RU2639049C1 - Sound-insulating enclosure of process equipment - Google Patents

Sound-insulating enclosure of process equipment Download PDF

Info

Publication number
RU2639049C1
RU2639049C1 RU2017111972A RU2017111972A RU2639049C1 RU 2639049 C1 RU2639049 C1 RU 2639049C1 RU 2017111972 A RU2017111972 A RU 2017111972A RU 2017111972 A RU2017111972 A RU 2017111972A RU 2639049 C1 RU2639049 C1 RU 2639049C1
Authority
RU
Russia
Prior art keywords
sound
absorbing
smooth
type
perforated
Prior art date
Application number
RU2017111972A
Other languages
Russian (ru)
Inventor
Олег Савельевич Кочетов
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2017111972A priority Critical patent/RU2639049C1/en
Application granted granted Critical
Publication of RU2639049C1 publication Critical patent/RU2639049C1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)

Abstract

FIELD: machine engineering.
SUBSTANCE: sound-insulating enclosure is produced in the form of a rectangular parallelepiped enclosing the process equipment. The process equipment is installed on the vibration isolating supports, which are based on the floor of the building. A gap is made between the base of equipment and a cut in the lower edge of the rectangular parallelepiped to prevent transmission of vibrations from the equipment to the sound-insulating enclosure. Ventilation channels are made in a sound-insulating guard to prevent equipment overheating. The inner walls of the ventilation channels are treated with a sound-absorbing material and an acoustically transparent material of "Poviden" type. A sound-absorbing element in the form of smooth (14) and perforated (15) surfaces is fixed on the inner surface of the sound-insulating enclosure between which a multilayer sound-absorbing structure is placed, which represents alternation of solid (16) sections and hollow (17) sections. The solid sections (16) are formed by smooth prismatic surfaces (18) located perpendicularly to the smooth (14) and perforated (15) surfaces and fixed to the smooth surface, and by two inclined, relatively smooth prismatic surfaces (18), the surfaces (19) of complex shape having smooth surface on one side and toothed or wavy surface on the other side. The relief sound-absorbing elements (14) are attached to the smooth surface, for example in the form of the tetrahedra. Material based on aluminium-containing alloys is used as sound-absorbing material which is filled with titanium hydride or air with a density in the range 0.5…0.9 kg/m3 with compressive strength within 5…10 Mpa, and strength on a bend within 10…20 Mpa, for example, aluminium foam or basalt-based mineral wool of Rockwool type, or mineral wool of URSA type, or basalt wool of P-75 type, or glass wool with glass felt lining, or foamed polymer, for example, polyethylene or polypropylene. The material of the perforated surface is made of hard, decorative vibration cushioning materials, for example plasticate of "Agate", "Antivibrit", "Shwim" type. The inner surface of the perforated surface, facing the sound-absorbing structure is faced with the acoustically transparent material, for example, the glass fiber of EZ-100 type or the polymer of "Poviden" type. The hollow sections are filled with the sound-absorbing material, for example, with the construction foam. The structure of the sound-absorbing element is made with the resonance inserts (21) and (22) located in the smooth prismatic surfaces (18) of solid sections (16) connected to the layer (17) made of foamed sound-absorbing material by means of resonance holes (23) and (24) performing functions of Helmholtz resonator necks. The frequency band for damping the sound energy of a multilayer sound-absorbing structure is determined by the diameter and the number of resonant holes (21) and (22).
EFFECT: improved noise silencing efficiency.
2 dwg

Description

Изобретение относится к звукоизоляции оборудования.The invention relates to soundproofing equipment.

Наиболее близким техническим решением к заявляемому объекту является акустический кожух для оборудования по патенту РФ №2311286 (прототип), содержащий корпус и расположенные внутри его демпфирующие элементы, а также шумопоглощающая вставка со звукопоглощающим материалом.The closest technical solution to the claimed object is an acoustic casing for equipment according to the patent of the Russian Federation No. 2311286 (prototype), containing a housing and damping elements located inside it, as well as a sound-absorbing insert with sound-absorbing material.

