RU2637044C2 - Способ получения покрытия на основе оксида индия и олова - Google Patents

Способ получения покрытия на основе оксида индия и олова Download PDF

Info

Publication number
RU2637044C2
RU2637044C2 RU2016114802A RU2016114802A RU2637044C2 RU 2637044 C2 RU2637044 C2 RU 2637044C2 RU 2016114802 A RU2016114802 A RU 2016114802A RU 2016114802 A RU2016114802 A RU 2016114802A RU 2637044 C2 RU2637044 C2 RU 2637044C2
Authority
RU
Russia
Prior art keywords
indium
tin oxide
coating
substrate
spraying
Prior art date
Application number
RU2016114802A
Other languages
English (en)
Other versions
RU2016114802A (ru
Inventor
Лев Константинович Марков
Ирина Павловна Смирнова
Алексей Сергеевич Павлюченко
Дмитрий Александрович Закгейм
Михаил Васильевич Кукушкин
Original Assignee
Закрытое Акционерное Общество "Светлана - Оптоэлектроника"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое Акционерное Общество "Светлана - Оптоэлектроника" filed Critical Закрытое Акционерное Общество "Светлана - Оптоэлектроника"
Priority to RU2016114802A priority Critical patent/RU2637044C2/ru
Publication of RU2016114802A publication Critical patent/RU2016114802A/ru
Application granted granted Critical
Publication of RU2637044C2 publication Critical patent/RU2637044C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/09Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

Изобретение относится к полупроводниковой технике, в частности к оптоэлектронике, а именно к электропроводящим оптически прозрачным покрытиям на основе оксида индия и олова. Способ получения покрытия на основе оксида индия и олова на поверхности подложки включает напыление на подложку оксида индия и олова с обеспечением требуемого значения показателя преломления покрытия за счет выбора технологического параметра процесса напыления. Согласно изобретению напыление осуществляют при нормальной ориентации подложки относительно потока напыляемого вещества, процесс напыления оксида индия и олова на подложку включает последовательно осуществляемые операцию напыления оксида индия и олова методом электронно-лучевого испарения или магнетронного распыления при температуре от 400 до 500°С и операцию напыления оксида индия и олова методом магнетронного распыления при температуре от 15 до 75°С, при этом обеспечивают требуемое значение показателя преломления покрытия за счет выбора массы вещества, наносимого на каждой из указанных операций напыления. Техническим результатом, достигаемым при реализации изобретения, является получение покрытия оксида индия и олова с заданным значением показателя преломления при обеспечении его однородности по толщине.

