RU2634453C1 - Способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов - Google Patents

Способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов Download PDF

Info

Publication number
RU2634453C1
RU2634453C1 RU2016119452A RU2016119452A RU2634453C1 RU 2634453 C1 RU2634453 C1 RU 2634453C1 RU 2016119452 A RU2016119452 A RU 2016119452A RU 2016119452 A RU2016119452 A RU 2016119452A RU 2634453 C1 RU2634453 C1 RU 2634453C1
Authority
RU
Russia
Prior art keywords
resolution
radar
earth
sequence
duration
Prior art date
Application number
RU2016119452A
Other languages
English (en)
Inventor
Юрий Дмитриевич Медведев
Юрий Сергеевич Бондаренко
Виктор Иванович Дикарев
Борис Васильевич Койнаш
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт прикладной астрономии Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт прикладной астрономии Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт прикладной астрономии Российской академии наук
Priority to RU2016119452A priority Critical patent/RU2634453C1/ru
Application granted granted Critical
Publication of RU2634453C1 publication Critical patent/RU2634453C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G3/00Observing or tracking cosmonautic vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к радиолокации пассивных космических объектов (КО), например, крупных метеоритов и астероидов. Способ включает радиолокационное зондирование КО, вращающегося в процессе полета, периодической последовательностью высокоразрешающих радиосигналов наносекундной длительности. Число этих импульсов соответствует числу ракурсов КО за период его вращения, максимальный из всех периодов вращения КО вокруг его осей. Зондирующую последовательность пропускают через блок регулируемой задержки, перемножают с отраженной последовательностью высокоразрешающих сигналов, фиксируют временную задержку, определяют расстояние между КО и Землей. Одновременно зондирующую последовательность перемножают с отраженной, выделяют низкочастотное напряжение, пропорциональное доплеровскому смещению частоты, с помощью которого определяют величину направление радиальной скорости КО, оценивают время вероятного столкновения КО с Землей и принимают меры по недопущению столкновения. Техническим результатом изобретения является повышение эффективности защиты Земли от крупных метеоритов и астероидов. 2 ил.