Недостатком известных устройств является сравнительно невысокая эффективность шумоглушения за счет отсутствия глушителей шума в отверстиях кожуха, предназначенных для соблюдения теплового баланса.A disadvantage of the known devices is the relatively low efficiency of sound attenuation due to the absence of silencers in the holes of the casing, designed to maintain thermal balance.

Технический результат - повышение эффективности глушения шума.The technical result is an increase in the efficiency of noise suppression.

Это достигается тем, что в звукоизолирующем ограждении технологического оборудования, выполненном в форме прямоугольного параллелепипеда, охватывающего технологическое оборудование, технологическое оборудование установлено на, по крайней мере, четыре виброизолирующих опоры, которые базируются на перекрытии здания, при этом между основанием технологического оборудования и вырезом в нижней грани прямоугольного параллелепипеда выполнен зазор, предназначенный для исключения передачи вибраций от технологического оборудования к звукоизолирующему ограждению, причем в звукоизолирующем ограждении выполнены вентиляционные каналы для устранения перегрева оборудования, при этом внутренние стенки вентиляционных каналов обработаны звукопоглощающим материалом и акустически прозрачным материалом типа «повиден», при этом на внутренней поверхности звукоизолирующего ограждения закреплен звукопоглощающий элемент в виде гладкой и перфорированной поверхностей, между которыми размещена многослойная звукопоглощающая конструкция, которая выполнена сложной формы и представляет собой чередование сплошных участков и пустотелых участков, при этом сплошные участки образованы гладкими призматическими поверхностями, расположенными перпендикулярно гладкой и перфорированной поверхностям и закрепленными к гладкой поверхности, а также двумя, связанными с ними и наклонными, относительно гладких призматических поверхностей, поверхностями сложной формы, имеющими с одной стороны гладкую поверхность, а с другой стороны зубчатую или волнистую, а к гладкой поверхности прикреплены рельефные звукопоглощающие элементы, например в виде тетраэдров, при этом в качестве звукопоглощающего материала применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, или минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененный полимер, например полиэтилен или полипропилен, а материал перфорированной поверхности выполнен из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкция, облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден», а пустотелые участки заполнены звукопоглощающим материалом, например строительно-монтажной пеной, а многослойная звукопоглощающая конструкция звукопоглощающего элемента выполнена с резонансными вставками, расположенными в гладких призматических поверхностях сплошных участков, которые соединены со слоем, выполненным из вспененного звукопоглощающего материала, посредством резонансных отверстий, выполняющих функции горловин резонаторов «Гельмгольца», при этом частотная полоса гашения звуковой энергии многослойной звукопоглощающей конструкции определяется диаметром и количеством резонансных отверстий.This is achieved by the fact that in the soundproofing enclosure of technological equipment made in the form of a rectangular parallelepiped covering the technological equipment, the technological equipment is installed on at least four vibration-isolating supports that are based on the ceiling of the building, while between the base of the technological equipment and the cutout in the lower face of a rectangular parallelepiped, a gap is made to prevent the transmission of vibrations from technological equipment to sound an insulating fence, and ventilation ducts are made in the soundproof fence to eliminate overheating of the equipment, while the inner walls of the ventilation ducts are treated with sound-absorbing material and acoustically transparent material of the “visible” type, while the sound-absorbing element is fixed on the inner surface of the soundproof fence in the form of smooth and perforated surfaces, between which a multilayer sound-absorbing structure is placed, which is made of complex shape and This is an alternation of solid sections and hollow sections, while continuous sections are formed by smooth prismatic surfaces located perpendicular to smooth and perforated surfaces and fixed to a smooth surface, as well as two surfaces connected with them and inclined, relatively smooth prismatic surfaces, of complex shape, having on the one hand a smooth surface, and on the other hand, a serrated or wavy, and embossed sound-absorbing elements are attached to the smooth surface s, for example, in the form of tetrahedrons, while a material based on aluminum-containing alloys was used as a sound-absorbing material, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, bending strength in the range of 10 ... 20 MPa, for example, foam aluminum, or rockwool basalt mineral wool, or URSA mineral wool, or P-75 basalt wool, or glass wool with fiberglass lining, or foamed polymer, for example polyethylene or polypropylene, and the material of the perforated surface is made of solid, decorative vibration damping materials, for example, plastic compounds such as Agate, Anti-Vibrate, Shvim, and the inner surface of the perforated surface facing the sound-absorbing structure is lined with acoustically transparent material, such as fiberglass type EZ-100 or polymer type "Poviden", and the hollow sections are filled with sound-absorbing material, such as construction foam, and the multilayer The new sound-absorbing structure of the sound-absorbing element is made with resonant inserts located on the smooth prismatic surfaces of the continuous sections, which are connected to the layer made of foamed sound-absorbing material by means of resonant holes that serve as the neck of the Helmholtz resonators, while the frequency band for damping the sound energy of the multilayer sound design is determined by the diameter and number of resonant holes.

