RU2637589C1 - Виндроторный аэростатно-плавательный двигатель - Google Patents

Виндроторный аэростатно-плавательный двигатель Download PDF

Info

Publication number
RU2637589C1
RU2637589C1 RU2016149310A RU2016149310A RU2637589C1 RU 2637589 C1 RU2637589 C1 RU 2637589C1 RU 2016149310 A RU2016149310 A RU 2016149310A RU 2016149310 A RU2016149310 A RU 2016149310A RU 2637589 C1 RU2637589 C1 RU 2637589C1
Authority
RU
Russia
Prior art keywords
wind
frame
aerostat
generator
cable
Prior art date
Application number
RU2016149310A
Other languages
English (en)
Inventor
Александр Владимирович Губанов
Original Assignee
Александр Владимирович Губанов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Владимирович Губанов filed Critical Александр Владимирович Губанов
Priority to RU2016149310A priority Critical patent/RU2637589C1/ru
Application granted granted Critical
Publication of RU2637589C1 publication Critical patent/RU2637589C1/ru
Priority to PCT/RU2017/000919 priority patent/WO2018111153A2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/002Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

Изобретение относится к области ветроэнергетики. Виндроторный аэростатно-плавательный двигатель содержит аэростатно-плавательный модуль в составе аэростатной оболочки, ветросилового блока, включающего генератор и ортогонально-лопастные виндроторы, тросов, трос-кабеля, и причальный узел, на поворотной платформе которого установлены подветренно две соосные лебедки и диаметрально им кабельная бухта, при этом к днищу аэростатной оболочки в форме газонаполненного шара при помощи меридианных лент прижато кольцо с плоскостными флюгерами на кронштейнах, в диаметральной и перпендикулярной ветру плоскости кольца закреплена Н-образная рама, при этом кронштейны с плоскостными флюгерами выдвинуты под прямым углом от рамных боковин в подветренную сторону, при этом по середине горизонтальной перекладины рамы установлен генератор, горизонтальный вал которого выступает с обоих торцов генератора и сопряжен с соосными ему ортогонально-лопастными виндроторами, одинаково вынесенными за пределы рамы и вращающимися в подшипниках, встроенных в рамные боковины, при этом трос-кабель закреплен по середине горизонтальной перекладины рамы, тросы натянуты вниз к лебедкам от нижних оконечностей боковин Н-образной рамы. Изобретение направлено на сохранение устойчивости и мощности генерации от восходящих воздушных потоков, достигаемых виндроторным двигателем с силовым блоком, поднятым аэростатно-плавательным модулем на высоту скоростных ветров. 2 ил.

