффициента избытка окислителя и более полную конверсию углеводородного сырья, и, как следствие, повышение выхода синтез-газа и снижение содержания углеводородов в получаемом синтез-газе.
Решение поставленной задачи достигается предлагаемым способом получения синтез-газа при горении смеси углеводородного сырья с окислителем с мольным отношением углеводородного сырья к окислителю менее 1 при температуре менее 1100°С внутри одной или нескольких полостей, образованных материалом, проницаемым для смеси углеводородного сырья с окислителем, отличающимся тем, что в качестве проницаемого материала полости используется пластина из алюмосиликатной керамики с нанесенным слоем оксида алюминия, модифицированного оксидом лантана с размером пор 1-1000 мкм, на внутреннюю поверхность которого нанесен каталитически активный компонент, выбранный из металлов VIII группы Ni, Pd, Pt, Fe, Co с концентрацией в пределах 0,03-10 мас.% в расчете на массу проницаемого материала.
Катализаторы готовили методом совместной пропитки носителя по влагоемкости водным раствором исходной металлсодержащей соли. В качестве исходных солей соответствующих металлов были использованы:
никель азотнокислый шестиводный Ni(NO3)2⋅6H2O
платинохлористо-водородная кислота H2PtCl6
палладийхлористо-водородная кислота- H2PdCl6
Расчет количества исходной соли, требуемой для приготовления катализатора, содержащего n, мас.%, активного компонента, проводили следующим образом:
- определение массы металла (mMe):
Figure 00000001
где mносителя - масса используемого носителя;
- вычисление массы соли металла (mсоли), необходимой для введения данной массы металла:
Figure 00000002
где MMe - молярная масса металла, г/моль, Мсоли - молярная масса соответствующей соли, г/моль.
Определенное таким образом требуемое количество исходной соли растворяли в воде, объем которой брали исходя из массы используемого носителя и его влагоемкости. Полученным раствором проводили пропитку носителя.
После пропитки образцы катализаторов сушили при температуре 120°С в течение 3 часов.
Предварительную обработку катализаторов проводили следующим образом. Прокаливание образцов на воздухе и осуществляли в течение двух часов при температуре 300°С, а затем в течение еще двух часов при температуре 600°С и 4 часов при 900°С.
Предлагаемые способ был разработан на основе детальных экспериментальных исследований влияния состава и концентрации наносимого катализатора на выход и состав получаемого синтез-газа.
Принципиальным результатом проведенных испытаний является установление возможности значительного снижения значения коэффициента избытка окислителя и повышения конверсии углеводородного сырья. Применение нанесенного Ni-содержащего катализатора позволило снизить достигаемое значение коэффициента избытка окислителя со значения 0,6 до значения 0,25. При этом концентрация водорода и монооксида углерода увеличилась с 10 и 10% до 28 и 15% соответственно.
Преимуществом заявленного решения является более высокий выход синтез-газа по сравнению с прототипом и более низкое содержание в получаемом синтез-газе непрореагировавших углеводородов.
Приводим для иллюстрации примеры осуществления способа:
Пример 1
Проницаемая матрица - круглая пластина из перфорированной керамики толщиной 15 мм, пронизанная цилиндрическими каналами диаметром 1,2 мм.
Отношение суммарной площади сечения каналов к общей площади поверхности (пористость) - γ=Sc/S=0,25.
Конвертируемый углеводородный газ - технический метан из баллона высокого давления согласно ТУ 51-841-87:
Площадь матрицы, см2 19,62
Температура поверхности матрицы, °С 683
Достигнутое значение коэффициента избытка окислителя 0,43
Конверсия метана, % 88
Конверсия кислорода, % 98
Концентрация Н2 в продуктах, % 11
Концентрация СО в продуктах, % 6,7
Пример 2
Проницаемая матрица - пористая пластина из алюмосиликатной керамики с нанесенным слоем оксида алюминия, модифицированного оксидом лантана, размер пор 1200 мкм. Нанесенный слой имеет развитую поверхность и высокую термическую стабильность (в т.ч. устойчив к спеканию), может служить хорошей основой для нанесения активных компонентов катализаторов различных типов. Нанесенный слой оксида алюминия сам по себе обладает некоторой активностью в парциальном окислении метана в синтез-газ в бедных смесях.
Конвертируемый углеводородный газ - технический метан из баллона высокого давления согласно ТУ 51-841-87:
Площадь матрицы, см2 19,62
Температура поверхности матрицы, °С 821
Достигнутое значение коэффициента избытка окислителя 0,59
Конверсия метана, % 95,3
Конверсия кислорода, % 96
Концентрация Н2 в продуктах, % 10,4
Концентрация СО в продуктах, % 10,5
Пример 3
Проницаемая матрица - пористая пластина из алюмосиликатной керамики с нанесенным слоем оксида алюминия, модифицированного оксидом лантана, размер пор 1200 мкм. Нанесенный слой имеет развитую поверхность и высокую термическую стабильность (в т.ч. устойчив к спеканию), может служить хорошей основой для нанесения активных компонентов катализаторов различных типов. Нанесен активный компонент Ni в количестве 2,5 мас.% от массы проницаемого материала.
Конвертируемый углеводородный газ - технический метан из баллона высокого давления согласно ТУ 51-841-87:
Площадь матрицы, см2 19,62
Температура поверхности матрицы, °С: 821
Достигнутое значение коэффициента избытка окислителя 0,56
Конверсия метана, % 96,3
Конверсия кислорода, % 96,4
Концентрация Н2 в продуктах, % 10,9
Концентрация СО в продуктах, % 10,4
Пример 4