На фиг. 1 представлена схема звукоизолирующего ограждения, на фиг. 2 - схема звукопоглощающего элемента, закрепленного на внутренней поверхности звукоизолирующего ограждения.In FIG. 1 is a diagram of a soundproof fence, FIG. 2 is a diagram of a sound-absorbing element fixed to the inner surface of a sound-insulating fence.

Звукоизолирующее ограждение (фиг. 1) технологического оборудования предназначено для его установки на виброакустически активное технологическое оборудование 1 путем укрытия. Охватывающее технологическое оборудование 1, звукоизолирующее ограждение 6 установлено на перекрытии 5 здания посредством, по крайней мере четырех, виброизолирующих опор 12 и 13, выполненных из упругого материала, например мягкой резины, полиуретана. Звукоизолирующее ограждение 6 облицовано с внутренней стороны звукопоглощающим элементом 7 (фиг. 2) и имеет форму прямоугольного параллелепипеда с вырезом в его нижней грани под основание 2 технологического оборудования 1. Основание 2 технологического оборудования 1 установлено на, по крайней мере, четыре, виброизолирующих опоры 3 и 4, которые базируются на перекрытии 5 производственного здания, при этом между основанием 2 технологического оборудования 1 и вырезом в нижней грани прямоугольного параллелепипеда выполнен зазор, предназначенный для исключения передачи вибраций от технологического оборудования 1 к звукоизолирующему ограждению 6. В звукоизолирующем ограждении 6 выполнены вентиляционные каналы 8 и 9 для устранения перегрева оборудования, при этом внутренние стенки 10 вентиляционных каналов 8 и 9 обработаны звукопоглощающим материалом 11 и акустически прозрачным материалом типа «повиден». Расчет требуемой звукоизоляции кожуха, как негерметичного ограждения, дБ, проводят по следующей зависимости:Sound insulation fence (Fig. 1) of technological equipment is intended for its installation on vibro-acoustically active technological equipment 1 by shelter. Covering technological equipment 1, a soundproof fence 6 is installed on the ceiling 5 of the building by means of at least four vibration-absorbing supports 12 and 13 made of an elastic material, for example, soft rubber, polyurethane. The soundproof fence 6 is lined on the inside with a sound-absorbing element 7 (Fig. 2) and has the shape of a rectangular parallelepiped with a cutout in its lower face under the base 2 of the technological equipment 1. The base 2 of the technological equipment 1 is installed on at least four vibration-absorbing supports 3 and 4, which are based on the overlapping 5 of the industrial building, while a gap is made between the base 2 of the technological equipment 1 and the cutout in the lower face of the rectangular parallelepiped, designed to prevent transmission of vibrations from technological equipment 1 to the soundproof fence 6. Ventilation channels 8 and 9 are made in the soundproof fence 6 to eliminate overheating of the equipment, while the inner walls 10 of the ventilation channels 8 and 9 are treated with sound-absorbing material 11 and an acoustically transparent material of the “seen” type . The calculation of the required sound insulation of the casing, as an unpressurized fence, dB, is carried out according to the following relationship:

Figure 00000001
Figure 00000001

где Rкож.тр - требуемая звукоизоляция кожуха, дБ, Rsi - средняя звукоизоляция сплошной части ограждений i-го кожуха, дБ;

Figure 00000002
- реверберационный коэффициент звукопоглощения внутри i-го кожуха; где α0 - реверберационный коэффициент звукопоглощения для ограждений без звукопоглощающего материала; αм - реверберационный коэффициент звукопоглощения звукопоглощающего материала; ΣSм - площадь нанесения звукопоглощающего материала, м2, τi - энергетический коэффициент прохождения звука через глушитель технологического отверстия (для простого отверстия τi=1, причем простым отверстием считается отверстие без глушителя шума, как в нашем случае); ΣS0i - суммарная площадь технологических отверстий для i-го кожуха машины, м2; ΣSi - суммарная площадь сплошной части ограждения, м2.where R leather.tr is the required sound insulation of the casing, dB, R si is the average sound insulation of the solid part of the fencing of the i-th casing, dB;
Figure 00000002
- reverberation coefficient of sound absorption inside the i-th casing; where α 0 - reverberation coefficient of sound absorption for fences without sound-absorbing material; α m - reverberation coefficient of sound absorption of sound-absorbing material; ΣS m is the area of application of sound-absorbing material, m 2 , τ i is the energy coefficient of sound transmission through the silencer of the technological hole (for a simple hole τ i = 1, and a simple hole is considered to be a hole without a silencer, as in our case); ΣS 0i is the total area of technological holes for the i-th machine casing, m 2 ; ΣS i - total area of the solid part of the fence, m 2 .

На фиг. 2 изображена схема звукопоглощающего элемента 7, закрепленного на внутренней поверхности звукоизолирующего ограждения 6.In FIG. 2 shows a diagram of a sound-absorbing element 7 mounted on the inner surface of a soundproof fence 6.

Звукопоглощающий элемент содержит гладкую 14 и перфорированную 15 поверхности, между которыми размещена многослойная звукопоглощающая конструкция.The sound-absorbing element contains a smooth 14 and perforated 15 surface, between which is placed a multilayer sound-absorbing structure.

Звукопоглощающая конструкция выполнена сложной формы и представляет собой чередование сплошных участков 16 и пустотелых участков 17. Сплошные участки 16, в свою очередь, образованы гладкими призматическими поверхностями 18, расположенными перпендикулярно гладкой 14 и перфорированной 15 поверхностям и закрепленными к гладкой 14 поверхности, а также двумя, связанными с ними и наклонными, относительно гладких призматических поверхностей 18, поверхностями 19 сложной формы, имеющими с одной стороны гладкую поверхность, а с другой стороны зубчатую или волнистую, или образованную сферическими участками форму (на чертеже не показано) поверхность, причем вершины зубьев или выступов обращены внутрь этих поверхностей, а сами поверхности закреплены на перфорированной 15 поверхности. К гладкой 14 поверхности прикреплены рельефные звукопоглощающие элементы 20, например в виде тетраэдров. В качестве звукопоглощающего материала применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, или минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененный полимер, например полиэтилен или полипропилен.The sound-absorbing structure is made of complex shape and is an alternation of solid sections 16 and hollow sections 17. Solid sections 16, in turn, are formed by smooth prismatic surfaces 18 located perpendicular to smooth 14 and perforated 15 surfaces and fixed to a smooth 14 surface, as well as two. connected and inclined, relatively smooth prismatic surfaces 18, surfaces 19 of complex shape, having on one side a smooth surface and on the other hand a gear whether corrugated or formed spherical shape portions (not shown) surface, the top teeth or projections directed inward of these surfaces, and the surfaces themselves fixed to the perforated surface 15. Embossed sound-absorbing elements 20 are attached to the smooth surface 14, for example in the form of tetrahedrons. A material based on aluminum-containing alloys was used as a sound-absorbing material, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, tensile strength bending within 10 ... 20 MPa, for example foam aluminum, or rockwool basalt mineral wool, or URSA mineral wool, or P-75 basalt wool, or glass wool lined with glass wool, or foamed polymer, such as polyethylene or gender ipropylene.