Description

Применяется для генерации энергии ветра в электроэнергию малых и средних мощностей, достигаемых в высотных скоростных слоях атмосферы.
Настоящий двигатель относится к энергетическим установкам, имеющим ортогональные лопасти и горизонтальную ось вращения виндроторов, перпендикулярную направлению ветра.
В большинстве климатических условий ветроэнергетические установки работают от ветра, перемещающегося в низовых слоях атмосферы с незначительными отклонениями от горизонтальности, не превышающими 6° к поверхности земли. Такое движение воздушных масс является единственно приемлемой для ветряных турбин с радиальными лопастями и осью вращения, совпадающей с направлением ветра, отклонение от указанной аэродинамики приводит к резкому падению КПД турбины и завершается ее полной остановкой в поднимающихся потоках воздуха. Это же правило действует применительно к виндроторам с ортогональными лопастями и осью вращения, перпендикулярной направлению ветра, та же ось должна одновременно занимать вертикальное положение.
Вместе с тем существуют регионы, где наблюдается в результате особых климатических условий или предгорного ландшафта преобладание восходящих атмосферных масс. Применение в таком случае систем с вертикально-осевыми виндроторами, поднятыми в составе аэростатно-плавательных модулей на высоту скоростных ветров, как ветрогенератор (патент RU 2576103 С1, 27.01.2015) или аэростатное крыло ветроэнергетического назначения (патент RU 2594827 С1, 15.10.2015), дает неудовлетворительные результаты. Уже при не столь значительном отклонении ветра от горизонтальной траектории мощность генераторов падает, т.к. аэростатные оболочки расположены относительно виндроторов так, что заслоняют их от напора наклонных воздушных потоков.
Наиболее распространенными видами привязных аэростатов являются наполненные легким газом шаровидные оболочки и их сигарообразные модификации (патенты RU 2046734 С1, 13.06.1991; US 20090152391 А1, 04.03.2006), к которым снизу при помощи строп подвешены корзины (патент RU 2026238 С1, 21.11.1991). Однако эти аэростаты не предназначены для ветроэнергетических целей, поднимают в атмосферу и удерживают на высоте прежде всего системы видео наблюдения, метеорологические приборы ретрансляторы и т.п. иное оборудование.
Приспособлению к ветроэнергетическим целям служит ветряная электростанция (патент DE 2524360 А1, 02.06.1975), в одной из модификаций которой (фиг. 17) ветросиловой блок подвешен к аэростатной оболочке перевернутой каплевидной формы на гибких стропах, что создает пространственную неустойчивость воздухоплавательного модуля в целом. Отличительной особенностью от этой станции высотной ветросиловой установки (патент SU 8970 А1, 11.08.1987) является использование жесткой фермы, закрепленной на днище аэростатной оболочки и служащей опорной конструкцией для по меньшей мере одного ветросилового блока. Поскольку в состав ветросиловых блоков обоих устройств входят турбины с осями вращения, совпадающими с направлением горизонтально перемещающихся ветров, применение таких установок в условиях восходящих воздушных потоков нецелесообразно по вышеизложенным причинам.
В надземной ветрогенераторной системе (патент RU 2457358 С1, 27.07.2012) используется виндротор с неортогональными лопастями Савониуса, горизонтальная ось вращения которого перпендикулярна направлению ветра. Перпендикулярная ориентация оси вращения виндротора на ветер является неизменным качеством устройства и сохраняется при любых перемещениях атмосферных потоков, включая их поднимающийся характер. Вместе с тем в этой системе виндротор располагается в аэростатно-плавательном модуле таким образом, что закрыт от поднимающихся ветров, будучи помещен в продольное отверстие горизонтально-вытянутой аэростатной оболочки или в щель между двумя горизонтальными оболочками, либо в зазор между элементами, соединяющими оболочки. Вследствие таких конструктивных особенностей системы вращение виндротора в восходящем воздушном потоке делается невозможным.
Известен ветродвигатель (патент SU 1509560 А1, 02.09.1987), оснащенный ортогонально-лопастными виндроторами с горизонтальными осями вращения, перпендикулярными направлению ветра, способными работать в восходящих потоках воздуха. Однако все виндроторы данного ветродвигателя приподняты над уровнем аэростатных оболочек, центр тяжести аэростатно-плавательного модуля смещен вверх, в устройстве отсутствуют элементы поддержания как продольной, так и поперечной стабильности модуля, оптимальной ориентации оси вращения его виндроторов в воздушном пространстве. Устойчивость генерации не обеспечена, возможности практического применения ветродвигателя вызывают серьезные сомнения.
Сущность изобретения состоит в том, что ветросиловой блок аэростатно-плавательного модуля устройства укомплектован двумя ортогонально-лопастными виндроторами, горизонтальные оси вращения которых перпендикулярны направлению ветра, разно направленно и симметрично выступают за пределы Н-образной рамы. Генератор установлен по середине рамы на ее горизонтальной перекладине, вал генератора выступает с обоих его торцов и сопряжен с соосными ему осями вращения виндроторов. Рама закреплена на кольце, прижатому к днищу аэростатной оболочки в форме газонаполненного шара меридианными лентами, отходит вниз диаметрально кольцу и в плоскости, перпендикулярной направлению ветра. Кроме рамы от кольца отходят кронштейны с плоскостными флюгерами. От перекладины рамы и от нижних оконечностей ее боковин свободно свисает трос-кабель и натянуты привязные троса, что сообщаются соответственно с кабельной бухтой и двумя диаметральными ей соосными лебедками, установленными в известном порядке на поворачивающейся платформе причального узла.