Description

Предлагаемый способ относится к области радиолокации пассивных космических объектов (крупных метеоритов и астероидов) и может быть использован при осуществлении радиолокационного обзора околоземного пространства с целью выделения космических объектов, представляющих опасность при столкновении с Землей.
Известен аналог по защите от астероидно-кометной опасности (АКО), провоцирующий разработку систем космической защиты [1]. Недостатком аналога является отсутствие оценки размеров пассивных космических объектов, исключающее возможность их селекции по степени опасности.
Известен также аналог оценки астероидно-кометной опасности [2], согласно которому космические тела размером менее 10 м обычно до поверхности Земли не долетают, сгорая в атмосфере, и опасности для планеты и населения не представляют. Недостатком известного аналога является то, что тела размером в несколько десятков метров, сгорая, способны взрываться и создавать серьезные разрушения, а объекты размером в сотни и более метров приводят к региональным либо к глобальным катастрофам. При этом именно тела размером 50-100 метров представляют наибольшую опасность для человечества на характерном времени его существования, поскольку вероятность их столкновения с Землей выше, чем у более крупных тел, и их средние разрушительное воздействие максимально.
Таким образом, вопросы оценки размеров космических тел, пересекающих орбиту Земли, актуальны уже в настоящее время и интерес к ним по мере развития техники будет только возрастать.
Из уровня техники известен способ определения геометрических характеристик (например, диаметров) небесных тел оптической системой по угловым размерам [3]. Недостатком оптических способов является то, что погрешность оценки линейных размеров астероидов по угловым размерам небесных тел растет пропорционально расстоянию до измеряемого объекта. Кроме того, все оптические способы при наземном базировании подвержены зависимости от состояния оптической прозрачности и турбулентности в атмосфере.
Этих недостатков лишены способы радиолокационного зондирования космического пространства, разрешение которых вдоль линии визирования определяется свойствами используемых сигналов и не зависит от расстояния до объекта.
Кроме того, известны способы и системы предотвращения угрозы для планеты (авт. свид. СССР №590.687, 1.748.086; патенты РФ №2.059.280, 2.099.735, 2.175.139, 2.182.341, 2.247.395, 2.250.476, 2.323.860, 2.374.597, 2.390.730, 2.436.611, 2.518.108, 2.526.401, 2.527.252, 2.535.487, 2.555.247, 2.568.628, 2.578.003; патенты США №5.594.454, 5.920.278, 5.995.039, 5.147.638, 6.683.518, 7.119.732, 7.463.181; патенты ЕР №1.026.519, 1.229.347; патенты WO №2.005.017,583, 2.006.087.421; Лозоренко О.В, Черногор Л.Ф. Сверхширокополосные сигналы и физические процессы. Основные понятия, модели и методы описания. // Радиофизика и радиоастрономия, 2008, т. 13, №2, С. 166-194 и другие).
Из известных способов и систем наиболее близким к предлагаемому является «Способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов» (патент РФ №2.527.252, В64G 3/00, 2013), который и выбран в качестве базового объекта.
Известный способ включает радиолокационное зондирование космического объекта (КО), вращающегося в процессе полета, периодической последовательностью высокоразрешающих радиосигналов наносекундной длительности. Число этих импульсов соответствует числу ракурсов КО за период его вращения, максимальный из всех периодов вращения КО вокруг его осей. Этот период определяется по повторяемости радиолокационных портретов (РЛП), дающих разрешение по дальности, равное одной десятой минимального размера КО. При этом производят многократное измерение длительности РЛП освещенной части КО. По этой длительности далее производят оценку среднего радиуса КО по половине усредненной пространственной длины сигналов РЛП и линейного размера по удвоенной величине среднего радиуса.
Известный способ позволяет оценивать размеры пассивных космических объектов, например, крупных метеоритов и астероидов (размерами более десяти метров), которые могут представлять опасность при столкновении с Землей. При этом важное значение имеют такие расстояния между КО и Землей, радиальная скорость сближения КО с Землей и время вероятного их столкновения, знание которых необходимо, чтобы своевременно активизировать орбитальные средства космической защиты.
Технической задачей изобретения является повышение эффективности космической защиты Земли от крупных метеоритов и астероидов (размерами более десяти метров), путем определения расстояния между КО и Землей, радиальной скорости сближения КО с Землей и вероятного времени их столкновения.
Поставленная задача решается тем, что способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов размером более десяти метров в диаметре, вращающихся в процессе полета, включающий, в соответствии с ближайшим аналогом, радиолокационное зондирование космического объекта, периодической последовательностью высокоразрешающих радиосигналов наносекундной длительности числом N, которое соответствует числу ракурсов объекта за период его вращения, максимальный из периодов вращения по осям объекта, который определяют по повторяемости радиолокационных портретов, обеспечивающих разрешение по дальности, равное одной десятой части минимального размера объекта, причем производят многократное измерение длительности радиолокационного портрета освещенной части объекта, затем по измеренным значениям длительности радиолокационного портрета производят оценку среднего радиуса объекта по половине усредненной пространственной длины сигнала радиолокационного портрета и линейного размера объекта по удвоенной величине среднего радиуса, отличается от ближайшего аналога тем, что зондирующую последовательность высокоразрешающих радиосигналов наносекундной длительности пропускают через блок регулируемой задержки, перемножают с отраженной последовательностью высокоразрешающих радиосигналов наносекундной длительности, выделяют низкочастотное напряжение, пропорциональное корреляционной функции R(τ), где τ - текущая временная задержка, изменением текущей временной задержки τ обеспечивают получение максимального значения корреляционной функции R(τ), поддерживают ее на максимальном уровне, фиксируют временную задержку τ=τ3, соответствующую максимальному значению корреляционной функции R(τ), и определяют расстояние R между космическим объектом и Землей по формуле:
Figure 00000001
где с - скорость распространения радиоволн.
Одновременно зондирующую последовательность высокоразрешающих радиосигналов наносекундной длительности перемножают с отраженной, выделяют низкочастотное напряжение, пропорциональное доплеровскому смещению частоты, по величине и знаку которого определяют величину и направление радиальной скорости космического объекта, по измеренным значениям дальности и радиальной скорости оценивают время вероятного столкновения космического объекта с Землей и принимают меры по недопущению этого столкновения.
Схема формирования радиолокационного портрета космического объекта показана на фиг. 1. Структурная схема устройства, реализующего предлагаемый способ, представлена на фиг. 2.