Description

Изобретение относится к полупроводниковой технике, в частности к оптоэлектронике, а именно к электропроводящим оптически прозрачным покрытиям на основе оксида индия и олова.
Известен ряд методов получения покрытий на основе оксида индия и олова (ITO) с использованием метода электронно-лучевого испарения, магнетронного распыления или их комбинации.
Так, известен способ получения пленочного покрытия на основе оксида индия и олова [RU 2530487], которое применяется в качестве прозрачного контакта светодиода.
Данный способ включает формирование покрытия путем нанесения слоя оксида индия и олова толщиной 5-15 нм методом электронно-лучевого испарения на нагретую до высокой температуры подложку и последующее нанесение на указанный слой второго слоя оксида индия и олова толщиной, значительно большей, чем толщина первого слоя, методом магнетронного распыления.
В результате получают покрытие, обладающее хорошей электрической проводимостью и с высоким (около 2) показателем преломления, что позволяет использовать его в качестве контакта светодиода.
Однако данный способ не предусматривает возможность управления оптическими свойствами получаемого покрытия ITO.
В настоящее время актуальной является задача создания способов получения покрытий ITO с контролируемым значением показателя преломления, что позволяет управлять их оптическими свойствами.
Известен способ получения покрытия на основе оксида индия и олова [Martin F. Schubert и др. Applied Physics Letters. 90, 141115 (2007)], выбранный в качестве ближайшего аналога.
Данный способ включает операцию напыления на подложку оксида индия и олова методом электронно-лучевого испарения при наклонном падении напыляемого вещества на подложку. При наклонном напылении материала на подложку образующиеся на начальной стадии указанного процесса зародыши формируемой структуры покрытия затеняют собой часть поверхности подложки, что в дальнейшем предотвращает осаждение материала на затененные области и приводит к образованию на данных участках пор. В зависимости от угла напыления материала меняется пористость напыляемого слоя покрытия, и, следовательно, его показатель преломления.
Согласно рассматриваемому способу, варьируя в процессе напыления технологический параметр, которым является угол напыления, обеспечивают требуемое значение показателя преломления напыляемого слоя покрытия.
Данный способ позволяет получать покрытия ITO с заданным значением показателя преломления, однако при наклонном напылении вещества не обеспечивается однородность по толщине получаемого покрытия.
Задачей заявляемого изобретения является получение покрытия оксида индия и олова с заданным значением показателя преломления при обеспечении его однородности по толщине.
Сущность изобретения заключается в том, что в способе получения покрытия на основе оксида индия и олова на поверхности подложки, включающем напыление на подложку оксида индия и олова с получением покрытия с заданным значением показателя преломления, согласно изобретению напыление осуществляют при нормальной ориентации подложки относительно потока напыляемого вещества, причем напыление оксида индия и олова на подложку осуществляют путем электронно-лучевого испарения или магнетронного распыления при температуре от 400 до 500°С и последующего магнетронного распыления при температуре от 15 до 75°С, при этом требуемое значение показателя преломления покрытия обеспечивают количеством вещества, наносимого на каждой из указанных операций напыления.
Заявляемый способ основан на зависимости структуры и соответственно оптических свойств покрытия от технологических параметров напыления материала оксида индия и олова на подложку.
Первоначально осуществляют операцию напыления на подложку оксида индия и олова методом электронно-лучевого испарения или магнетронного распыления при нагреве подложки выше температуры кристаллизации ITO (400-500°С). Структура нанесенного слоя материала покрытия характеризуется наличием вытянутых (в случае электронно-лучевого испарения их можно назвать нитевидными) кристаллов и содержит большое количество пустот. Показатель преломления такого слоя имеет значение, меньшее, чем показатель преломления плотного слоя материала оксида индия и олова без пустот.
Далее осуществляют операцию напыления на полученный ранее слой материала покрытия оксида индия и олова методом магнетронного распыления мишени без нагрева подложки при температуре 15-75°С. При этом происходит уплотнение структуры материала за счет внедрения в имеющиеся в ней пустоты напыляемого материала, что обуславливает повышение коэффициента преломления полученного с помощью указанных операций покрытия.
Как показали исследования авторов, варьируя массу напыляемого оксида индия и олова при осуществлении каждой из описанных выше операций, можно добиться заданной величины показателя преломления покрытия в широком диапазоне значений.
Благодаря тому, что при осуществлении процесса напыления обеспечивают нормальную ориентацию подложки относительно потока напыляемого вещества, вещество равномерно распределяется по поверхности подложки, чем достигается однородность покрытия по толщине.
Таким образом, техническим результатом, достигаемым при реализации изобретения, является получение покрытия оксида индия и олова с заданным значением показателя преломления при обеспечении его однородности по толщине.
Способ осуществляют следующим образом.
Нанесение покрытия ITO на подложку осуществляют с использованием оборудования, позволяющего реализовать метод напыления оксида индия и олова на подложку, при котором обеспечивается нормальная ориентация напыляемого вещества относительно подложки.
Осуществляют операцию напыления материала оксида индия и олова на подложку методом электронно-лучевого испарения или магнетронного распыления при нагреве подложки до температуры 400-500°С. В процессе напыления контролируют массу напыляемого вещества и обеспечивают достижение требуемого значения массы. Контроль массы осуществляют, в частности, с помощью кварцевого датчика.
Осуществляют последующую операцию напыления материала оксида индия и олова методом магнетронного распыления без нагрева подложки при температуре 15-75°С. В процессе напыления также контролируют массу напыляемого вещества и обеспечивают достижение требуемого массового количества вещества, в частности, с помощью кварцевого датчика.
Требуемые значения массы материала оксида индия и олова, напыляемого при осуществлении каждой из описанных стадий процесса напыления, предварительно определяют экспериментально из условия достижения заданного значения показателя преломления получаемого покрытия.
Для обеспечения требуемых свойств полученного покрытия в отношении прозрачности осуществляют известные технологические операции, такие как промежуточный, последующий отжиг или напыление в среде кислорода.
При необходимости аналогичным образом можно осуществлять дальнейшее напыление слоев оксида индия и олова, чередуя указанные выше операции, напыления и обеспечивая достижение при проведении каждой из них требуемого массового количества напыляемого вещества.
Возможность реализации способа показана в примерах его выполнения.
Пример 1
Наносили тонкопленочное покрытие ITO на подложку, в качестве которой использовали покровное стекло толщиной 0, 17 мм. Площадь покровного стекла составляла 1 см2.
Напыление осуществляли на специализированной установке комбинированного электронно-лучевого и магнетронного напыления, производства фирмы Torr Int., США.
Рабочая камера установки откачивалась до давления 10-7 mbar, в камере был предусмотрен нагрев подложкодержателя, а также обеспечивался напуск газов (Ar, N2, O2).
Осуществляли операцию напыления материала ITO методом электронно-лучевого испарения при нагреве подложки до температуры 500°С. В процессе напыления контролировали массу напыляемого вещества и обеспечивали достижение требуемого значения массы.
Контроль массы ITO осуществляли с помощью кварцевого датчика.
Напыляли материал ITO, масса которого составляла 71 мкг.
Осуществляли последующую операцию напыления материала ITO методом магнетронного распыления без нагрева подложки при температуре 22°С. В процессе напыления также контролировали массу напыляемого вещества. Напыляли материал ITO, масса которого составляла 50 мкг.
Далее обеспечивали требуемые свойства покрытия в отношении прозрачности, для чего осуществляли отжиг в атмосфере, состоящей из смеси азота и кислорода, при 500°С в течение 10 мин.
Получили покрытие с показателем преломления 1,4.
Как показали исследования, осуществляемые с помощью сканирующей электронной микроскопии, полученное покрытие являлось однородным по толщине.
Пример 2
Осуществляли процесс напыления покрытия аналогично, как описано в примере 1.
При этом осуществляли операцию напыления материала ITO методом электронно-лучевого испарения при нагреве подложки до температуры 450°С и напыляли материал ITO, масса которого составляла 36 мкг.
Последующую операцию напыления методом магнетронного распыления осуществляли при температуре 20°С и напыляли материал ITO, масса которого составляла 121 мкг.
Далее обеспечивали требуемые свойства покрытия в отношении прозрачности, для чего осуществляли отжиг в атмосфере, состоящей из смеси азота и кислорода, при 500°С в течение 10 мин.
Получили покрытие с показателем преломления 1,7.
Как показали исследования, осуществляемые с помощью сканирующей электронной микроскопии, полученное покрытие являлось однородным по толщине.
Пример 3
Осуществляли процесс напыления покрытия аналогично, как описано в примере 1.
При этом осуществляли операцию напыления материала ITO методом магнетронного распыления при нагреве подложки до температуры 400°С и напыляли материал ITO, масса которого составляла 71 мкг.
Последующую операцию напыления методом магнетронного распыления осуществляли при температуре 60°С и напыляли материал ITO, масса которого составляла 50 мкг.
Далее обеспечивали требуемые свойства покрытия в отношении прозрачности, для чего осуществляли отжиг в атмосфере, состоящей из смеси азота и кислорода, при 500°С в течение 10 мин.
Получили покрытие с показателем преломления 1,3.
Как показали исследования, осуществляемые с помощью сканирующей электронной микроскопии, полученное покрытие являлось однородным по толщине.