Целью изобретения является сохранение устойчивости и мощности генерации от восходящих воздушных потоков, достигаемой виндроторным двигателем с силовым блоком, поднятым аэростатно-плавательным модулем на высоту скоростных ветров.
Поставленная цель достигается тем, что аэростатная оболочка в форме газонаполненного шара объединена в одно целое с кольцом, имеющим плоскостные флюгера на кронштейнах и притянутым к днищу оболочки меридианными лентами, а также с Н-образной рамой, на перекладине которой установлен ветросиловой блок. Флюгерные кронштейны направлены от ветра и под прямым углом к свисающей вниз раме, их крепления к кольцу по месту их расположения совпадают. Генератор ветросилового блока находится по середине горизонтальной перекладины рамы, вал генератора выступает с его обоих торцов, через муфты соединен с соосными валу осями вращения ортогонально-лопастных виндроторов, одинаково раздвинутых за пределы рамы. Плоскость рамы, диаметрально свисающей с кольца, вместе с осями вращения виндроторов перпендикулярна направлению ветра благодаря привязки аэростатно-плавательного модуля гибкими связями к поворотной платформе наземного причального узла, которая отличается от известной схемы тем, что троса натянуты от нижних оконечностей боковин Н-образной рамы до двух соосных лебедок на упомянутой платформе, а трос-кабель свободно свисает от середины перекладины рамы до кабельной бухты на той же платформе.
На фиг. 1 показан общий вид виндроторного аэростатно-плавательного двигателя; на фиг. 2 - вид на аэростатно-плавательный модуль того же устройства с подветренной стороны.
Устройство состоит из аэростатно-плавательного модуля и причального узла, привязных тросов 1 и трос-кабеля 2. В свою очередь аэростатно-плавательный модуль включает в себя аэростатную оболочку 3 в форме газонаполненного шара, к днищу которой притянуто меридианными лентами 4 кольцо 5 с кронштейнами 6 и плоскостными флюгерами 7, в диаметральной и перпендикулярной направлению ветра плоскости кольца закреплена Н-образная рама 8. На середине горизонтальной перекладины рамы установлен генератор 9, к концам его вала, выступающим с обеих торцов генератора, через муфты 10 присоединены оси двух ортогонально-лопастных виндроторов 11, вращающихся в подшипниках 12, встроенных в боковины рамы, за пределы которой виндроторы выдвинуты одинаково. По середине перекладины рамы закреплен свисающий трос-кабель, а от нижних оконечностей рамных боковин натянуты привязные троса. Причальный узел устройства представляет из себя бетонную наземную тумбу 13 с поворотной платформой 14, где подветренно установлены две соосные лебедки 15 и диаметральная им кабельная бухта 16.
Настоящий двигатель работает следующим образом. Аэростатная оболочка устройства заполняется легким газом в объеме, необходимом для придания оболочке законченной шаровидной формы и достижения подъемной силы, достаточной для отрыва от земли и пространственной устойчивости аэростатно-плавательного модуля на высоте скоростных ветров, натяжения привязных тросовых связей с причальным узлом. Троса и трос кабель синхронно стравливаются с барабанов лебедок и кабельной бухты. В процессе подъема модуля до необходимой высоты он разворачивается воздушным потоком по круговой траектории вокруг места привязки, разворачивается через гибкие связи вместе с поворотной платформой причального узла и механизмами на ней. Ориентация модуля на ветер завершается после того, как горизонтальные оси вращения виндроторов становятся перпендикулярными направлению ветра. Скоростной напор ветра, в том числе при восходящем воздушном потоке, вращает ортогонально-лопастные виндроторы, механическая энергия подается в генератор, где преобразуется в электрическую энергию, направляемую по трос-кабелю через контроллер, аккумуляторную батарею и инвертор к потребителям. При изменении направления ветра его напор воздействует на наветренную боковую поверхность аэростатной оболочки и ветросиловой блок, аэростатно-плавательный модуль совместно с поворотной платформой разворачиваются снова до тех пор, пока направленность привязных тросов и трос кабеля не совпадут с новым направлением ветра, а горизонтальные оси вращения виндроторов не займут перпендикулярного положения к ветру.
В турбулентных условиях велика вероятность ситуации, когда ветровые нагрузки на ортогонально-лопастные виндроторы будут различны по величине, при которой может возникнуть крутящий момент, создающий вращение аэростатно-плавательного модуля и скрещивание его привязных тросовых связей. Это явление нейтрализуется наличием плоскостных флюгеров, парусность которых надежно поддерживает оптимальную ориентацию на ветер силового блока в предлагаемом устройстве.
Выбор для аэростатной оболочки шаровидной формы обусловлен восходящим характером воздушных потоков, при котором оболочки горизонтально-вытянутой конфигурации оказывают дестабилизирующее влияние на устойчивость аэростатно-плавательного модуля в атмосфере. Корма таких оболочек задирается вверх, привязные троса провисают, модуль теряет устойчивость пространственной ориентации, ветросиловые блоки могут занимать положения под нежелательными углами относительно направленности ветра.
При преобразовании ветра в восходящий атмосферный поток не происходит утраты мощности и устойчивой генерации электроэнергии, поскольку ветросиловой блок аэростатно-плавательного модуля оснащен ортогонально-лопастными виндроторами, горизонтальная ось вращения которых неизменно перпендикулярна любой направленности ветра. Модуль сбалансирован симметричностью установки плоскостных флюгеров, положением генератора посередине горизонтальной перекладины Н-образной рамы, одинаковостью выноса за пределы рамы, идентичностью крыловидного профиля ортогональных лопастей, габаритов и масс обеих виндроторов.