Устройство содержит последовательно включенные блок 1 управления, генератор 2 ударного возбуждения, усилитель 3 мощности, дуплексер 4, вход-выход которого связан с приемопередающей антенной 5 планетного радиолокатора, усилитель 6 высокой частоты, первый перемножитель 9, второй вход которого через блок 8 регулируемой задержки соединен с выходом генератора 2 ударного возбуждения, первый фильтр 10 низких частот и экстремальный регулятор 11, выход которого подключен к второму входу блока 8 регулируемой задержки, к второму выходу которого подключен индикатор 12 дальности. К выходу усилителя 6 высокой частоты последовательно подключены второй перемножитель 13, второй вход которого соединен с выходом генератора 2 ударного возбуждения, второй фильтр 14 нижних частот, измеритель 15 доплеровского смещения частоты и индикатор 16 радиальной скорости.
Блок 8 регулируемой задержки, первый перемножитель 9, первый фильтр 10 нижних частот и экстремальный регулятор 11 образуют коррелятор 4. Для оценки размеров астероида используются высокоразрешающие сигналы. В радиолокации высокоразрешающими называют сигналы с большой абсолютной шириной спектра Δf и с высокой средней частотой f0, имеющие большую разрешающую способность по дальности
Figure 00000002
где с - скорость распространения света,
а - характерные размеры объекта, отражающего сигнал [5].
При этом величина сτи, где τи - длительность сигнала, имеет смысл пространственной длины сигнала.
Эти сигналы позволяют получить радиолокационный портрет объекта отклик X(t) на высокоразрешающий сигнал, который определяется радиальным размером rk освещенной части объекта (фиг. 1). Для радиального размера ≈5 м необходимо обеспечивать разрешающую способность по дальности Δr≈0,5 м, что соответствует длительности импульса (ширина автокорреляционной функции) ≈3,5 нс.
Известно, что характерной особенностью пассивных космических объектов является их вращение из-за отсутствия сопротивления воздуха [2, 5]. Поверхности объекта, отражающие зондирующий сигнал в процессе радиолокации, меняет свое взаимоположение при вращении астероида. Измеряя длительность
Figure 00000003
радиолокационного портрета X(t) при различных ракурсах, возникающих при вращении, и усредняя результаты измерений, можно довольно точно оценить средний радиус космического объекта (величину
Figure 00000004
)
Figure 00000005
где rk - длительность радиолокационного портрета при К-м измерении,
N - число измерений,
с - скорость распространения света.
При периодическом зондировании число N следует выбирать из условия
Figure 00000006
где Tv - период вращения астероида (10-100 мин), определяемый по повторяемости радиолокационного портрета,
F - частота повторения зондирующего сигнала, выбираемая таким
образом, чтобы число измерений составляло величину N>100-1000.
При наличии нескольких осей вращения следует учитывать большой из периодов Tv.
Способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов состоит в следующем.
Производится зондирование космического объекта периодической последовательностью высокоразрешающих радиосигналов наносекундной длительности, обеспечивающих разрешение по дальности одной десятой части минимального размера объекта.
По команде блока 1 управления генератор 2 ударного возбуждения формирует зондирующий сверхширокополосный сигнал
Figure 00000007
который после усиления в усилителе 3 мощности через дуплексер 4 поступает в приемопередающую антенну 5 и излучается ею в направлении космического объекта. По принятой последовательности отраженных сигналов (радиолокационных портретов)
Figure 00000008
где ±Δωд - доплеровское смещение частоты.
выбирается число N, определяемое по повторяемости радиолокационных портретов объекта за период его вращения Tv либо за самый большой из периодов при вращении объекта по нескольким осям. При этом производится многократное измерение длительности радиолокационных портретов τк(к=1,2,…,N), освещенной части космического объекта, длительности τк отраженного сигнала радиолокационного портрета освещенной части объекта. Затем измеренные значения τк усредняются по числу измерений
Figure 00000009
и производится оценка среднего радиуса объекта по половине усреднений пространственной длины сигнала радиолокационного портрета
Figure 00000010
≈0,5 с (τк) и линейного размера
Figure 00000011
Зондирующий сверхширокополосный сигнал u3(t) пропускают через блок 8 регулируемой задержки и перемножают с отраженным сигналом u0(t). На выходе перемножителя 9 формируется низкочастотное напряжение, пропорциональное корреляционной функции R(τ), где τ - текущая временная задержка, которое выделяется фильтром 10 нижних частот. Изменением текущей временной задержки τ с помощью экстремального регулятора 11 обеспечивают максимальное значение корреляционной функции R(τ) и поддерживают ее на максимальном уровне. Фиксируют временную задержку τ=τ3, соответствующую максимальному значению корреляционной функции R(x), и определяют расстояние до космического объекта
Figure 00000012
где с - скорость распространения радиосигнала.
Индикатор 12 дальности, связанный со шкалой блока 8 регулируемой задержки, фиксирует расстояние R от космического объекта до Земли. На выходе перемножителя 13 образуется низкочастотное напряжение
Figure 00000013
где
Figure 00000014
ϕд30,
которое выделяется фильтром 14 низких частот и подается на вход измерителя 15 доплеровского смещения. Величина и знак доплеровского смещения ±Δωд свидетельствуют о величине и направлении радиальной скорости космического объекта, которые фиксируются индикатором 16. Измерив значения дальности R и радиальной скорости V1 космического объекта, можно оценить время вероятного столкновения космического объекта с Землей и принять соответствующие меры по недопущению этого события.
Таким образом, предлагаемый способ по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает повышение эффективности космической защиты Земли от крупных метеоритов и астероидов (размерами более десяти метров). Это достигается не только оценкой размеров пассивных космических объектов, но и определением расстояния между космическим объектом и Землей, радиальной скорости сближения космического объекта с Землей и вероятного времени их столкновения.
Источники информации
1. Патент РФ №2.302.605 (РФ). Способ отражения атаки из космоса. / Болотин Н.Б. Опубл. 10.07.2007.
2. Астероидно-кометная опасность: вчера, сегодня, завтра. / Под ред. Б.М. Шустова, Л.В. Рыхловой. - М: ФИЗМАТЛИТ. 2010. - 384 с.
3. Патент РФ №2.059.280. Способ определения геометрических характеристик объекта многоапертурной оптической системы. / Бакут П.А., Плотников И.П., Рожков И.А., Ряхин А.Д., Свиридов К.Н. Опубл. 27.04.1996 г.
4. Патент РФ №2.175.139. Способ радиолокации пассивных космических объектов. / Атанашев А.Б., Землянов А.Б., Атанашев Д.А., Бойков К.Б., Докукин В.Ф. Опубл. 20.10.2001.
5. Лазоренко О.В., Черногор Л.Ф. Сверхширокополосные сигналы и физические процессы. Основные понятия, модели и методы описания // Радиофизика и радиоастрономия. 2008, т. 13, №2. - С. 166-194.