Материал перфорированной поверхности выполнен из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкция, облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден». Пустотелые участки 17 заполнены звукопоглощающим материалом, например строительно-монтажной пеной.The material of the perforated surface is made of solid, decorative vibration-damping materials, for example, agate, antivibrate, and shvim plastic compounds, and the inner surface of the perforated surface facing the sound-absorbing structure is lined with an acoustically transparent material, such as fiberglass type EZ-100 or "Poviden" type polymer. Hollow sections 17 are filled with sound-absorbing material, for example, construction foam.

Звукопоглощающий элемент 7 работает следующим образом.Sound-absorbing element 7 operates as follows.

Звуковая энергия от технологического оборудования 1, пройдя через слой перфорированной поверхности 15 и слой 17 звукопоглощающего элемента, выполненный из вспененного звукопоглощающего материала (строительно-монтажной пены), падает на звукопоглощающие слои 16, 19, 20, где происходит рассеивание звуковой энергии за счет перехода ее в тепловую (диссипация, рассеивание энергии), т.е. в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", имеют место потери энергии за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети микропор звукопоглотителя. Коэффициент перфорации перфорированной поверхности принимается равным или более 0,25.Sound energy from technological equipment 1, passing through a layer of perforated surface 15 and layer 17 of a sound-absorbing element made of foamed sound-absorbing material (construction foam), falls on sound-absorbing layers 16, 19, 20, where sound energy is dissipated due to its transition into heat (dissipation, energy dissipation), i.e. in the pores of the sound absorber, representing the Helmholtz resonator model, there are energy losses due to friction, which fluctuates with the excitation frequency of the mass of air in the mouth of the resonator, against the wall of the neck itself, which has the form of a branched network of micropores of the sound absorber. The perforation coefficient of the perforated surface is taken to be equal to or more than 0.25.

Звукоизолирующее ограждение технологического оборудования работает следующим образом.Sound insulating fence technological equipment works as follows.

Звукоизолирующее ограждение 6 (фиг. 1) устанавливают на перекрытии 5 здания посредством, по крайней мере, четырех, виброизолирующих опор 12 и 13, выполненных из упругого материала, например мягкой резины, полиуретана. Звукоизолирующее ограждение 6 облицовывают (закрепляют на нем) с внутренней стороны звукопоглощающим элементом 7 (фиг. 2). Звукоизолирующее ограждение 6 выполняют по форме в виде прямоугольного параллелепипеда с вырезом в его нижней грани под основание 2 технологического оборудования 1. Основание 2 технологического оборудования 1 устанавливают на, по крайней мере, четыре, виброизолирующих опоры 3 и 4, которые базируют на перекрытии 5 производственного здания, при этом между основанием 2 технологического оборудования 1 и вырезом в нижней грани прямоугольного параллелепипеда выполняют зазор, предназначенный для исключения передачи вибраций от технологического оборудования 1 к звукоизолирующему ограждению 6. В звукоизолирующем ограждении 6 выполняют вентиляционные каналы 8 и 9 для устранения перегрева оборудования, при этом внутренние стенки 10 вентиляционных каналов 8 и 9 обрабатывают звукопоглощающим материалом 11 и акустически прозрачным материалом типа «повиден».Soundproof fence 6 (Fig. 1) is installed on the floor 5 of the building by means of at least four vibration-absorbing supports 12 and 13 made of an elastic material, for example soft rubber, polyurethane. Soundproof fence 6 is lined (fixed on it) from the inside with a sound-absorbing element 7 (Fig. 2). Sound insulation fence 6 is made in the form of a rectangular parallelepiped with a cutout in its lower face under the base 2 of the technological equipment 1. The base 2 of the technological equipment 1 is installed on at least four vibration-isolating supports 3 and 4, which are based on the ceiling 5 of the industrial building , while between the base 2 of the technological equipment 1 and the cutout in the lower face of the rectangular parallelepiped perform a gap designed to prevent transmission of vibrations from the technological equipment 1 to the soundproof enclosure 6. In the soundproof enclosure 6, ventilation ducts 8 and 9 are provided to eliminate overheating of the equipment, while the inner walls 10 of the ventilation ducts 8 and 9 are treated with sound-absorbing material 11 and an acoustically transparent material of the “seen” type.