Claims (1)

  1. Виндроторный аэростатно-плавательный двигатель, содержащий аэростатно-плавательный модуль в составе аэростатной оболочки, ветросилового блока, включающего генератор и ортогонально-лопастные виндроторы, тросов, трос-кабеля, и причальный узел, на поворотной платформе которого установлены подветренно две соосные лебедки и диаметрально им кабельная бухта, при этом к днищу аэростатной оболочки в форме газонаполненного шара при помощи меридианных лент прижато кольцо с плоскостными флюгерами на кронштейнах, в диаметральной и перпендикулярной ветру плоскости кольца закреплена Н-образная рама, при этом кронштейны с плоскостными флюгерами выдвинуты под прямым углом от рамных боковин в подветренную сторону, при этом по середине горизонтальной перекладины рамы установлен генератор, горизонтальный вал которого выступает с обоих торцов генератора и сопряжен с соосными ему ортогонально-лопастными виндроторами, одинаково вынесенными за пределы рамы и вращающимися в подшипниках, встроенных в рамные боковины, при этом трос-кабель закреплен по середине горизонтальной перекладины рамы, тросы натянуты вниз к лебедкам от нижних оконечностей боковин Н-образной рамы.
RU2016149310A 2016-12-15 2016-12-15 Виндроторный аэростатно-плавательный двигатель RU2637589C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2016149310A RU2637589C1 (ru) 2016-12-15 2016-12-15 Виндроторный аэростатно-плавательный двигатель
PCT/RU2017/000919 WO2018111153A2 (ru) 2016-12-15 2017-12-11 Виндроторный аэростатно-плавательный двигатель

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016149310A RU2637589C1 (ru) 2016-12-15 2016-12-15 Виндроторный аэростатно-плавательный двигатель

Publications (1)

Publication Number Publication Date
RU2637589C1 true RU2637589C1 (ru) 2017-12-05

Family

ID=60581553

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016149310A RU2637589C1 (ru) 2016-12-15 2016-12-15 Виндроторный аэростатно-плавательный двигатель

Country Status (2)