Проницаемая матрица - пористая пластина из алюмосиликатной керамики с нанесенным слоем оксида алюминия, модифицированного оксидом лантана, размер пор 500 мкм. Нанесенный слой имеет развитую поверхность и высокую термическую стабильность (в т.ч. устойчив к спеканию), может служить хорошей основой для нанесения активных компонентов катализаторов различных типов. Нанесен активный компонент Ni в количестве 5,0 мас.% от массы проницаемого материала.
Конвертируемый углеводородный газ - технический метан из баллона высокого давления согласно ТУ 51-841-87:
Площадь матрицы, см2 19,62
Температура поверхности матрицы, °С 632
Достигнутое значение коэффициента избытка окислителя 0,28
Конверсия метана, % 93,15
Конверсия кислорода, % 93,3
Концентрация Н2 в продуктах, % 28,4
Концентрация СО в продуктах, % 15,8
Пример 5
Проницаемая матрица - пористая пластина из алюмосиликатной керамики с нанесенным слоем оксида алюминия, модифицированного оксидом лантана, размер пор 100 мкм. Нанесенный слой имеет развитую поверхность и высокую термическую стабильность (в т.ч. устойчив к спеканию), может служить хорошей основой для нанесения активных компонентов катализаторов различных типов. Нанесен активный компонент Ni в количестве 10,0 мас.% от массы проницаемого материала.
Конвертируемый углеводородный газ - технический метан из баллона высокого давления согласно ТУ 51-841-87:
Площадь матрицы, см2 19,62
Температура поверхности матрицы, °С: 615
Достигнутое значение коэффициента избытка окислителя 0,25
Конверсия метана, % 90
Конверсия кислорода, % 98
Концентрация Н2 в продуктах, % 27
Концентрация СО в продуктах, % 11
Пример 6
Проницаемая матрица - пористая пластина из алюмосиликатной керамики с нанесенным слоем оксида алюминия, модифицированного оксидом лантана, размер пор 1 мкм. Нанесенный слой имеет развитую поверхность и высокую термическую стабильность (в т.ч. устойчив к спеканию), может служить хорошей основой для нанесения активных компонентов катализаторов различных типов. Нанесен активный компонент Pt в количестве 0,03 мас. % от массы проницаемого материала.
Конвертируемый углеводородный газ - технический метан из баллона высокого давления согласно ТУ 51-841-87:
Площадь матрицы, см2 19,62
Температура поверхности матрицы, °С 683
Достигнутое значение коэффициента избытка окислителя 0,25
Конверсия метана, % 33
Конверсия кислорода, % 95
Концентрация Н2 в продуктах, % 5
Концентрация СО в продуктах, % 6
Пример 7
Проницаемая матрица - пористая пластина из алюмосиликатной керамики с нанесенным слоем оксида алюминия, модифицированного оксидом лантана, размер пор 10 мкм. Нанесенный слой имеет развитую поверхность и высокую термическую стабильность (в т.ч. устойчив к спеканию), может служить хорошей основой для нанесения активных компонентов катализаторов различных типов. Нанесен активный компонент Pd в количестве 1,0 мас.% от массы проницаемого материала.
Конвертируемый углеводородный газ - технический метан из баллона высокого давления согласно ТУ 51-841-87:
Площадь матрицы, см2 19,62
Температура поверхности матрицы, °С: 728
Достигнутое значение коэффициента избытка окислителя 0,22
Конверсия метана, % 42
Конверсия кислорода, % 86
Концентрация Н2 в продуктах, % 9,8
Концентрация СО в продуктах, % 9,9
Пример 8
Проницаемая матрица - пористая пластина из алюмосиликатной керамики с нанесенным слоем оксида алюминия, модифицированного оксидом лантана, размер пор 1000 мкм. Нанесен активный компонент Ni в количестве 2,5 мас.% от массы проницаемого материала.
Конвертируемый углеводородный газ - технический метан из баллона высокого давления согласно ТУ 51-841-87:
Площадь матрицы, см2 19,62
Температура поверхности матрицы, °С 821
Достигнутое значение коэффициента избытка окислителя 0,47
Конверсия метана, % 97,4
Конверсия кислорода, % 99,4
Концентрация Н2 в продуктах, % 17,3
Концентрация СО в продуктах, % 12,4
Пример 9
Проницаемая матрица - пористая пластина из алюмосиликатной керамики с нанесенным слоем оксида алюминия, модифицированного оксидом лантана, размер пор 500 мкм. Нанесен активный компонент Fe в количестве 7,0 мас.% от массы проницаемого материала.
Конвертируемый углеводородный газ - технический метан из баллона высокого давления согласно ТУ 51-841-87:
Площадь матрицы, см2 19,62
Температура поверхности матрицы, °С 603
Достигнутое значение коэффициента избытка окислителя 0,43
Конверсия метана, % 98,5
Конверсия кислорода, % 97,5
Концентрация Н2 в продуктах, % 15,4
Концентрация СО в продуктах, % 12,3
Пример 10
Проницаемая матрица - пористая пластина из алюмосиликатной керамики с нанесенным слоем оксида алюминия, модифицированного оксидом лантана, размер пор 300 мкм. Нанесен активный компонент Со в количестве 2,0 мас.% от массы проницаемого материала.
Конвертируемый углеводородный газ - технический метан из баллона высокого давления согласно ТУ 51-841-87:
Площадь матрицы, см2 19,62
Температура поверхности матрицы, °С 803
Достигнутое значение коэффициента избытка окислителя 0,37
Конверсия метана, % 99,3
Конверсия кислорода, % 99,0
Концентрация Н2 в продуктах, % 19,7
Концентрация СО в продуктах, % 14,1
Таким образом, заявленный способ обеспечивает достижение существенно более низких значений коэффициента избытка окислителя при конверсии углеводородных газов в синтез-газ, что, в свою очередь, обеспечивает более высокую конверсию углеводородного газа. Как следствие, получены более высокие концентрации целевых продуктов - Н2 и СО при более низком содержании в полученном синтез-газе исходного углеводорода.