Звукопоглощающий элемент 7 закрепляют на внутренней поверхности звукоизолирующего ограждения 6 и выполняют в виде гладкой 14 и перфорированной 15 поверхностей, между которыми размещают многослойную звукопоглощающую конструкцию.The sound-absorbing element 7 is fixed on the inner surface of the sound-insulating fence 6 and is made in the form of smooth 14 and perforated 15 surfaces, between which a multilayer sound-absorbing structure is placed.

Звукопоглощающую конструкцию выполняют сложной формы в виде чередующихся сплошных участков 16 и пустотелых участков 17. Сплошные участки 16, в свою очередь, образованы гладкими призматическими поверхностями 18, расположенными перпендикулярно гладкой 14 и перфорированной 15 поверхностям и закрепленными к гладкой 14 поверхности, а также двумя, связанными с ними и наклонными, относительно гладких призматических поверхностей 18, поверхностями 19 сложной формы, имеющими с одной стороны гладкую поверхность, а с другой стороны зубчатую или волнистую, или образованную сферическими участками форму (на чертеже не показано) поверхность, причем вершины зубьев или выступов обращены внутрь этих поверхностей, а сами поверхности закреплены на перфорированной 15 поверхности. К гладкой 14 поверхности прикреплены рельефные звукопоглощающие элементы 20, например в виде тетраэдров.The sound-absorbing structure is made of complex shape in the form of alternating solid sections 16 and hollow sections 17. The solid sections 16, in turn, are formed by smooth prismatic surfaces 18 located perpendicular to the smooth 14 and perforated 15 surfaces and fixed to the smooth 14 surface, as well as two connected with them and inclined, relatively smooth prismatic surfaces 18, surfaces 19 of complex shape, having on one side a smooth surface, and on the other hand, serrated or wavy, or a surface formed by spherical sections (not shown in the drawing), the surface of the teeth or protrusions facing inward of these surfaces, and the surfaces themselves attached to a perforated surface 15. Embossed sound-absorbing elements 20 are attached to the smooth surface 14, for example in the form of tetrahedrons.

В качестве звукопоглощающего материала применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, или минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененный полимер, например полиэтилен или полипропилен.A material based on aluminum-containing alloys was used as a sound-absorbing material, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, tensile strength bending within 10 ... 20 MPa, for example foam aluminum, or rockwool basalt mineral wool, or URSA mineral wool, or P-75 basalt wool, or glass wool lined with glass wool, or foamed polymer, such as polyethylene or gender ipropylene.

Возможен вариант выполнения (фиг. 2) многослойной звукопоглощающей конструкции звукопоглощающего элемента 7 с резонансными вставками 21 и 22, расположенными в гладких призматических поверхностях 18 сплошных участков 16, соединенных со слоем 17, выполненным из вспененного звукопоглощающего материала, посредством резонансных отверстий 23 и 24, выполняющих функции горловин резонаторов «Гельмгольца».A possible embodiment (Fig. 2) of the multilayer sound-absorbing structure of the sound-absorbing element 7 with resonant inserts 21 and 22 located in the smooth prismatic surfaces 18 of the solid sections 16 connected to the layer 17 made of foamed sound-absorbing material by means of the resonant holes 23 and 24, performing the functions of the necks of the Helmholtz resonators.

Резонансные отверстия 23 и 24, расположенные в резонансных вставках 21 и 22, выполняют функции горловин резонаторов "Гельмгольца", при этом частотная полоса гашения звуковой энергии многослойной звукопоглощающей конструкции определяется диаметром и количеством резонансных отверстий 21 и 22.The resonant holes 23 and 24 located in the resonant inserts 21 and 22, serve as the necks of the Helmholtz resonators, while the frequency band for damping the sound energy of the multilayer sound-absorbing structure is determined by the diameter and number of resonant holes 21 and 22.