Claims (1)

  1. Способ получения покрытия на основе оксида индия и олова на поверхности подложки, включающий напыление на подложку оксида индия и олова с получением покрытия с заданным значением показателя преломления, отличающийся тем, что напыление осуществляют при нормальной ориентации подложки относительно потока напыляемого вещества, причем напыление оксида индия и олова на подложку осуществляют путем электронно-лучевого испарения или магнетронного распыления при температуре от 400 до 500°С и последующего магнетронного распыления при температуре от 15 до 75°С, при этом требуемое значение показателя преломления покрытия обеспечивают количеством вещества, наносимого на каждой из указанных операций напыления.
RU2016114802A 2016-04-15 2016-04-15 Способ получения покрытия на основе оксида индия и олова RU2637044C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016114802A RU2637044C2 (ru) 2016-04-15 2016-04-15 Способ получения покрытия на основе оксида индия и олова

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016114802A RU2637044C2 (ru) 2016-04-15 2016-04-15 Способ получения покрытия на основе оксида индия и олова

Publications (2)

Publication Number Publication Date
RU2016114802A RU2016114802A (ru) 2017-10-19
RU2637044C2 true RU2637044C2 (ru) 2017-11-29

Family

ID=60120470

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016114802A RU2637044C2 (ru) 2016-04-15 2016-04-15 Способ получения покрытия на основе оксида индия и олова

Country Status (1)

Country Link
RU (1) RU2637044C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2800664C1 (ru) * 2022-12-22 2023-07-25 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Применение покрытия оксида индия и олова (ITO) в качестве прозрачного гидрофобного покрытия