Country Link
RU (1) RU2637589C1 (ru)
WO (1) WO2018111153A2 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1237789A1 (ru) * 1984-10-11 1986-06-15 Tripukov Nikolaj M Ветроэнергетическа установка
SU1509560A1 (ru) * 1987-09-02 1989-09-23 Ч.-К.А. Будрёвич Ветродвигатель
RU98490U1 (ru) * 2010-03-04 2010-10-20 Евгений Владимирович Основин Переносная ветроэнергоустановка
CN104061125A (zh) * 2013-03-19 2014-09-24 宋少如 气球气艇与升力风筝空中发电装置
RU2537664C1 (ru) * 2014-02-04 2015-01-10 Александр Владимирович Губанов Аэростатный ветрогенератор
CN104895744A (zh) * 2015-06-18 2015-09-09 洛阳创知电子科技有限公司 一种漂浮式风力发电机
RU2576103C1 (ru) * 2015-01-27 2016-02-27 Александр Владимирович Губанов Аэростатно-плавательный ветрогенератор

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1793096C (ru) * 1990-08-09 1993-02-07 Kerov Vladimir G Ветроэнергетическа установка

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1237789A1 (ru) * 1984-10-11 1986-06-15 Tripukov Nikolaj M Ветроэнергетическа установка
SU1509560A1 (ru) * 1987-09-02 1989-09-23 Ч.-К.А. Будрёвич Ветродвигатель
RU98490U1 (ru) * 2010-03-04 2010-10-20 Евгений Владимирович Основин Переносная ветроэнергоустановка
CN104061125A (zh) * 2013-03-19 2014-09-24 宋少如 气球气艇与升力风筝空中发电装置
RU2537664C1 (ru) * 2014-02-04 2015-01-10 Александр Владимирович Губанов Аэростатный ветрогенератор
RU2576103C1 (ru) * 2015-01-27 2016-02-27 Александр Владимирович Губанов Аэростатно-плавательный ветрогенератор
CN104895744A (zh) * 2015-06-18 2015-09-09 洛阳创知电子科技有限公司 一种漂浮式风力发电机

Also Published As

Publication number Publication date
WO2018111153A2 (ru) 2018-06-21
WO2018111153A3 (ru) 2018-08-09

Similar Documents

Publication Publication Date Title
US7602077B2 (en) Systems and methods for tethered wind turbines
US4350899A (en) Lighter than air wind energy conversion system utilizing a rearwardly mounted internal radial disk diffuser
US4450364A (en) Lighter than air wind energy conversion system utilizing a rotating envelope
US8253265B2 (en) Power-augmenting shroud for energy-producing turbines
CA2607103C (en) Systems and methods for tethered wind turbines
US7709973B2 (en) Airborne stabilized wind turbines system
ES2796113T3 (es) Aparato de cuerpo flotante para suprimir la vibración del cuerpo de torre
RU2662101C1 (ru) Аэростат ветроэнергетический
US9030038B2 (en) Tethered airborne wind power generator system
US9321518B1 (en) Vertically stable aerial platform
RU2576103C1 (ru) Аэростатно-плавательный ветрогенератор
WO2005067373A2 (en) Hovering wind turbine
RU2703863C1 (ru) Аэроэнергостат
US8749088B2 (en) Methods and devices for generating electricity from high altitude wind sources
RU2535427C1 (ru) Аэро-высотный ветрогенератор
RU2537664C1 (ru) Аэростатный ветрогенератор
RU2572469C1 (ru) Аэроплавательный виндротор
RU2637589C1 (ru) Виндроторный аэростатно-плавательный двигатель
RU2594827C1 (ru) Аэростатное крыло ветроэнергетического назначения
WO2014022770A1 (en) Lighter-than-air craft for energy-producing turbines
RU2638237C1 (ru) Наземно-генераторный ветродвигатель
RU2602650C1 (ru) Аэростатно-плавательный ветродвигатель
RU2656521C1 (ru) Аэровысотная ветроэнергетическая установка со сдвоенным виндротором
RU2612492C1 (ru) Наземно - генераторный воздухоплавательный ветродвигатель
RU2671667C1 (ru) Аэроэнергостат наземно-генераторный