Claims (1)

Звукоизолирующее ограждение технологического оборудования, выполненное в форме прямоугольного параллелепипеда, охватывающего технологическое оборудование, технологическое оборудование установлено на, по крайней мере, четыре виброизолирующих опоры, которые базируются на перекрытии здания, при этом между основанием технологического оборудования и вырезом в нижней грани прямоугольного параллелепипеда выполнен зазор, предназначенный для исключения передачи вибраций от технологического оборудования к звукоизолирующему ограждению, причем в звукоизолирующем ограждении выполнены вентиляционные каналы для устранения перегрева оборудования, при этом внутренние стенки вентиляционных каналов обработаны звукопоглощающим материалом и акустически прозрачным материалом типа «повиден», при этом на внутренней поверхности звукоизолирующего ограждения закреплен звукопоглощающий элемент в виде гладкой и перфорированной поверхностей, между которыми размещена многослойная звукопоглощающая конструкция, которая выполнена сложной формы и представляет собой чередование сплошных участков и пустотелых участков, при этом сплошные участки образованы гладкими призматическими поверхностями, расположенными перпендикулярно гладкой и перфорированной поверхностям и закрепленными к гладкой поверхности, а также двумя, связанными с ними и наклонными, относительно гладких призматических поверхностей, поверхностями сложной формы, имеющими с одной стороны гладкую поверхность, а с другой стороны - зубчатую или волнистую, а к гладкой поверхности прикреплены рельефные звукопоглощающие элементы, например в виде тетраэдров, при этом в качестве звукопоглощающего материала применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, или минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененный полимер, например полиэтилен или полипропилен, а материал перфорированной поверхности выполнен из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкции, облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден», а пустотелые участки заполнены звукопоглощающим материалом, например строительно-монтажной пеной, отличающееся тем, что многослойная звукопоглощающая конструкция звукопоглощающего элемента выполнена с резонансными вставками, расположенными в гладких призматических поверхностях сплошных участков, которые соединены со слоем, выполненным из вспененного звукопоглощающего материала, посредством резонансных отверстий, выполняющих функции горловин резонаторов «Гельмгольца», при этом частотная полоса гашения звуковой энергии многослойной звукопоглощающей конструкции определяется диаметром и количеством резонансных отверстий.The soundproofing enclosure of the technological equipment made in the form of a rectangular parallelepiped covering the technological equipment, the technological equipment is installed on at least four vibration-isolating supports based on the floor of the building, and a gap is made between the base of the technological equipment and the cutout in the lower face of the rectangular parallelepiped, designed to exclude the transmission of vibrations from technological equipment to a soundproof fence, moreover, ventilation ducts are made in the soundproof fence to eliminate overheating of the equipment, while the inner walls of the ventilation ducts are treated with a sound-absorbing material and acoustically transparent material of the “seen” type, while a sound-absorbing element is fixed on the inner surface of the soundproof fence in the form of smooth and perforated surfaces between which is placed multilayer sound-absorbing design, which is made of complex shape and is an alternation of sp flat areas and hollow sections, while the continuous sections are formed by smooth prismatic surfaces located perpendicular to the smooth and perforated surfaces and fixed to the smooth surface, as well as two surfaces connected with them and inclined, relatively smooth prismatic surfaces, of complex shape, having on one side a smooth surface, and on the other hand, a serrated or wavy, and embossed sound-absorbing elements, for example in the form of a tetrae, are attached to a smooth surface moat, with sound-absorbing material as applied alyuminesoderzhaschih material based alloys followed by filling them with air or titanium hydride having a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, bending strength within 10 ... 20 MPa, for example foam aluminum, or rockwool basalt mineral wool, or URSA mineral wool, or P-75 basalt wool, or glass wool lined with glass wool, or foamed polymer, e.g. poly thylene or polypropylene, and the material of the perforated surface is made of solid, decorative vibration damping materials, such as plastic compounds such as Agate, Anti-Vibrate, Shvim, and the inner surface of the perforated surface facing the sound-absorbing structure is lined with an acoustically transparent material, such as fiberglass type EZ-100 or polymer of the type "Poviden", and the hollow sections are filled with sound-absorbing material, for example, construction foam, characterized in that the multilayer the sound-absorbing design of the sound-absorbing element is made with resonant inserts located in the smooth prismatic surfaces of the solid sections, which are connected to the layer made of foamed sound-absorbing material by means of resonant holes that serve as the necks of the Helmholtz resonators, while the frequency band for damping the sound energy of the multilayer sound design determined by the diameter and number of resonant holes.
RU2017111972A 2017-04-10 2017-04-10 Sound-insulating enclosure of process equipment RU2639049C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017111972A RU2639049C1 (en) 2017-04-10 2017-04-10 Sound-insulating enclosure of process equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017111972A RU2639049C1 (en) 2017-04-10 2017-04-10 Sound-insulating enclosure of process equipment