Claims (3)

  1. Способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов размером более десяти метров в диаметре, вращающихся в процессе полета, включающий радиолокационное зондирование космического объекта периодической последовательностью высокоразрешающих радиосигналов наносекундной длительности числом N, которое соответствует числу ракурсов объекта за период его вращения, максимальный из периодов вращения по осям объекта, который определяют по повторяемости радиолокационных портретов, обеспечивающих разрешение по дальности, равное одной десятой части максимального размера объекта, причем производят многократное измерение длительности радиолокационного портрета освещенной части объекта, затем по измеренным значениям длительности радиолокационного портрета производят оценку среднего радиуса объекта по половине усредненной пространственной длины сигнала радиолокационного портрета и линейного размера объекта по удвоенной величине среднего радиуса, отличающийся тем, что зондирующую последовательность высокоразрешающих радиосигналов наносекундной длительности пропускают через блок регулируемой задержки, перемножают с отраженной последовательностью высокоразрешающих радиосигналов наносекундной длительности, выделяют низкочастотное напряжение, пропорциональное корреляционной функции R(τ), где τ - текущая временная задержка, изменением текущей временной задержки обеспечивают получение максимального значения корреляционной функции R(τ), поддерживают ее на максимальном уровне, фиксируют временную задержку τ=τз, соответствующую максимальному значению корреляционной функции R(τ), и определяют расстояние R между космическим объектом и Землей по формуле
    Figure 00000015
  2. где с - скорость распространения радиоволн,
  3. одновременно зондирующую последовательность высокоразрешающих радиосигналов наносекундной длительности перемножают с отраженной, выделяют низкочастотное напряжение, пропорциональное доплеровскому смещению частоты, по величине и знаку которого определяют величину и направление радиальной скорости космического объекта, по измеренным значениям дальности и радиальной скорости оценивают время вероятного столкновения космического объекта с Землей и принимают меры по недопущению этого столкновения.
RU2016119452A 2016-05-19 2016-05-19 Способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов RU2634453C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016119452A RU2634453C1 (ru) 2016-05-19 2016-05-19 Способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016119452A RU2634453C1 (ru) 2016-05-19 2016-05-19 Способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов

Publications (1)

Publication Number Publication Date
RU2634453C1 true RU2634453C1 (ru) 2017-10-30

Family

ID=60263533

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016119452A RU2634453C1 (ru) 2016-05-19 2016-05-19 Способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов

Country Status (1)

Country Link
RU (1) RU2634453C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115575916A (zh) * 2022-10-21 2023-01-06 平湖空间感知实验室科技有限公司 近地小行星地基雷达探测目标筛选方法、***和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433203A (en) * 1993-07-22 1995-07-18 Aloka Co., Ltd. Bone assessment apparatus and method
RU2175139C1 (ru) * 2000-05-17 2001-10-20 Балтийский государственный технический университет "Военмех" им. Д.Ф. Устинова Способ радиолокации пассивных космических объектов
RU2451953C1 (ru) * 2010-12-30 2012-05-27 Открытое акционерное общество "Авангард" Миноискатель
RU2527252C1 (ru) * 2013-06-07 2014-08-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Волгоградский государственный университет" Способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433203A (en) * 1993-07-22 1995-07-18 Aloka Co., Ltd. Bone assessment apparatus and method
RU2175139C1 (ru) * 2000-05-17 2001-10-20 Балтийский государственный технический университет "Военмех" им. Д.Ф. Устинова Способ радиолокации пассивных космических объектов
RU2451953C1 (ru) * 2010-12-30 2012-05-27 Открытое акционерное общество "Авангард" Миноискатель
RU2527252C1 (ru) * 2013-06-07 2014-08-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Волгоградский государственный университет" Способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115575916A (zh) * 2022-10-21 2023-01-06 平湖空间感知实验室科技有限公司 近地小行星地基雷达探测目标筛选方法、***和电子设备

Similar Documents

Publication Publication Date Title
Chan et al. Binary neutron star mergers and third generation detectors: Localization and early warning
CN100454038C (zh) 采用位置敏感探测器的大气湍流探测激光雷达
US9476700B2 (en) Phase resolved shearography for remote sensing
CN105891841A (zh) 车载激光雷达距离速度测量方法
US8307694B1 (en) Hypervelocity impact detection method and system for determining impact location in a detection surface
Barbaresco et al. Monitoring wind, turbulence and aircraft wake vortices by high resolution RADAR and LIDAR remote sensors in all weather conditions
US9709667B2 (en) Timing validation for data fusion
Zakharchenko et al. Estimate of sizes of small asteroids (cosmic bodies) by the method of stroboscopic radiolocation
RU2634453C1 (ru) Способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов
RU2540982C1 (ru) Способ определения координат целей (варианты) и комплекс для его реализации (варианты)
Lu et al. Detection of shock and detonation wave propagation by cross correlation
RU2527252C1 (ru) Способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов
Weiler Bias correction using ground echoes for the airborne demonstrator of the wind lidar on the ADM-Aeolus mission
RU2571957C1 (ru) Способ экспериментальной проверки информационных и идентификационных возможностей доплеровских портретов воздушных объектов
RU2538105C2 (ru) Способ определения координат целей и комплекс для его реализации
Bengalskii et al. Effect of strong local stretching of sensing fibre on the operation of a phase-sensitive optical time-domain reflectometer
Buttler et al. Optical velocimetry
RU2439519C1 (ru) Способ определения места утечки жидкости или газа из трубопровода, находящегося в грунте, и устройство для его реализации
Pochanin et al. GPR for pavement monitoring
Rogers et al. Measurements and simulation of ionospheric scattering on VHF and UHF radar signals: Channel scattering function
Nishizawa et al. Gravitational-wave standard siren without redshift identification
RU2632564C1 (ru) Способ обнаружения и идентификации взрывчатых и наркотических веществ и устройство для его осуществления
Barnhart Design and Development of a Coherent Detection Rayleigh Doppler Lidar System for Use as an Alternative Velocimetry Technique in Wind Tunnels
RU2626016C1 (ru) Способ определения местоположения короткоимпульсного высотного источника рентгеновского излучения с помощью средств космического базирования
Kim et al. About the methodology and tools for meteo LIDAR metrological support