Claims (1)

  1. Способ получения синтез-газа при горении смеси углеводородного сырья с окислителем с мольным отношением углеводородного сырья к окислителю менее 1 при температуре менее 1100°С внутри одной или нескольких полостей, образованных материалом, проницаемым для смеси углеводородного сырья с окислителем, отличающийся тем, что в качестве проницаемого материала полости используется пластина из алюмосиликатной керамики с нанесенным слоем оксида алюминия, модифицированного оксидом лантана, с размером пор 1-1000 мкм, на внутреннюю поверхность которого нанесен каталитически активный компонент, выбранный из металлов VIII группы Ni, Pd, Pt, Fe, Co с концентрацией в пределах 0,03-10 мас.% в расчете на массу проницаемого материала.
RU2016129750A 2016-07-21 2016-07-21 Способ получения синтез-газа RU2644869C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016129750A RU2644869C2 (ru) 2016-07-21 2016-07-21 Способ получения синтез-газа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016129750A RU2644869C2 (ru) 2016-07-21 2016-07-21 Способ получения синтез-газа

Publications (2)

Publication Number Publication Date
RU2016129750A RU2016129750A (ru) 2018-01-29
RU2644869C2 true RU2644869C2 (ru) 2018-02-14

Family

ID=61173931

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016129750A RU2644869C2 (ru) 2016-07-21 2016-07-21 Способ получения синтез-газа