Publications (1)

Publication Number Publication Date
RU2639049C1 true RU2639049C1 (en) 2017-12-19

Family

ID=60718691

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017111972A RU2639049C1 (en) 2017-04-10 2017-04-10 Sound-insulating enclosure of process equipment

Country Status (1)

Country Link
RU (1) RU2639049C1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641950A (en) * 1988-03-28 1997-06-24 Quilite International Limited Liability Company Acoustical panel system
US5665943A (en) * 1995-06-15 1997-09-09 Rpg Diffusor Systems, Inc. Nestable sound absorbing foam with reduced area of attachment
RU2311286C2 (en) * 2005-12-15 2007-11-27 Олег Савельевич Кочетов Acoustic shield for woodworking machine
RU2610229C1 (en) * 2016-02-25 2017-02-08 Олег Савельевич Кочетов Kochetov's air-cushion rescue boat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641950A (en) * 1988-03-28 1997-06-24 Quilite International Limited Liability Company Acoustical panel system
US5665943A (en) * 1995-06-15 1997-09-09 Rpg Diffusor Systems, Inc. Nestable sound absorbing foam with reduced area of attachment
RU2311286C2 (en) * 2005-12-15 2007-11-27 Олег Савельевич Кочетов Acoustic shield for woodworking machine
RU2610229C1 (en) * 2016-02-25 2017-02-08 Олег Савельевич Кочетов Kochetov's air-cushion rescue boat

Similar Documents

Publication Publication Date Title
RU2538858C1 (en) Kochetov's sound-absorbing barrier
RU2616856C1 (en) Method of sound insulation of kochetov's equipment and sound-insulating fencing
RU2611649C1 (en) Sound-absorbing element
RU2646879C1 (en) Soundproofing casing
RU2646872C1 (en) Soundproofing enclosure
RU2639049C1 (en) Sound-insulating enclosure of process equipment
RU2652020C1 (en) Method for acoustic isolation of equipment
RU2659925C1 (en) Method of sound insulation
RU2656440C1 (en) Method of sound insulation of equipment and sound-insulating fencing
RU2651993C1 (en) Soundproofing enclosure with vibration isolation system
RU2642039C1 (en) Method for soundproofing equipment
RU2651982C1 (en) Soundproofing enclosure for technological equipment
RU2659922C1 (en) Soundproofing enclosure
RU2646255C1 (en) Method for acoustic isolation of equipment
RU2648125C1 (en) Soundproofing enclosure
RU2639207C1 (en) Sound-insulating enclosure
RU2609482C1 (en) Kochetov multilayer combined structure
RU2639217C1 (en) Soundproofing method
RU2626471C1 (en) Kochetov's sound absorbing element
RU2659926C1 (en) Method of sound insulation
RU2659340C1 (en) Soundproofing enclosure
RU2644774C1 (en) Sound-insulating enclosure
RU2018140629A (en) METHOD OF SOUND INSULATION OF EQUIPMENT AND SOUND INSULATION FENCING
RU2651988C1 (en) Soundproofing enclosure with sound attenuating system
RU2018120473A (en) SOUND PROTECTION