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541959A (en) * 1978-09-18 1980-03-25 Sanyo Shinku Kogyo Kk Production of indium oxide transparent conductive film through sputtering
SU1499573A1 (ru) * 1987-09-08 1992-03-07 Предприятие П/Я А-7873 Способ получени прозрачных провод щих пленок на основе оксидов инди и олова
JPH05345973A (ja) * 1992-06-12 1993-12-27 Mitsui Mining & Smelting Co Ltd 透明導電膜の製造方法
JPH10140332A (ja) * 1996-11-08 1998-05-26 Anelva Corp 非晶質ito膜の作製方法
RU2112076C1 (ru) * 1997-05-22 1998-05-27 Товарищество с ограниченной ответственностью "ТИКО" Способ нанесения проводящего прозрачного покрытия
EA011247B1 (ru) * 2003-06-27 2009-02-27 Сэн-Гобэн Гласс Франс Подложка, покрытая слоем диэлектрика, и способ и устройство для её изготовления
RU2564650C1 (ru) * 2014-07-22 2015-10-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ нанесения электропроводящего покрытия для электрообогреваемого элемента органического остекления

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541959A (en) * 1978-09-18 1980-03-25 Sanyo Shinku Kogyo Kk Production of indium oxide transparent conductive film through sputtering
SU1499573A1 (ru) * 1987-09-08 1992-03-07 Предприятие П/Я А-7873 Способ получени прозрачных провод щих пленок на основе оксидов инди и олова
JPH05345973A (ja) * 1992-06-12 1993-12-27 Mitsui Mining & Smelting Co Ltd 透明導電膜の製造方法
JPH10140332A (ja) * 1996-11-08 1998-05-26 Anelva Corp 非晶質ito膜の作製方法
RU2112076C1 (ru) * 1997-05-22 1998-05-27 Товарищество с ограниченной ответственностью "ТИКО" Способ нанесения проводящего прозрачного покрытия
EA011247B1 (ru) * 2003-06-27 2009-02-27 Сэн-Гобэн Гласс Франс Подложка, покрытая слоем диэлектрика, и способ и устройство для её изготовления
RU2564650C1 (ru) * 2014-07-22 2015-10-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ нанесения электропроводящего покрытия для электрообогреваемого элемента органического остекления

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2800664C1 (ru) * 2022-12-22 2023-07-25 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Применение покрытия оксида индия и олова (ITO) в качестве прозрачного гидрофобного покрытия
RU2808498C1 (ru) * 2023-02-09 2023-11-28 Акционерное общество "Северный пресс" (АО "Северный пресс") Способ получения тонкопленочного покрытия на основе оксида индия и олова

Also Published As

Publication number Publication date
RU2016114802A (ru) 2017-10-19

Similar Documents

Publication Publication Date Title
Duta et al. Sol–gel versus sputtering indium tin oxide films as transparent conducting oxide materials
JP2004511655A (ja) マグネトロンネガティブイオンスパッタ源を用いるインジウムスズ酸化物薄膜の作製方法
CN1891848A (zh) 光学镀膜装置
KR101524271B1 (ko) 복수 개의 박막으로 이루어진 지문 방지층의 조성물과 그 제조 방법.
KR20160098165A (ko) 구배 박막 필름
KR20120079716A (ko) 내지문 코팅 방법 및 장치
Zhong et al. Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition
Bah et al. Fabrication of TaOxNy thin films by reactive ion beam-assisted ac double magnetron sputtering for optical applications
FR2542278A1 (fr) Perfectionnements apportes aux revetements aptes a resister a des contraintes thermiques elevees et notamment aux revetements pour satellites et vaisseaux spatiaux et aux procedes de production de ces revetements
RU2637044C2 (ru) Способ получения покрытия на основе оксида индия и олова
CN108796452B (zh) 一种二氧化钒薄膜及其制备方法和应用
Hong et al. Preparation of SiO2 passivation thin film for improved the organic light-emitting device life time
US9909208B2 (en) Method for developing a coating having a high light transmission and/or a low light reflection
US20050281985A1 (en) Isotropic glass-like conformal coatings and methods for applying same to non-planar substrate surfaces at microscopic levels
JP2022145334A (ja) イオンアシスト蒸着法およびプラズマプロセス装置用構造体
Volpian et al. Nanogradient optical coatings
Marinov et al. Optical properties of ZnO thin films deposited by the method of electrospray
US20140268348A1 (en) Anti-Reflective Coatings with Porosity Gradient and Methods for Forming the Same
CN101713062B (zh) 遮光元件及其镀膜方法
KR20070048723A (ko) 광촉매성 산화티타늄 층의 데포지션 방법
KR101907143B1 (ko) 성능이 우수한 반사방지막의 제조방법 및 그에 의하여 제조된 반사방지막
MacKay et al. Laser damage threshold results for sputtered coatings produced using different deposition technologies
TWI417410B (zh) 導電薄膜製作方法
KR20080006812A (ko) Ito 이중막 증착방법 및 이에 따라 제조된 ito이중막
Radhakrishna Transparent Conducting Pure and Tin Doped Indium Oxide Films-Preparation and Characterization

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180416