Country Status (1)

Country Link
RU (1) RU2644869C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769311C1 (ru) * 2020-10-15 2022-03-30 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Способ получения водородсодержащего газа

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1828449C (ru) * 1988-05-02 1993-07-15 Энститю Франсэ Дю Петроль Горелка реактора дл производства синтез-газа
WO1997022547A1 (en) * 1995-12-18 1997-06-26 Shell Internationale Research Maatschappij B.V. A process for preparing synthesis gas
RU2151957C1 (ru) * 1999-03-03 2000-06-27 Институт химической физики РАН им. Н.Н. Семенова Радиационная горелка
RU2374173C1 (ru) * 2008-06-17 2009-11-27 Владимир Сергеевич Арутюнов Способ получения синтез-газа
WO2014180888A1 (en) * 2013-05-08 2014-11-13 Shell Internationale Research Maatschappij B.V. Process for the preparation of syngas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1828449C (ru) * 1988-05-02 1993-07-15 Энститю Франсэ Дю Петроль Горелка реактора дл производства синтез-газа
WO1997022547A1 (en) * 1995-12-18 1997-06-26 Shell Internationale Research Maatschappij B.V. A process for preparing synthesis gas
RU2151957C1 (ru) * 1999-03-03 2000-06-27 Институт химической физики РАН им. Н.Н. Семенова Радиационная горелка
RU2374173C1 (ru) * 2008-06-17 2009-11-27 Владимир Сергеевич Арутюнов Способ получения синтез-газа
WO2014180888A1 (en) * 2013-05-08 2014-11-13 Shell Internationale Research Maatschappij B.V. Process for the preparation of syngas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769311C1 (ru) * 2020-10-15 2022-03-30 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Способ получения водородсодержащего газа

Also Published As

Publication number Publication date
RU2016129750A (ru) 2018-01-29

Similar Documents

Publication Publication Date Title
CN108430621B (zh) 基于在镧稳定的θ-氧化铝上的铑的耐热烃重整催化剂
RU2558150C2 (ru) Катализатор реформинга
Ugarte et al. Dry reforming of biogas in fluidized bed: Process intensification
Seshan et al. Carbon dioxide reforming of methane in the presence of nickel and platinum catalysts supported on ZrO2
KR20060043195A (ko) 촉매 배향 및 합성가스의 제조방법
JP2014519463A (ja) 金属担持シリカベースの触媒膜反応器アセンブリ
JP2008529791A (ja) 希土類元素で変性された酸化物担体を有する水−ガスシフト貴金属触媒
JP4995461B2 (ja) 選択透過膜型反応器による炭化水素の二酸化炭素改質方法
Noronha et al. Catalytic performance of Pt/ZrO 2 and Pt/Ce-ZrO 2 catalysts on CO 2 reforming of CH 4 coupled with steam reforming or under high pressure
TWI373451B (en) Hydrogen production process
JP2005529824A (ja) 水−気体転化用白金族金属触媒のメタン化活性の抑制
KR20230051151A (ko) 스팀 개질
Roy et al. Effects of CeZrO2–Al2O3 support composition of metal-foam-coated Pd–Rh catalysts for the steam-biogas reforming reaction
RU2292237C1 (ru) Катализатор, способ его приготовления и способ получения синтез-газа
RU2644869C2 (ru) Способ получения синтез-газа
CA2524349A1 (en) A membrane apparatus and method of preparing a membrane and a method of producing hydrogen
JP2024500507A (ja) メタン改質用触媒及びその製造方法
Pavlova et al. Synthesis gas production from bio-oil: steam reforming of ethanol as a model compound
JP6694108B2 (ja) メタンの二酸化炭素改質用カプセル化触媒、及びそれを用いた合成ガスの製造方法
JP6933144B2 (ja) 不均一系触媒構造体及びその製造方法
KR101336765B1 (ko) 탄화수소 개질촉매 제조방법
Lin et al. Hydrogen production from oxidative steam reforming of ethanol in a palladium–silver alloy composite membrane reactor
EA006849B1 (ru) Способ получения синтез-газа частичным каталитическим окислением
Tuti et al. Nickel supported on Y 2 O 3-ZrO 2 as highly selective and stable CO 2 methanation catalyst for in-situ propellant production on Mars
RU2248932C1 (ru) Катализатор (варианты), способ его приготовления (варианты) и способ получения синтез-газа